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Abstract

An infinite subset of u is monotone (1-1) if every recursive function is eventually monotone on it
(eventually constant on it or eventually 1-1 on it). A recursively enumerable set is co-monotone
(co-1-1) just if its complement is monotone (1-1). It is shown that no implications hold among the
properties of being cohesive, monotone, or 1-1, though each implies r-cohesiveness and dense
immunity. However it is also shown that co-monotone and co-l-l are equivalent, that they are
properly stronger than the conjunction of /•-maximality and dense simplicity, and that they do not
imply maximality.

1980 Mathematics subject classification (Amer. Math. Soc): 03 D 25.

A subset X C w is said to be " monotone" if it is infinite and every total recursive
function is eventually nondecreasing on it. More formally we must have for every
total recursive function / , a number t such that for x, y > t in X, x < y implies
f(x) ^f(y). Furthermore a subset X C u will be said to "1-1" if it is infinite and
every total recursive function is either eventually constant or eventually 1-1 on it.
This requires that for every total recursive function / , there must be a number t in
X such that either/(x) - f(t) for all x > t in X ox f(x) ¥=f(y) for all x >y > t
in X. An r.e. set is said to be co-monotone (co-1-1) just if its complement is
monotone (1-1). Owings (1966) was the first to observe that every maximal set
was both co-monotone and co-1-1. This led us to study these sets in their own
right and to establish their position in the implication lattice of simplicity notions
for r.e. sets. The first study of monotone and 1-1 sets was made by Madan (1975).
After some preliminary observations about these sets, Section 2 will go on to
demonstrate the independence of the notions of cohesiveness, 1-1 and monotone.
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[2] Monotone and 1 -1 sets 63

Section 3 will take up the co-r.e. results where it will be shown that co-1-1 and
co-monotone are equivalent and that they lie strictly between the join of r-maxi-
mal and dense simple, and maximal. For standard notation and facts concerning
r.e. sets the reader is referred to Rogers (1967). A summary of definitions and
facts concerning simplicity notions is contained in Robinson (1967). Recent
developments are described in Lerman and Soare (1980).

THEOREM 1.1. Monotone and 1-1 sets are recursively invariant.

PROOF. It suffices to show for any X C. u and any recursive permutation 4> of u>
that <p( X) is not 1-1 if A1 is not, and not monotone if X is not. As <$>( X) is finite
when X is, we may assume that X is infinite.

If X is not 1-1, there must be a recursive function / which is not eventually
constant on X and not eventually 1-1 on X. In this case/(</>"') provides a counter-
example to <|>( X) being 1-1.

If X is not monotone, there must be a recursive function g which is not
eventually monotone on X. There are therefore infinitely many pairs x, y with
x <y and g(y) < g(x). For each such pair, if <j>(x) < <j>(y) then g(4>~{(<$>(x))) >
g(<l>~\<t>(y))) and if <>(>>) < <S>(x) then <j>~\<j>(y)) > <j)~\<j>(x)). Hence either <f>~'
or g((f>^') is order reversing on §{X) infinitely often, and <$>(X) is not monotone.

THEOREM 1.2. Monotone or 1-1 implies r-cohesive and dense immune.

PROOF. If X is infinite and not r-cohesive then a counterexample to its being
either 1-1 or monotone is provided by the characteristic function of a recursive set
R that splits X so that R C\ X and R' n X are both infinite. Hence monotone or
1-1 implies r-cohesive.

Conversely, suppose that X is infinite and not dense immune. Then as shown in
the proof of Theorem 3 of Robinson (1967), there is a strictly increasing recursive
function / such that | {x G X\f(n) < x < f(n + 1)} |> n for infinitely many
values of n. Thus if we define g(x) = n for f(n) < x < f(n + 1) and all n, then g
shows that X is not 1-1. If, on the other hand, we let h(x) = f(n + 1) — x for
f(n) < x =s f(n + 1) and all n, then h shows that X is not monotone.

This establishes in particular that co-monotone and co-1-1 lie above r-maximal
and dense simple. The fact that they are below maximal is a co-r.e. result left to
Section 3. We now take up the independence of cohesiveness from monotone and
1-1.
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64 D. B. Madan and R. W. Robinson [3]

2.Independence

It is shown here first that cohesive does not imply 1-1 or monotone. This is
followed by showing that monotone does not imply 1-1 and vice versa. The fact
that monotone or 1-1 do not imply cohesive is a consequence of the co-r.e. result
of the next section that co-monotone and co-1-1 are strictly below maximal in the
implication lattice of simplicity notions.

LEMMA 2.1. There exists a total recursive finite-\ function f such that for any finite
partition {/l,}f=1 of w, there is an infinite member A, of the partition, on which f is
neither eventually constant nor eventually 1-1.

PROOF. Define the finite-1 function/as follows;

0 if x = 0, x = 1;
+ 1 i f 2 " + l < x < 2 " + 2 , « G c o .

Every finite partition must have an infinite member, and / cannot be eventually
constant on any infinite set a s / i s finite-1, so the only possibility for contradicting
the proposition of the lemma is tha t / i s eventually 1-1 on every infinite member
of the partition. However, this is not possible as / takes the value n on sets of
cardinality 2", and so for 2" > k, there must be in the same set of the partition at
least two numbers on which / agrees. There are therefore infinitely many counter-
examples to / being 1-1 on the same At, distributed among the finitely many
infinite members of the partition. / must therefore fail to be eventually 1-1 on at
least one of these infinite members.

THEOREM 2.1. Cohesive does not imply 1-1.

PROOF. A cohesive set A that is not 1-1 will be constructed. The «th element of
the set will be xn. L e t / b e as constructed in Lemma 2.1. Let T be the binary tree
of all finite sequences of 0's and l's, and associate with each a G T a subset Ba of
w as follows; B^ — w, and for a extending a* of length n, if a = (a*,0) let
Bo = Bn. D Wn and if a = (a*, 1) let Ba = Ba. D W'n. Let T = {a | a £ T, Ba is
infinite and / i s neither eventually constant nor eventually 1-1 on Ba}.

We will now show that T' is a subtree of T containing paths of arbitrarily large
length. To show that 7" is a subtree, suppose a G 7" and extends a'. This implies
that Ba C Bg, and so if Ba puts a in 7", Ba, puts a' in 7". T is therefore a subtree.
For the paths of arbitrarily large length, note that the set of Bo's with a of length
n is a finite partition of w and by Lemma 2.1 one of these a's must be in 7". By
the Konig Infinity Lemma, 7" must contain an infinite path, let the finite
segments of this be given by D = {an \ n G w}.
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[4) Monotone and 1-1 sets 65

The sequence of sets Ba^ is by construction a decreasing sequence of infinite
sets eventually contained in We or W'e depending on whether ae ends in a 0 or 1
a n d / i s neither eventually constant nor eventually 1-1 on each Bo. Choose now
an infinite sequence of pairs of numbers x2n, x2n+\ w i t n X2« < X2n+i < xin+i
such that x2n, x2n+l G Ba, f(x2n) =f(x2n+l) and f(x2n+2) >f(x2n+]). This is
possible a s / i s not eventually 1-1 on each Bo and /has infinite range on each Bo

as it is finite-1. The set A — {xt\i E u) is then a cohesive set that is not 1-1.

COROLLARY 2.1. There exists a cohesive set that is not monotone.

PROOF. This follows by changing the definition of / in Lemma 2.1 and using the
construction of Theorem 2.1. Define g by g(0) = 1, g(l) = 0 and for 2"+ 1 < x <
2"+2 let g(x) = 2"+2 — (x — 2"+1); g is then decreasing whenever/ of Lemma
2.1 was constant. The set A of Theorem 2.1 is therefore also a cohesive set that is
not monotone.

THEOREM 2.2. Monotone does not imply 1-1.

PROOF. It is sufficient to construct a set A on which some recursive function is
neither eventually constant nor eventually 1-1 and such that every total recursive
function/is either eventually monotone on A or bounded on A. This is because if
a recursive function g is bounded on A but not eventually constant on A then
there must exist values u, =£ u2 such that both the sets g~'(«,), g~ \u2) meet A in
infinite subsets. Let / (x) = x when g(x) = w,, and zero otherwise. / must also be
eventually monotone or bounded on A. This however is impossible if g(x) = M,
infinitely often in A and g(x) ¥= ux infinitely often in A. Hence g must be
eventually constant on A and therefore also eventually monotone on A.

For the construction of A, let /n, n G w, be an enumeration of all total recursive
functions, and let {An}nGu, be a recursive partition of «, with each An infinite.
The set A will be constructed to meet infinitely many An's in a set of cardinality 2
and hence the recursive function h that assigns the value n to all elements of An

will provide a counterexample to A being 1-1. We shall construct a sequence of
infinite sets, Ms, Bm s, and numbers ks for m, s G w. Ms will contain indices of
Am's having subsets on which each/n, n < s, can be kept bounded or monotone.
Bm s will pick out a subset of A m on which this is possible. A will meet Ak in a set
of cardinality 2 and these elements will be xls, x2s+\.

Let Mo = w, Bm 0 = Am for m G w, k0 = 0 and let x0 < x, be two elements of
Ao such that/o(x,) > fo(xo). Now proceeding by induction on s, suppose we have
defined Ms, Bm s for m G w, kr and x2r, x2r+l for r < s.
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W e define sets Ks+Ul, Dms+Ul for f < s + 1, a n d let Ms+l = Ks+ls+] and
Bm,s+\ = D

m,s+\,s+\- Induc t ing on t let Ks+U0 = Ms, Dms+]0 = Bms and suppose
tha t Ks+U, Dm<s+U are defined. Ks+ll+l, Dms+ll+l a re then defined as follows:
Let

{y\y E Dm<s+iJ&ft(y) > max{f,(x,)\i ^2s + 1}} |= oo}.

If E,s+] is infinite, let Ks+U+X = Et<s+l and for every m in £ M + 1 , set DM,,+ U + 1

,,+ 1 ,,&/,(>>) >max{/,(x,.) | i < 2* + 1}} and for m <2 Els+V

On the other hand if E,>J+1 is finite, let A^ + 1 , + 1 = ^ J + i , , — £,,.,+1 and set
Dm,s+U+X = {y\yt Dms+\,&f,(y) < max{/,(*,) 11 < 2^ + 1}} for m $ £ , 5 + l

Let ks+l be the least w £ M J + , that is greater than ks. Now by construction,
if£, i + , is finite for t < J, then/, is bounded on Bk i + , by max{/,(x,) | / < 2 J +
1}, on the other hand if Els+, is infinite then ft(y) > max{/,(x;) | / < 2 J + 1} for
r G 5 * s + , , ,+ i- Choosey <y2 in 5^+ ]_ J + 1 such that f,(y2)>f,{yx) for all r *£ s;
this is possible as any infinite set has an infinite subset on which all of a finite
number of functions are monotone. Set x2 ( j + 1 ) =_y, and x 2 ( J + 1 ) + , =^2 a n d this
completes the induction step and the construction.

The set A is clearly not 1-1 as A meets Ak in a set of 2 elements. Every total
recursive function is either monotone or bounded on A, for let flo be some
recursive function. If there exists sn > ?n such that E. . is finite then for all
5 > s0 ' Bks,s C 5 A o i o and so/,o(^) < max{/,o(x,) | / < 2 J 0 - 1} for al\ y e A and
j> > x 2 j _,. On the other hand if Et s is always infinite for s > tc then the choices
of x2s, x2s+, in Bk s keep/, monotone on A.

A is therefore not 1-1, and every recursive function is either monotone or
bounded on A. This, as was shown earlier, implies that A is a monotone set that is
not 1-1.

This establishes that monotone does not imply 1-1. For the converse, we will
need the following lemma. An important distinction between the requirements of
a recursive function being monotone and 1-1 will be exploited in this construc-
tion. This is that the image of a recursive function monotone on a set is Turing
reducible to the set. The same is not true of a recursive function 1-1 on a set.
Non-monotonicity can therefore be engineered into a construction by attempting
to keep the range not Turing reducible to the domain. This is the strategy of our
next construction.
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[6] Monotone and 1-1 sets 67

LEMMA 2.2. Let f be 1-1, recursive and suppose that f(S) 4 TS for some S C w. / /
g is recursive and f(S D g~'(A:)) < r 5 / o r a// A: f/zeM there is a subset A C S such
that g is 1-1 on A and f(A) 4 TA.

PROOF. The notation is simplified by taking S = w, the relativisation to
arbitrary S being easily accomplished. Let T be the binary tree of finite sequences
of O's and l's. For any finite set F, let T'F be the subtree of all finite sequences a
such that (i) the function g is 1-1 on {«| a(n) — 0} and (ii) for all n, a(n) = 0
implies that g(n) & F. Sequences of T'F are finite segments of subsets of « on
which the function g is 1-1 and F contains a finite set of g values forbidden to
these sets. We shall define the segments ae, e E u of an infinite path in 7" and
sets Fe, e £ co.such that oe, E TF, for all e' > e. The set A is defined by m E A if
and only if om{m) = 0. The object of the choice of oe is to ensure that/(^4) ¥= {e}A.

We first establish the following proposition crucial to the induction step of the
construction of ae.

VT'FVo E T'F

either

3m3a3G(a C a E 7>uc&Vj8 £ TFUG(a C j8 -* {e}"(»i)t))

or

3m3a(a C a&a E r ;& {e}a(w)|

and disagrees with the representing function of {f(k)\a(k) = 0}).

We shall show that if both parts of the disjunct are false then/(w) is recursive.
Given m, the negation of the first part of the disjunct implies that for some a with
a E T'F extending a, {e}a(m)i and this is an r.e. search. When such an a is
discovered, if {e}a(m) = 0, then the negation of the second part of the disjunct
implies that m E/(«) . If {e}"(m) = 1 then for all a' extending a, with a' E TF,
{e}a\m) = 1 and so again using the negation of the second disjunct, one has
m ¥= f(k) when a'(k) = 0. This implies that if m is in the range of /, then
m = f(k) for a k to which an extension of a by a' cannot be made in 7J. This
happens only if k has a forbidden g value, that is, g(k) £ (g(x) | a(x) = 0} U F.
Now let D — {g(x) | a(x) = 0 and a(x)I} and by the negation of the first part of
the disjunct replacing G by D seek a' £ TFUD such that {e}a'(m)l and a C a'. If
[e}a\m) — 0, m £ / (« ) , but if {e}a\m) — 1 then by the same argument as for
a, applying the negation of the second disjunct to F and not F U D, one deduces
that if m = f(k), g(k) E (g(x) | a'(x) = 0} U F. Hence g(k) £ (g(x) | a(x) = 0
and a'(x) = 0} U F, but we forbade a' from taking on any g value that occurred
in a after its extension from a. Hence g(k) E {g(x) \ a(x) = 0} Uf. This is a

https://doi.org/10.1017/S1446788700017626 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017626


68 D. B. Madan and R. W. Robinson [7]

prespecified finite set of g values and since/(w n g~\k)) is recursive for all k,
this is a recursive set which may be searched for m.

The definition of the sequence ae can now be accomplished. Let a_, be the
empty sequence, and F _ , the empty set. Suppose ae_l and Fe_, are defined.
Applying the proposition just demonstrated to CT,_, and Fe_,, if the first part of
the disjunct holds, let ae = a and Fe = Ff_, U G. If the first part fails, let a be as
in the second part and set ae = a, Fe — Fe ,. Defining A by m E A if and only if
am(w) = 0, gives by construction a set on which g is 1-1 and f(A) ^TA.

THEOREM 2.3. 1-1 does not imply monotone.

PROOF. Let/, , n G w, be an enumeration of the recursive functions and le t /be
any 1-1 recursive function for which/(w) is not recursive. We define a decreasing
sequence of subsets An of to such that/(^4n) 4 rAn and/n is constant or 1-1 on An.
Let A _, = w, and suppose An_, is defined and f(An__,) 4 r-^n-1- If there exists k
such that f(An_x C\f;\k))^TAn_x then let An = An_l n£\k) and since
An ^TAn_i, f(An) 4 r^«- /„ is constant on ^4n in this case. On the other hand if
for all k, f{An_x n F~\k)) <TAn_[ then by Lemma 2 there exists An C /!,,_,
such that/, is 1-1 on An and f(An) 4 r ^ n -

Now choose an infinite sequence of pairs of numbers x2n, x2n+l EAn with
X2n < X2n+l < X7n + 2 S U c h t h a t f(X2n+\) < f(X2n)- T h i s i s POSSlbk for aS f(An)
4 rAn, f is not eventually monotone on An. The set A = {xn | « £ « } has / not
eventually monotone on it and as A is eventually contained in each An, every total
recursive function is eventually constant on it or eventually 1-1 on it. A is
therefore a 1-1 set that is not monotone.

3. Co-r.e. results

The first result of this section is that co-monotone and co-1-1 are implied by
maximal. This is the original observation due to Owings from which this work
began. It is clear from section one that co-monotone and co-1-1 imply both
r-maximal and dense simple. We show next that co-monotone implies co-1-1 and
vice versa. It is then shown that co-1-1 is preserved under major subsets and so
lies strictly below maximal. Finally we show that r-maximal and dense simple do
not imply co-monotone.

THEOREM 3.1. Maximal implies co-monotone and co-1-1.
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[8] Monotone and 1-1 sets 69

PROOF. Let M(s), s G w, be an enumeration of a maximal set M and let / be
any total recursive function. Define the r.e. set

W= {x\3s{x £ M(s)&Vy<x(y <£ M(s) - f(y) </(*)))}.

I f /has an infinite range on M' then M' C *W a n d / i s eventually both 1-1 and

monotone on M'. On the other hand if / has a finite range on M' then / must be

eventually constant on M'. M is therefore both co-monotone and co 1-1.

The following lemma turns out to be very important and is frequently used in
the results of this section.

LEMMA 3.1. / / W is r.e. and {^4(0} is a disjoint recursive array, then either (i) or
(ii) holds:

(i) there is a disjoint recursive array {B(i)} with UjB(i)= U(. ̂ 4(/') and
B(i)n\V'= 0 for alii;

(ii) there is a recursive function b(i) such that Vx(x G A(i) D W -> x < b(i))
for almost all i.

PROOF. Let W(s) and A(i, s) be enumerations of W and A(i). Elements
enumerated in A(i) at stage s, A(i, s + 1) — A(i, s), are put into B(a(s, i), s + 1).
Furthermore let c(s, i) = nxx^s(x G B(i, s) — W(s)). Let a(0, i) — i and at stage
5 + 1 let

a(s,i)-\ H3j<a(s,i)(c(s+\,j)^c(s,j))

a(s, i) otherwise

The B(i)'s form disjoint recursive array and note that a(s, i) =j + i <_/ + s. It is
clear that 3iVs(a(s, i) > k) just if lim^cC^, / ) exists for a l l / ^ k, hence just if
B(j) r\W'¥=0 for all/ < k. Thus if Vk3iVs(a(s, i) > A:) then {B(i)} satisfies
condition (i). Otherwise, let n = iikVi3s(a(s, i) < k) and let m — fx,i\/s(a{s, i) 3*
n). Let b(i) — 0 for / < m and b(i) = fxs(a(s, i) = n) for /' s» m. b(i) is recursive
and if i> m and x G A(i) D ff" then x < fo(/'), for if not then x will be
enumerated into A(i) at a stage greater than x and hence exceeding b(i) and so
will be put into B(n) which would then meet W and this contradicts the
nonexistence of lims c(s, n). Hence b{i) satisfies condition (ii).

THEOREM 3.2. Co-monotone implies co-1-1.

PROOF. Suppose H-̂ is r.e., co-monotone and not co-1-1. L e t / b e total recursive
such tha t / i s neither eventually 1-1 nor eventually constant on W. Let A(k) be
the disjoint recursive array given by A(k) — f~l(k). Apply Lemma 3.1 to W and
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70 D. B. Madan and R. W. Robinson [91

the array A(k). Since the union of the A(k)'s is « , condition (i) would contradict

the r-cohesiveness of W and so condition (ii) must hold. But then any recursive

function g defined to be strictly decreasing on A(k) D {x | x < b{k)} for each k

will contradict M' monotone. Hence co-monotone implies co-1-1.

The proof in the other direction uses the following lemma.

LEMMA 3.2. Let R be recursive, X a 1-1 subset of R, and f a recursive function
which is 1-1 on R and for which f(R) is recursive, f is then eventually monotone on
X.

PROOF. We present the details for the case R = u. The proof is easily rela-
tivised to any recursive set R.

We define disjoint recursive arrays C(i) and D(i) for all / by induction as
follows:

U D(;)j U U U D(j)\x<nwiUD(j)\,

3x(x G C(i)&x <y&f(y) <f(x

Note that for each JC £ C(i) we can determine which numbers below/(x) are in
the range of / , since the range is recursive, and hence D(i) is recursive. The
construction gives 0 < | D(i)\< oo with U. D(i) = to and D(i) n D(j) = 0 for
/ ¥= j . In addition for each pair x, y with x < y and / (y ) < / ( x ) we have x G D(i)
for some / and y G D(i) or D(i — 1). This follows because if x G £)(/") and
y (£ Uj<iD(j) then the construction places y in D(i). This is immediate if
x G C(i); on the other hand if x G D(i) because z < x, z G C(i)andf(x)<f(z)
then z <y and /(>>) < / ( z ) and j ' G Z>(/). If however y G U -<(. Z)(y), say y G
D(fc) then as x < y the construction puts x into C(& + 1) and hence D(k + 1).

Now since A" is 1-1, it is /--cohesive and so it is contained modulo finite sets in
the recursive set U; D(2i) or its complement U. D(2i + 1). In any case almost all
pairs x, y in A'on which/reverses order must have both x and j in the same D(i).
Therefore if / reverses order on infinitely many pairs in X the recursive function
that assigns to x G D{i) the value /, would not be eventually 1-1 on A', contradict-
ing X being a 1-1 set. Hence/must be monotone on X.

THEOREM 3.3. co-1-1 implies co-monotone.

PROOF. Let W be a co-1-1 set and l e t / b e a total recursive function that is not
eventually constant on W. Let A(i) — {x \f(x) = / } ; W co-1-1 implies that for
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almost all i \A(i) D W | < 1 with the equality holding infinitely often. W
/•-cohesive implies that condition (ii) of Lemma 3.1 holds for the set W and the
array A(i). Let b(i) be the recursive function of condition (ii) of Lemma 3.1, and
suppose without loss of generality that \A(i) n ) f ' | < l for all i. Given an
enumeration W(s) of W, define recursive functions h and g as follows:

h(i) = iis(\ {x\x<b{i)&x 6 A(i) - W(s)} | < l ) ,

f2i if {x \x^b(i)&xeA(i)~ W(h(i))} = 0,

[2y+\ where y = (ix(x\x < b(i) &x E A(i) - W(h(i)) otherwise.

Note that 2y + 1 G range g if and only if g(f(y)) = 2y + 1. Let i? = (x | 2x +
1 e range g}; /? is recursive, W is a 1-1 subset of /?, / is 1-1 on R, and f(R) is
recursive for i £/( i?) just if {x | x < b(i)&x E /4(/) - W(/i(O)} ^ 0 . Hence
by Lemma 3.2, / is eventually monotone on W. As / was an arbitrary recursive
function not eventually constant on W, this implies that W is co-monotone.

The next theorem implies that co-1-1 and hence also co-monotone are strictly
below maximal. As is now standard, A C *B denotes inclusion modulo finite sets,
that is that A - B is finite. Recall that C is a major subset of D if C C D, D - C
is infinite, and for every r.e. set W we have D' C *W implies C C *W.

THEOREM 3.4. / / W is co-1-1 and S is a major subset of W then S is co-1-1.

PROOF. Let / be any recursive function. If / is eventually constant on W then
for some k, W Q *f~l(k) and so S' C *f~\k), and / i s eventually constant on
S'. Suppose therefore that / i s eventually 1-1 on W. Again, W /--cohesive gives by
condition (ii) of Lemma 3.1, a recursive function b(i) such that (f(x) = i&x G
W) -> x < b(i), say for i > m. As/is eventually 1-1 on W, | /" ' (y) n W |< oo
for ally and hence W C * U) > m/^1(0- Let W(s) be some enumeration of W
and for i > m let

s(i) =ns{\ {x\x<b{i)8cf(x) = i&x $ W(s)} |< l).

s(i) is partial recursive and for i > m, s(i)i. We now define a recursive set R on
which/is 1-1;

R= {x\f(x)>m&x*zb(f(x))&x(£W(s{f{x)))}.

Now W C *R, so 5' C *R and/is eventually 1-1 on S'. Hence S is co-1-1.

COROLLARY 3.1. There are co-1-1 sets which are not maximal.

PROOF. If M is maximal, it is co-1-1. Any major subset of M is a co-1-1 set that
is not maximal. For the existence of a major subset see Lachlan (1968, p. 29).
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Finally we take up the question of showing that co-monotone and co-1-1 lie
strictly above /--maximal and dense simple.

THEOREM 3.5. r-maximal and dense simple does not imply co-monotone.

PROOF. We shall construct an r-maximal dense simple set W that is not
co-monotone. At stage s, we define x(s, n) an increasing enumeration of a
recursive subset of o> that will be referred to as numbers marked for the
complement of W at stage s. All numbers less than or equal to s that are not
marked for the complement at stage s are put into W(s). x(s, n) will be shown to
converge to x{n), the «th element of W and the dense simplicity of W will be
obtained by ensuring that x{n) eventually dominates every total recursive func-
tion.

Let {An}nea, be a recursive partition of a, with An infinite for all n. At each
stage s, we shall have before us an infinite matrix of numbers, with row n
containing an increasing enumeration of Ay{s n) and y(s, n) is an increasing
function of/defined as part of the construction. B(n, s) will be a finite subset of
Av(s „) and will contain the elements marked for W at stage s in row n. We shall
ensure that 2 ^ | 5 ( « , ^ ) | < 2 " + 1 . The number n will be said to require attention
at stage s through e if e < n, B(n, s) <£ We(s) and

2\B(n,s)n We(s)\>\B(n,s)\.

We also define an e-state function W by

W{x, e,s) = "2 {2e~z | z < e and B(x, s) C We(s)}

and recursive functions r(s, n) by

r(s, n) = Max{<j>e(n) \e < n and <j>e(x) is defined at stage s for all* < n).

A recursive function g that is not monotone on W will be constructed by
defining g at each stage on the numbers marked for W. Furthermore if a number
is put into W and its g value is not yet defined then its g value is set to 0 on its
entry into W. g will be defined to be monotonically decreasing on B(n, s) C Ay(s n)

and as eventually B(n, s) will converge to a set of cardinality exceeding 1, g will
not be monotone on W.

We are now ready to describe the construction:

Stage 0: Let^(0, n) = n for all n G co. Mark the first two elements of AV(OO) for
the complement, and inductively mark the first 2"+ 2 elements of Av(On+l) that
exceed the marked elements of Ar(On). Set B(n,Q) equal to the marked elements
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ofAy(0n) and let x(0, n) be an increasing enumeration of all the marked elements.
Define g(x) for x a marked element in Ay^n) by g{x) = 2"+ 1 — / if x is the z'th
marked element of y4v(0 n).

Stage s + 1: If there is no n for which x(.s, n) < r(s + 1, n), go to stage .s + 2.
Otherwise let n0 = ja/i(x(j, «) < r( i + 1, n)). The construction now proceeds in
four parts.

(i) Let e0 - fie{e < n0, <j>s
e
+\x)l for x < n0, x(s, n0) < <t>s

e
+\n0)), and let m0

be such that x(s, n0) G Ay(smo).
Find 2m°+1 elements in Ay{s > greater than r(s + 1, n0) and not in the

domain of g, or in any W at stage s + 1. Mark these elements for the complement
and erase all previous marks in Ay(smoy Now inductively for m > m0, find 2 m + 1

elements of ^v( j>m) that are not in the domain of g, or in We or W so far and
exceed the newly marked elements of Ay^s m_1) and mark them for W, erasing all
marks on the old marked elements of AHsm). Let B(m,s) — B(m, s) for all
m < m0 and for m > m0, B(m, s) is equal to the newly marked elements of
Av(sm). Define g on the /th element of B{m, s) to be 2m + 1 — / for m s* mQ.

(ii) For any n < m0, such that n requires attention at stage through e, let e, be
the least such e and erase the marks on elements of B{n, s) that do not belong to
We[s). Correspondingly set B(n, s) to equal its intersection with We[s).

(iii) If 3e3n(n > e, W{e, e, s) < W(n, e, s)), let e2 be the least such e and n2

the least associated n. Set y(s + 1, e2 + k) — y(s + 1, n2 + k) for all k G w.
Furthermore for all k G «, let fi(e2 + A:, ̂  + 1) be the first 2"2+*r+1 elements of
B(e2 + k, s) if B(e2 + k, s) has more than 2 e 2 + * + 1 elements and otherwise let
B(e2 + k, s + 1) = B(e2 + k, s). Erase marks accordingly. Also for e < e2 let
B(e, s + 1) = 5(e, i ) and>>(.* + 1, e) = y(s, e).

(iv) Put into W all x < 5 such that x £ Un B(n, s + 1) and let x(s + 1, n) be
an increasing enumeration of Un B(n, s + 1).

This completes the construction; we now show that W has the desired proper-
ties.

LEMMA 3.5.1. Vn3sVs'(s' > 5 -> j>(s', «) = >»(5, n) and B(n, s') = 5(« , s)).

PROOF. Proceeding by induction on n, suppose that for all k < n and i > s0 we
have y(s, k) = y(s0, k) and B(k, s) = B(k, s0). Let 5, > s0 be such that for all
s > 5,, r(^, A:) = r(5,, A:) for all A: < 2fl + 2 — 2. After stages,, n may be w0 of part
(i) of the construction on behalf of some k < 2 n + 2 — 2. But for each such k, n
could be w0 at most once. Hence there exists a stage s2> s] such that for s 3= s2,
5(«, s) = fi(«, 5) at the end of part (i) of stage s of the construction. Once part
(i) is ineffective on row n, the movement of higher rows down to row n in part (iii)
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does not disturb the domination of part (i). Such movement only occurs on behalf
of higher n states of which there are only finitely many. The cutting down of
B(n, s) in part (ii) only raises the n state and can occur only finitely often, and so
there must exist a stage s3 such that for all s^s3, B(n, s) = B(n, s3) and
y{s,n) =y(s3,n).

L E M M A 3.5.2. Vs( | B(n, s)\> 2) .

PROOF. Let B(n0, s0) C Ay(S(jino) be the limit of B(n0, s) with y(s0, n0) = k0.
For s ̂  s0, let h(s) be the row number n to which Ak is assigned at stage s, hence
y(s, h(s)) — k0. h(s) is a decreasing function of 5 with h(0) = k0 and the limiting
value of h being n0. Let s, + 1 be the largest stage < s0 such that part (i) of the
construction is effective for a row m0 < / I ( J , ) , and if there is no such stage let s,
be 0. At the end of part (i) of stage su 2?(M^i)> .s,) has a cardinality of 2A(*|)+1

and and for all s, if s, < s < 50, then fi(«0, J 0 ) C B(h(s), s) C 5(/i(5,), 5,). Let
as be the cardinality of £(/!(•*), •«)• We have a i | + 1 = 2A<i| + 1)+1; now let 5, + 1
be the greatest stage s < i 0 such that a J + 1 = 2 / l ( j + 1 ) + l . The only way for
B(h(s + I), s + I) ¥= B(h(s), s) for s > s2 + 1 is for part (ii) of the construction
to give attention to h(s) of stage s + 1. This attention is given at most once on
account of e < //(.$) and cuts the size of B(h(s), s) by a factor of at most j its
previous size. Reducing a set of cardinality 2*<J2+1)+1 by a factor of \ its previous
size, at most h(s2 + 1) times cannot reduce its cardinality below 2. Hence
\B(no,so)\^2.

This establishes that W is infinite, that x(s, n) converges to a function x(n)
which by part (i) of the construction must dominate every total recursive function.
By construction g is strictly decreasing on B(n, s) and so as | B(n, s) \> 2 in the
limit, we have the W is not comonotone. It remains to show that W is /--maximal.

LEMMA 3.5.3. W is r-maximal.

PROOF. Suppose R is recursive and Weo, We are respectively enumerations on R
and R', with e0 < ev Let W{n,ex) — \ims W(n,e], s), and because of the maxi-
misation of the e state function there must exist m0 such that for all m 5= m0,
W(m, e,) = W(m0, ex). This implies that for all m > m0, B(m) C Weo or B(m)
C Wei according as B(m0) C Weo or B(m0) C We>. Since ff^ and We< are /? and
R' one must have either

\WeonB(m0)\>±\B(m0)\ or | ̂  n B(m0) \> ±\ B(m0) \

and part (ii) of the construction will then force B(m0) C We or B(m0) C We.
This implies that Um fi(w) C *Weo or Um B(m) C *H/

fi and° hence that W is
/•-cohesive.
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4. Related questions

If the following conjecture were true then it could be used in the proof of
Theorem 2.3 to provide a recursive sequence of sets {An} in place of the
consequence provided by Lemma 2.2.

CONJECTURE. Suppose f and g are recursive, f(g\n))iS recursive for all n, and
/(a>) is not recursive. Then there is a recursive set R such that g is 1-1 on R and
f(R) is not recursive.

Our construction of co-1-1 sets which are not maximal in Corollary 3.1
guarantees nevertheless a maximal superset. It would be interesting to know
whether every co-1-1 set is contained in a maximal set.
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