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A growing number of publications focus on estimating Gaussian graphical models (GGM, networks of
partial correlation coefficients). At the same time, generalizibility and replicability of these highly parame-
terized models are debated, and sample sizes typically found in datasets may not be sufficient for estimating
the underlying network structure. In addition, while recent work emerged that aims to compare networks
based on different samples, these studies do not take potential cross-study heterogeneity into account.
To this end, this paper introduces methods for estimating GGMs by aggregating over multiple datasets.
We first introduce a general maximum likelihood estimation modeling framework in which all discussed
models are embedded. This modeling framework is subsequently used to introduce meta-analytic Gaussian
network aggregation (MAGNA). We discuss two variants: fixed-effects MAGNA, in which heterogeneity
across studies is not taken into account, and random-effects MAGNA, which models sample correlations
and takes heterogeneity into account. We assess the performance of MAGNA in large-scale simulation
studies. Finally, we exemplify the method using four datasets of post-traumatic stress disorder (PTSD)
symptoms, and summarize findings from a larger meta-analysis of PTSD symptom.

Key words: meta-Analysis, network psychometrics, gaussian graphical model.

The estimation of Gaussian graphical models (GGM; Epskamp et al. 2018; Lauritzen 1996)—
network models with nodes representing observed items and edges (links) representing partial
correlation coefficients—has gained popularity in recent psychological research (Fried et al. 2017).
A recent review indicated that, by the end of 2019, 141 studies in psychopathology have been
published in which cross-sectional datasets were analyzed using network models, the majority of
which used GGMs (Robinaugh et al. 2020). These studies include high impact studies in diverse
research fields, including post-traumatic stress disorder (PTSD; Mcnally et al. 2015), psychosis
(Isvoranu et al. 2019), depression (Fried et al. 2016), and personality research (Costantini et al.
2015). The field of Network Psychometrics is concerned with the estimation of such network
models from data (Marsman et al. 2018). A growing issue of debate in this field relates to the
replicability and generalizability of these results (Forbes et al. 2017; Fried et al. 2018), especially
given that datasets used to estimate GGMs are typically relatively small (e.g., hundreds of cases
compared to hundreds of parameters). High-dimensional exploratory model estimation may be too
ambitious from single datasets with relatively small sample sizes. As such, there is a distinct need
for utilizing multiple studies in estimating GGMs. This paper introduces methods for aggregating
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results across different studies through introducing multi-dataset! GGM models as well as fixed
and random-effects meta-analytic GGM estimation. In doing so, this paper also introduces novel
extensions for GGMs estimated from single datasets, including methods for imposing equality
constraints across parameters as well as analytic derivatives for fitting confirmatory network
models and assessing significance of individual parameters.

As raw data often cannot be shared, a method for studying multiple datasets should be able
to utilize summary statistics. More precisely, the methods should allow for the analysis of sample
correlation matrices, as these are commonly used when estimating GGMs and as different datasets
can include measures of the same variables on different measurement scales. Let P represent the
population correlation matrix and R the sample correlation matrix—the maximum likelihood
estimate explained further in Sect. 3.3—of a particular dataset. Epskamp et al. (2017) propose to
model the GGM through the following equation:?

P=AI-Q) "A. 1)

Here, Q2 represents a symmetric matrix with zeroes on the diagonal elements and partial correlation
coefficients on the off-diagonal elements, and A represents a diagonal scaling matrix that controls
the variances (and is a function of €2, as explained below in Eq. (10)). The € matrix can be used
as a weight matrix to draw a network, in which nonzero elements of € are represented by an
edge in the network representation. While € and P can be directly transformed into one-another
in principle, we have neither in practice; we merely have the estimate R. This estimate naturally
contains noise due to sampling variation, but may also contain noise due to heterogeneity across
samples (Becker 1992; 1995):

R = P + sampling error + heterogeneity.

When analyzing only one dataset, heterogeneity across study domains cannot be taken into
account. The extend of sampling error, however, can adequately be estimated through various
methods. A classical method of controlling for sampling error is by obtaining maximum likelihood
estimates of € as well as standard errors around each of these estimates, which can subsequently
be used to assess the significance of parameter values. The exact same procedure could also
be used to test confirmatory fit of a pre-defined structure for € in which some parameters are
constrained to zero based on, for example, a cross-validation training dataset (Kan et al. 2019; Kan
et al. 2020). Several fit indices could then be obtained for assessing the fit of the model (Howard,
2013). It has been noted, however, that the methods and software typically used to estimate GGMs
lack this classical level of inference (Williams and Rast 2018), relying instead on regularization
techniques and data driven re-sampling methods (Epskamp et al. 2018). Epskamp et al. (2017),
for example, do not report analytic derivatives of the model in Eq. (1) that are required for this
level of inference. After introducing a general modeling framework in Sect. 2, in which all models
discussed in this paper are embedded, we fully describe these analytic derivatives in Sect. 3, and
present a less technical introduction to these methods in Supplement 1.

Extending the problem to multiple datasets, we introduce the meta-analytic Gaussian network
aggregation (MAGNA) framework, which is derived from earlier work on multi-group structural
equation modeling (SEM; Bollen and Stine 1993) and meta-analytic SEM (MASEM; Cheung

LOf note, we term this analysis method multi-dataset analysis in this paper, but the term multi-group analysis is also
commonly used in, for example, structural equation modeling (SEM; Bollen and Stine 1993).

20f note: this equation is a matrix form of obtaining partial correlation coefficients through standardizing the inverse
variance-covariance matrix and multiplying all elements by —1, a relationship that is well known and can be traced back
as far as the work of Guttman (1938).
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2015a; Cheung and Chan 2005). We discuss two variants of MAGNA: fixed-effects MAGNA
(Sect. 4) and random-effects MAGNA (Sect. 5). In the fixed-effects MAGNA setting, we do not
assume heterogeneity across study domains, and aim to estimate a single GGM using multi-
dataset analysis, either by estimating a pooled correlation structure to use in GGM estimation, or
by estimating a single GGM directly in a multi-dataset GGM model using equality constraints
across datasets. In the later variant, we can also place partial equality constraints, allowing for
some parameters to be equal across groups while others vary across groups. In the random-effects
MAGNA setting, we assume heterogeneity across study domains, and aim to estimate a GGM
structure while taking this heterogeneity into account. To do this, we need a prior estimate of the
sampling error among sample correlation coefficients, which can be obtained using the methods
discussed in Sects. 2, 3, and 4.

Following the introduction of the MAGNA framework, Sect. 6 reports simulation results
on the performance of fixed-effects and random-effects MAGNA analysis from datasets with
and without heterogeneity. This is the first simulation study that incorporates cross-study hetero-
geneity in GGM estimation procedures. We will discuss and implications for the performance
of aggregating over studies while not controlling for cross-study heterogeneity. Finally, Sect. 7
discusses two empirical applications of PTSD symptom networks, and Supplement 4 discusses
another empirical example of depression, anxiety and stress symptoms.

All methods have been implemented in the open-source R package psychonetrics (Epskamp
2020b).> A tutorial on how all analyses can be performed using psychonetrics can be found in
Supplement 2, and more information on estimating models with missing data can be found in
Supplement 3. The analytical framework from Sect. 2 can further be used for other models than the
GGM; in Supplement 5 we detail how this framework can be used for another common network
model—the Ising Model for dichotomous data (Epskamp et al. 2018; Ising 1925; Marsman et al.
2018). This Supplement explains how the Ising model can be estimated from summary statistics
as well as how it can be extended to multi-dataset analysis—both types of analyses not previously
used in the literature on psychological network analysis.

1. Notation

Throughout this paper and the supplementary materials, we will use Roman letters to denote
variables that can be observed (such as data and sample size), and Greek letters to denote parame-
ters that are not observed. Normal faced letters will be used to denote scalars, bold-faced lower-case
letters to denote vectors, and bold-faced upper-case letters to denote matrices. In line with earlier
work on psychometric network models (Epskamp, 2020a; Epskamp et al. 2018), we used capital-
ized subscripts to denote that a variable is random with respect to that population. For example, yc
denotes that the response vector y is random with respect to case C, and y. denotes the observed
response vector from a fixed case c. In addition, we will use some common vectors and matrices: 1
represents an identity matrix, O a matrix of zeroes, and 0 a vector of zeroes. The symbol ® will be
used to denote the Kronecker product. We will also use some matrix functions: vec(. . .) will repre-
sent the column-stacked vectorization operator, vech(. . .) the column-stacked half-vectorization
operator (lower triangular elements including the diagonal), vechs(. . .) the strict column-stacked
half-vectorization operator (lower triangular elements omitting the diagonal), and diag(. . .) will
return only the diagonal elements of a matrix.

3Version 0.9 of the psychonetrics package has been used for all analyses in this paper, using the nlminb optimizer
with a relative tolerance of \/e ~ 1.49 x 1078 (the square root of the smallest possible positive floating point number).
This is a conservative optimization technique that can be slow to run: the empirical example took several hours to run on
a computer with an AMD Ryzen 9 3950X processor, a RTX 2080 Ti GPU, and 128 GB of 3600MHz DDR4 RAM. For
faster results, a different optimizer or a lower tolerance level can be used.
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2. A General Framework for Structured Multivariate Models

In this section, we introduce a general framework for maximum likelihood estimation of

structured multivariate models, such as all the models discussed in the present paper. This frame-
work is based on commonly used frameworks for estimating multivariate models (Magnus and
Neudecker 1999; Neudecker and Satorra 1991). We introduce this framework here, however, as
to keep the paper self-contained. All models introduced after this section follow the framework
introduced here. In fact, the random-effects MAGNA framework uses this framework twice in dif-
ferent ways. First, to estimate the sampling error around sample correlation coefficients. Second,
to estimated the remaining parameters. We further introduce this framework first without assum-
ing an underlying distribution, as this allows the framework to be used flexibly for standardized
(e.g., estimating a GGM from a correlation matrix) and unstandardized (e.g., modeling variance
around multiple correlation coefficients) Gaussian distributions. Supplement 3 continues the dis-
cussion of this chapter and shows how the framework can be expanded to handle missing data and
case-specific distributions. Finally, this specification also allows for non-Gaussian distributions
to be used, as is further described in Supplement 5, which uses the framework for dichotomous
Ising models instead.
Fit function. Let D represent all available data and let £ represent the log-likelihood of the data,
which we assume to follow a multivariate distribution that is characterized by of distribution
parameters ¢ (e.g., all population correlation coefficients). We will model the data using a set of
model parameters 0 (e.g., all possible edges in a GGM network), which are subsequently modeled
with a set of free parameters ¥ (e.g., all ‘included’ nonzero edges in a GGM network). As such,
L is a function of ¢, which is a function of 8, which, finally, is a function of ¥:

L@O6@):;D).

We will drop or reduce bracket notation for functions whenever non-ambiguous. For example, the
above can also be written as £ (¢ ; D) (as the likelihood is ultimately a function of free parameters
in ¢ only) or simply £. Rather than using the log-likelihood itself, we will use a fit function that
is proportional to —2/n times the log-likelihood, with n representing the total sample size:*

Foo_2r. @
n

Derivatives of the gradient. In maximum likelihood estimation (ML), we find parameters by
minimizing F:

¥ = min[F(¥: D)]

which we can do by finding the set of parameters for which the gradient—the transpose of the
first-order derivative (Jacobian)—equals O:

o (5))'

| = 0. 3)

VF (q;) _

4While multiplying the log-likelihood with —2/n is not required, we do this as it is common practice, because it
simplifies notation, and to not have the fit function depend on ~ in the optimization routine.
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Numerous algorithms exist for solving a gradient to be 0.°> This Jacobian matrix can be found
using a chain-rule (Neudecker and Satorra 1991):

oF .
—_ = Full Jacobian
X4
oF e .
— | % Distribution Jacobian
Rl
d
—¢ X Model Jacobian
00
00
— Manual Jacobian. “4)
X4

Three elements are needed to obtain the Jacobian: the distribution Jacobian (e.g. the derivative
of the normal likelihood to the means, variances and covariances), the model Jacobian (e.g., the
derivative of correlations to network edge weights), and the manual Jacobian (e.g., the derivative of
all possible network edge weights to unique nonzero edge weights). The manual Jacobian allows
for constraining parameters (e.g., to zero) and for specifying equality constraints, and will usually
be a sparse matrix consisting only of ones (parameters that are estimated) and zeroes (parameters
that are fixed to their starting values, usually zero). The distribution and model Jacobians need to
be defined. Note that in the special case where ¢ = 8 = ¥ (e.g., when all correlations are directly
modeled), the model Jacobian and manual Jacobian both become an identity matrix.

Fisher information and standard errors. The full Jacobian above is sufficient for relatively
fast parameter estimation. However, to obtain standard errors of the estimated parameters we
also require second-order derivatives. The Hessian denotes the second-order derivative of the fit
function (Jacobian of the gradient):

IVF
H=—.
oY

The expected value (£) of the Hessian can be used to obtain the unit Fisher information matrix:
I-= 15 (H)
=5 ,

While the full Hessian is hard to compute, a convenient chain-rule exists for the Fisher information
of the maximum likelihood estimate ¥, making use of Eq. (3) such that the gradient equals zero
(Magnus and Neudecker 1999):

-3 (2) (@) (|22 @) e

As such, only one more matrix is needed: a second-order derivative of the fit function to the
distribution parameters only, which we will term the Distribution Hessian. The Fisher information

5The psychonetrics package makes use of the optimization routine implemented in the R function nlminb.
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can subsequently be used to obtain an estimate of the parameter variance—covariance matrix of
the maximum likelihood estimate y:

v(3)=L2(5) < (3).

The square root of the diagonal of this matrix can be used to estimate the standard error of each
free parameter. Of note, the above expression should be read as the variance of the ML estimator
of ¥, not the variance of the ML estimate 1;0 The ML estimate 1/} is deterministic for a given
dataset, and thus fixed without variance. However, if the study is repeated in the exact same setting
in the same population, sampling variation will lead 1/} to vary across these potential samples.
These potential samples do not necessarily equal the multiple datasets discussed in this paper, as
there may be differences in the populations studied in different datasets.

Summary To summarize, this section describes a general modeling framework that only needs
the implementation of the distribution Jacobian and Hessian for each specific distribution, the
implementation of the model Jacobian for each specific model, and the specification of the manual
Jacobian for each specification of the model. This framework is implemented in the psychonetrics
R package (Epskamp 2020b), which now contains two distributions: the Gaussian distribution
introduced further below, and the Ising distribution introduced in Supplement 5. The package
furthermore includes several modeling frameworks based on these distributions (mostly network
models and latent variable models; Epskamp 2020a). This paper will focus only on the Gaussian
distribution coupled with the Gaussian graphical model.

3. Single Dataset ML Estimation

In this section, we will discuss ML estimation in a single dataset. We discuss the single
dataset case first, as the methods for multi-dataset and meta-analytic analyses discussed further
in this paper naturally follow from the methods for single group analysis. An example of how
the methods below can be used to estimate and perform inference on a GGM structure based on
an observed correlation matrix can be seen in Supplement 1. Let y| = [y[c,l] Ve2] --- y[c,p]]
represent the response vector of case c on a set of p items, and let ¥ represent the data matrix that
contains these responses on its rows:

}’1 Yoo yi2y o --- o Yi,pl

Yo V2,11 Y21 oo+ Y2,p)
Y=| | = ) ) ) )
- : : : :

Y Yin,11 Yn2l -+ Ynpl

As we only consider one dataset, D = Y. We will assume that ¥ contains no missing data,®
and that Y is standardized such that the sample mean of each variable is 0 and the standard
deviation’ of each variable is 1. We will first discuss the fit function and derivatives for models that
utilize the standardized Gaussian distribution. Next, we discuss estimating GGMs with potentially
constrained structures. Finally, we also discuss how potentially constrained marginal correlation
models can be estimated in this framework.

SFor the analyses in Sects. 3 and 4.2 data can be missing and handled through full-information maximum likelihood
estimation, as explained in Supplement 3. However, we assume no missingness as the aim of this paper is to rely on
summary statistics only, and because summary statistics are used as input to the random-effects MAGNA.

7Throughout this paper we assume the ML estimate is used for standard deviations and variances. That is, the
denominator n is used rather than the denominator n — 1.
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3.1. The Standardized Gaussian Distribution

Let R denote the sample correlation matrix of ¥, obtained (if the data are standardized) with:
1
R=-Y'"Y.
n

As data are assumed standardized, we will assume that y ¢ follows a multivariate standard normal
distribution:

yc ~ N, P),

in which P represents the population correlation matrix. In the case of standardized data, the only
distribution parameters of interest are the correlation coefficients:

¢ = p = vechs (P).
As a result, the fit function becomes:
F = trace (RK) — In |K|, (7)

in which K = P!, Important to note here is that the fit function is only a function of the sample
correlation matrix R and no longer of raw data ¥ —the sample correlations are sufficient statistics
for the standardized Gaussian distribution. The distribution Jacobian becomes:

F T
— =—vec(K(R-P)K)' D,, ®)
ap

in which D, represents a strict duplication matrix as further discussed in the appendix. Finally,
the distribution Hessian becomes:

£ [W—F} =D/ (K ®K)D,. )
ap

3.2. The Gaussian Graphical Model

Equation (1) characterizes the GGM as a function of a symmetric matrix  with zeroes on
the diagonal and partial correlation coefficients on the off-diagonal, and a diagonal scaling matrix
A. In the special case of modeling a correlation matrix, the A is a function of € such that all
diagonal elements of P equal 1:

_1
2

A = vec2diag (diag ((I — Q)_1)> , (10)

in which vec2diag(. . .) takes a vector and returns a diagonal matrix with elements of the vector
on the diagonal, and diag(. ..) takes the diagonal of a matrix and returns a vector. As such, the
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only parameters in the model are & = w = vechs (2). The model Jacobian can be derived to take
the following form:

ip ¢
0 ow
_r [(ASZ* ®AQ") — 0.5 ((AQ" ® 1) + (I ® AQ")) Admat (@7) AT (@ ® sz*)} D*

(11)

inwhichQ* = (I — Q)~'. The dmat(. . .) function returns a matrix that only includes the diagonal
of the input (all other elements set to zero), and the power —% is only taken for diagonal elements
of the diagonal matrix. The matrices L* and A are further explained in the appendix.

With Eq. (1) at hand, all elements required for estimating GGM structures with possible
(equality) constraints among the parameters are there for both single-dataset and multiple-dataset
models—explained further below in Sect. 4.2.2. To estimate the GGM parameters, we can numer-
ically solve Eq. (3) using any good optimization routine, which equates to finding the set of
parameters that maximises the likelihood function. To do this, we need to use Eq. (4), which
expresses the gradient, and plug in the correct matrices: Eq. (8) for the distribution Jacobian and
Eq. (11) for the model Jacobian. The manual Jacobian can finally be specified to encode which
parameters are constrained in the model. This matrix will have a row for each potential edge in
the network (each unique element in £2), and a column for each parameter that is free to vary. The
matrix only contains ones and zeroes, with a one indicating that an element of € is represented
by a free parameter in ¥. A diagonal matrix represents a saturated model, a diagonal matrix with
columns cut out represents a model in which certain edges are fixed to zero, and a matrix in which
multiple elements in a column are 1 represent a model with equality constraints.

For example, consider a hypothetical model for three variables, such that there are three
distribution parameters: 07 = [a)zl w31 0)32]. The following manual matrix specifications can be
used to encode different constrained models for these parameters:

Y1 Y2 ¥3
1007]

80 w21
8——w31 010
Yool 001
Y1 V2
1 0]

80 w21
a——wm OO
LANND
(//_
0 | ]
a——a}31 0
LAY

The first specification will lead to a saturated model in which all three potential network edges are
included (Y| = wa1, Y2 = w31, Y3 = w32), the second specification will lead to a constrained
model, in which only edges 1 —2 (Y1 = w>1) and 2 — 3 (¥» = w3,) are included, and the last
specification will lead to a further constrained model in which these two edges are also constrained
to be equal (¥ = wy1 = w3p). After estimating a model, Eq. (5) can be used to compute the Fisher
information matrix, which can be used in Eq. (6) to estimate standard errors of the parameters.
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We can plug in the same manual Jacobian and model Jacobian as for the gradient, in addition
to Eq. (9) for the distribution Hessian. With standard errors of the parameters, we could assess
which edges are not significantly different from zero at a given « level and re-estimate parameters
of other edges while keeping the edge-weights from non-significant edges constrained to zero—a
process we term pruning. Supplementary 1 shows a non-technical description of how to do this in
a model with three variables, and Supplementary 2 shows a tutorial on how to do this in R using
the psychonetrics package.

3.3. Estimating Correlations

The expressions above can also be used to estimate correlation coefficients rather than GGM
structures (partial correlation coefficients). For this, we only need to change the model Jacobian
in the gradient and Fisher information expressions. If we do not impose any structure on the
correlation coefficients (estimating a saturated model), we can see that then ¢ = 0 = ¢ = p,
and therefore both the model Jacobian and the manual Jacobian equal an identity matrix. To this
end, the transpose of Eq. (8) directly equals the gradient, which is solved for 0 when P = R,
proving that R is a ML estimate for P. Equation (9) can then be used directly to form the
parameter variance-covariance matrix ¥, which can be used to obtain standard error estimates for
the estimated correlations by taking the square root of diagonal elements. This is important for the
discussion in this paper, as the multi-dataset MAGNA methods introduced below rely crucially
on the V matrix for marginal correlation matrices. In fixed-effects MAGNA, we will use these
expressions to estimate a pooled correlation matrix to estimate a GGM from, and in random-effects
MAGNA, we will use these expressions to estimate the sampling variation among the correlational
structure. Of note, constrained correlation models, such as fixing certain correlations to zero or
imposing equality constraints between multiple correlations, can easily be estimated using this
framework as well by changing the manual matrix.

4. Multiple Dataset ML Estimation: Fixed-Effects MAGNA

When analyzing multiple datasets, we can form a set of parameters for each dataset and place
equality constraints across datasets to estimate a (partly) identical model. This approach is common
in the SEM literature, where multi-group analyses are frequently used to assess measurement
invariance and heterogeneity across groups (Meredith 1993). We use multi-dataset analysis in
the remainder of the paper in several different ways: to obtain a pooled correlation structure
and weight matrix in Sect. 4.2.1, to estimate a (partly) identical GGM structure across multiple
groups in Sect. 4.2.2, and to estimate sampling variation across different datasets in Sect. 5.2.2. To
extend our analyses to accommodate multiple datasets, we may note that the framework presented
in Sect. 2 does not necessarily require that only one dataset is present. This framework merely
requires a likelihood function (e.g., the total likelihood over all datasets), a set of distribution
parameters (e.g., the sample correlations from all datasets), a set of model parameters (e.g., edge
weights for all datasets), and a set of free parameters (e.g., a single set of identical edge weights
across groups). As such, this framework allows for the modelling of multiple datasets as well as
single datasets. In addition, it turns out that this can be obtained with minimal adjustments to the
required Jacobian and Hessian blocks; mostly the exact same structures as used in single-dataset
estimation can be used in multiple-dataset estimation. Below, we first discuss this in more detail,
before turning to the specific cases of estimating pooled correlations and GGMs.

Downloaded from https://www.cambridge.org/core. 26 Jan 2025 at 23:51:50, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

SACHA EPSKAMP, ADELA-MARIA ISVORANU, MIKE W.-L. CHEUNG 21

4.1. Modeling Multiple Matasets

Suppose we have not one but k datasets. We can then use subscript i € 1,2,...,k to
distinguish between datasets. The full data then becomes a set of datasets:

D=(Y.Ys,...,Yi}.

Let F; indicate the likelihood function of dataset i with a sample size of n;. We can then form a fit
function for each dataset separately, F; (taking the form of, for example, Eq. (7)). Then, assuming
independence between datasets, we may form the fit function of Eq. (2) of the full data as the
weighted sum of fit functions over all datasets:

k
n
F:Z;Fi. (12)

i=1

Each of these fit functions can have its own set of distribution parameters ¢; and model parameters
0,;, such that:8

o1 01
2 0>
(28 0

The distribution Jacobian, model Jacobian, and distribution Hessian each then become a block

matrices:
() % () ()] @
(%) o0... 0
%Z ? <%) ? (14)

m (g [%D o 0
£ [aav_f] _ 0 o (5 [E%?D 0 . (15)
I ) o ...’;—k(g[a;fk])

As such, the distribution Jacobian and Hessian and the model Jacobian only need to be defined for
each dataset separately. This greatly simplifies the multi-dataset estimation problem, as no new
derivatives are required for the multi-dataset setting as for the single data-set setting. As a result,
no new derivatives are required for, for example, multi-dataset correlation models (Sect. 4.2.1),

8Note that the size of ¢; and 0; may vary over datasets. For example, some datasets may have more variables than
other datasets.
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GGM models (Sect. 4.2.2), and Ising models (Supplement 5). Finally, the manual Jacobian can
be used to impose equality constraints over datasets. For example, suppose we wish to estimate
a model in which each network edge is included but constrained to be equal across datasets, we

could specify:
¥
0. 1
% = . (16)
A
0| 1

with I indicating an identity matrix. If we then wish to fit a model in which some edges are
constrained to zero over all groups as well, we only need to cut out columns of the manual
Jacobian above.

Of note, any dataset can be split into multiple datasets as well. As such, estimating a single-
dataset model on the full data or estimating a multiple dataset model on the data randomly split
in two with parameters constrained to be equal across datasets should lead to the same estimates.
This property can be used to implement full information maximum likelihood (FIML) estimation,
which is typically used to handle missingness in the data. In FIML, each row of the dataset” can
be modeled as a dataset, and the methods above can be used to estimate the parameters of interest.
Another application of FIML is that the fit function, gradient and Fisher information matrices
can be computed per row individually. The estimator then no longer requires summary statistics,
but rather the raw data itself. We make use of this variant of FIML in random-effects MAGNA
in Sect. (5.2.2), where we use a different implied variance—covariance matrix per set of sample
correlations based, in part, on the sample size used to determine that set of sample correlations.
Supplement 3 explains FIML in more detail, and shows that the form of the model Jacobian stays
the same.

4.2. Fixed-Effects MAGNA

When modeling multiple standardized datasets, we may add a subscripts i to indicate that
each dataset has its own population correlation and GGM structure:

yic.ii~ N@, P;)
Pi=AI-Q)'A,

in which A; remains a function of £2; as per Eq. (10). We may be interested in estimating a single
GGM structure €2 (including structured zeroes to indicate absent edges) to underlie the data, such
that Q = Q) = Qp = --- = Q, implying also that the data follows a common population
correlation structure P = Py = P, = ... = Pj. Such a model would correspond to a model
in which deviations between the correlational structures of multiple datasets are solely due to
sampling variation and not due to cross-study heterogeneity. Two methods can be used for this
purpose: two-stage estimation and multi-dataset estimation. These are structurally near-identical,
and both utilize the fitting procedure discussed in Sect. 4. For both methods, only the manual
Jacobian needs to be specified and all other derivatives given in Sect. 3 can readily be used.

9The implementation of FIML for psychonetrics does not split the data per row but rather per block of data with the
same missing patterns.
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We term these methods fixed-effects meta-analytic Gaussian network aggregation (fixed-effects
MAGNA).10

When estimating a saturated GGM, both the two-stage approach and the multi-dataset
approach will lead to the exact same estimates and standard errors, and usually the methods
will lead to only minimal differences in constrained estimation (e.g., significance pruning). To
this end, both methods can be used for fixed-effects MAGNA analysis. One benefit of the multi-
dataset method is that it can also be used for partial pooling as well as to test for homogeneity
across groups in invariance testing steps (Kan et al. 2019). We introduce an algorithm—partial
pruning—for exploratively searching for such a partially constrained model below. The two-stage
approach, on the other hand, is simpler and does not require software dedicated to multi-dataset
GGM modeling, allows for sharing the pooled correlation matrix and weight matrix for easier
reproduction of results, and allows for easier multi-dataset modeling where invariance is assessed
across, for example, two pooled correlation matrices for datasets of two types (e.g., veterans
and refugees). As such, the two-stage estimation procedure is simpler, while the multi-dataset
estimation procedure is more sophisticated and can be expanded more.

4.2.1. Two-Stage Estimation  The first method is described as a two-stage approach in MASEM
(Cheung and Chan 2005; 2009; Jak and Cheung 2020). This method uses the estimator from Sect. 2
twice: first in a multi-dataset setting to estimate a pooled correlation matrix together with its Fisher
information matrix using maximum likelihood estimation, and second in a single-dataset setting
estimating a pooled GGM using weighted least squares (WLS) estimation.

Stage 1: Pooled correlations. In the first stage of two-stage estimation, we estimate a single
pooled population correlation matrix P together with its Fisher information matrix. In this setup,
the distribution parameters and model parameters both contain correlation coefficients for each
dataset:

Pk
in which p; = vechs (P;). The free parameter set only contains the pooled correlations:
¥ =p

As such, the model Jacobian takes the form of an identity matrix, and the manual Jacobian takes
the form of Eq. (16). The distribution Jacobian can be formed as in Eq. (13), with each element
taking the form of Eq. (8) weighted by the proportional sample size of the corresponding dataset.
These are all the elements needed for constructing the Jacobian (Eq. (4)), which can be used to
construct the gradient (Eq. (3)) used in optimization procedures to estimate the parameters, which
we term p below. For the Fisher information matrix Z (Eq. (5)), the distribution Hessian can be
constructed as in Eq. (15), with each element taking the form of Eq. (9) weighted by the sample
size.

Stage 2: Pooled GGM In the second stage of estimation, we utilize WLS estimation in a single-
dataset setting to estimate the (potentially constrained) GGM parameters. In WLS, we match a

10°0Of note, strictly speaking, the fixed-effects MAGNA model should be called a common-effects model, which
assumes that the population effect sizes are identical. Some fixed-effects models in the meta analysis literature do not
require the assumption of homogeneity of effect sizes (e.g., see Bonett 2009; Rice et al. 2018).
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set of distribution parameters ¢ to a set of observed summary statistics in z. The fit function used
in WLS is:

F=z—-¢)'Wz—¢),
in which W is a weight matrix that needs to be defined. If W = I, WLS is also called unweighted

least squares (ULS), and if W is diagonal, WLS is also called diagonally weighted least squares
(DWLS). The distribution Jacobian is:

oF
— =20z —-¢) W,
o0 (z—9)
and the distribution Hessian is:
oVF
El— | =2W.
Gl

In the second stage of two-stage fixed-effects MAGNA, we use the estimates from the first stage
as observed statistics (z = p) and use the Fisher information matrix as weight matrix (W = AR
The remainder of the estimation procedure is exactly the same as described in Sect. 3.2 (i.e., the
model Jacobian takes the form of Eq. (11)).

4.2.2. Multi-dataset Estimation A second method to estimate a single pooled GGM is to
perform a single multi-dataset analysis in which a GGM is estimated. This is done in exactly the
same way as stage one of the two-stage analysis method described in Sect. 4.2.1, with the exception
that the model Jacobian now takes the form of Eq. (11) for each dataset. Like in the two-stage
estimation method, the manual Jacobian can be specified as in Eq. (16) to estimate a saturated
(all edges included) GGM with equality constraints over all datasets. Alternatively, columns of
the manual Jacobian can be cut out to constrain certain edges to zero over all datasets, or columns
can be added for partial equality constraints (some parameters constrained equal across groups
and some allowed to vary across groups).

For example, suppose we have two datasets measured on three variables, and wish to estimate
a GGM. We thus observe 6 correlations (3 per dataset), and model in total 6 potential GGM edges
(3 per dataset), leading to the model parameters 07T = [w21,1 31,1 W32,1 W21,2 W31,2 a)gz,z].
Consider the following options for the manual Jacobian:

Vi Y2 ¥3

w211 100

w31 01 0

20 w31 001
oy T w2 100
31,2 010

w322 001

s important to double-check exactly how the WLS weight matrix should be provided. Some software packages
that allow for WLS estimation of, for example, structural equation models do not take the Fisher information but rather
the parameter variance-covariance matrix as input, with the WLS weight matrix then computed internally. In addition,
sample size needs to be assigned in software packages as well, and the manner in which this is done may differ between
software packages. In some cases, the sample size could be included in the Fisher information matrix already, in which
case a sample size of 1 should be given to software. If the unit Fisher information matrix from Eq. (5) is used, the sample
size needs to be given explicitly, as is the case in the psychonetrics package. Supplement 2.2.1 gives an example of how
to properly assign the weight matrix using the psychonetrics package.
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Vi Y2 V3 Y4 ¥s Ve
wua[ 100000
w3 ] 010000
30_(»32‘1001000
9  wnaf 000100
w2 000010
wp2[ 0000001
Vi Y2 Y3 Y3
wua[ 1 000
w311 0100
30_w32_1 0010
W_wzl,z 0001
w312 0100
wp2[ 00 10

The first manual Jacobian will specify three unique parameters (three columns), which represent
the three edges in the GGM. Therefore, the first manual Jacobian will estimate one single pooled
network structure over both datasets (Y1 = w211 = @212, Y2 = w311 = w312, Y3 = w321 =
32,1). The second manual Jacobian, instead, will estimate a unique Jacobian for each dataset
(Y1 = w21,1, Y2 = @31,1, Y3 = w321, Y4 = 21,2, Y5 = w312, Y6 = w32,2). Finally, the third
manual Jacobian will estimate a partially pooled GGM structure in which the first edge (the
edge between variables one and two) is uniquely estimated in both datasets and the remaining
edges are constrained equal over both groups (Y1 = w21.1, Y2 = w31,1 = w312, Y3 = w321 =
32,2, Y4 = w212).

4.2.3. Partial Pruning  As described above, the multi-dataset estimation method allows also
for partial equivalence across datasets: models in which some—but not all—edges are constrained
to be equal across groups. As such, this method also opens the door to (partial) invariance testing
across groups (Kan et al. 2019). If the fully constrained model across datasets is rejected, it may be
of interest to explore which parameters can be freed across datasets such that an acceptable model
can be found. We propose an exploratory algorithm for this purpose: partial pruning, which has
been implemented in the partialprune function in the psychonetrics package. The algorithm
is as follows:

1. Estimate a model with significance pruning for each dataset separately, following Sect. 3.2
(for more details, see Supplement 1 and Supplement 2.1).

2. Estimate a pooled multi-dataset model (Sect. 4.2.2) in which each edge that was included
in at least one of the individual models is included, and all edges are constrained equal
across groups.

3. In a stepwise fashion: compute modification indices for included edges in each dataset
with equality constraints (this modification index indicates the expected improvement in
fit if the edge weight is freely estimated in that particular dataset) and sum these for all
possible parameters, such that a single index is obtained for each edge that is included and
is currently constrained to be equal across datasets. Free this parameter across the datasets
if this improves BIC, and repeat this process until BIC can no longer be improved.

4. Remove all edge weights across all datasets that are not significant at « = 0.05 and
estimated the final model.

While highly exploratory, the reliance on optimizing BIC coupled with the last pruning step
ensures that the algorithm remains conservative. The BIC, in particular, has been shown to perform
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well in choosing between competing GGMs (Foygel and Drton 2010), and similar stepwise BIC
optimization strategies have been shown to perform well in estimating a GGM structure while
not overfitting the data (Isvoranu and Epskamp 2021). Nonetheless, we recommend caution when
interpreting results from this algorithm and to treat these as exploratory findings. The algorithm has
been independently validated by Haslbeck (2020), who shows that the algorithm is conservative
and performs comparably to other methods for detecting differences between datasets.

5. Multiple Dataset ML Estimation: Random-Effects MAGNA

When fixed-effects MAGNA is used to estimate a pooled GGM, it is assumed that the true
correlational structure (variances are ignored and may differ) is identical across all datasets. This
may not be plausible or warranted. Consider for example network analyses on PTSD symptoms.
We may expect large heterogeneity across samples used to study PTSD symptoms. For examples,
in Sect. 7.1 we study four datasets supplied by Fried et al. (2018) which span multiple countries
and investigate patients with very different backgrounds and traumas (e.g., soldiers and refugees).
Previous research showed that it should not be expected that these samples come from populations
with the exact same network model (Forbes et al. 2021; Fried et al. 2018; Williams et al. 2020). If
many correlation matrices are to be aggregated to estimate a pooled GGM structure, as would be the
purpose in meta-analytic research, a method that takes heterogeneity into account is needed. To this
end, the current section introduces random-effects meta-analytic Gaussian network aggregation
(random-effects MAGNA), which takes into account that samples may differ more from one-
another than can be expected due to sampling variation alone. In addition, while the fixed-effects
model provides a conditional inference conditioning on the studies included in the meta-analysis,
the random-effects model instead gives an unconditional inference beyond the studies included in
the meta-analysis if it can be assumed that the studies are a representative sample from the pool
of studies that could have been performed (Egger et al. 1997; Hedges and Vevea 1998).

5.1. Modeling Sample Correlations

Random-effects MAGNA is based on one-stage MASEM (Jak and Cheung 2020), and takes
the form of a multi-level model in which a random effect is placed on the correlational structure.
As such, random-effects MAGNA is not a multi-level GGM estimation tool—only one common
GGM is estimated—but it does allow for taking heterogeneity into account by modeling the
variance of correlations across studies. To perform random-effects MAGNA, first a dataset is
formed in which each row represents a set of observed correlations for a study:

-
r

L
r
D=| |,
T
Tk
in which r; = vechs (R;) (the sample correlation matrix of study 7). When a correlation is not
included in a particular study, the corresponding element can be encoded as missing (e.g., NA in R)
and FIML can be used (see Supplement 3). This marks a strong benefit of random-effects MAGNA
over, for example, performing a meta-analysis for each partial correlation coefficient separately:
not all data-sets need to contain all variables used in the model. Crucially, while in fixed-effects
MAGNA we were only concerned with a fixed set of datasets, in random-effects MAGNA we
treat the dataset itself as random and model this distribution explicitly with a multivariate normal
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distribution with a mean-vector ;4 and variance—covariance matrix % ;12 The subscript on X;
indicates that FIML estimation is used and that the variance—covariance matrix ¥; may differ
across datasets to take into account that some correlations are estimated more accurately (due
to larger sample sizes) than others. We could also add a subscript i on the expected correlation
structure @ to model missing variables. We discuss two variants of random-effects MAGNA
estimation, one in which X; differs for each dataset, and one in which these are assumed identical
over all datasets (¥ = ¥, = ... = X). The dataset-specific distribution parameters therefore

become:
M
¢i = [a,} ,

in which o; = vech (X;) (note that the diagonal is included). As such, random-effects MAGNA
actually takes the form of a single-dataset problem (although multiple-dataset estimation is used
for estimating the sampling variation below as well), and the framework from Sect. (2) can directly
be used to estimate the free parameters.

Important to note is that while this framework works well for parameter estimation and
significance of individual parameters, it works less well for model comparison. This is because
the fit function no longer directly relates to the likelihood of the data, and as a consequence fit
measures derived from the fit function are questionable. In addition, because different types of
data are modeled in fixed-effects and random-effects MAGNA, these models are not nested and
it is not appropriate to compare them. However, another possible fixed-effects model could be
obtained by fixing £%" = O in random-effects MAGNA. A likelihood ratio statistic could be
used to test whether the population variance component is zero. Since it is tested on the boundary
(Self and Liang 1987), the test statistic must be adjusted. This test, however, is not popular in
meta-analysis and multilevel models since the choice of model is usually based on theoretical
rather than statistical reasons. In addition, due to the high model complexity of the random-effects
MAGNA model, such a test may not lead to appropriate results and may be severely under-powered
(e.g., the fixed-effects model may be preferred too often). To this end, we only use random-effects
MAGNA for parameter estimation and inference on the parameter level, but not to, for example,
compare fixed-effects to random-effects models. For assessing the appropriateness of random-
effects MAGNA, the fixed-effects framework from Sect. 4.2.2 could be used to judge the fit of
the constrained model without random effects.

5.2. Random-Effects MAGNA

The mean structure can be specified to be the implied correlational structure from Eq. (1):
n = p = vechs (A I-)! A) . 17)

The variance—covariance structure requires some more consideration. As r; is a set of random
sample correlations, we should take into account that these vary across studies due to sampling
variation in addition to potential heterogeneity. We can call the variance—covariance matrix due
to sampling variation V ;. Next, additional variation will be due to random-effect variation of the

120f note, the symbols u; and X; are often used to denote the mean and variance-covariance structure of the responses
y rather than the sample correlation coefficients. Here, they specifically indicate the structure of sample correlation
coefficients.
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correlational structure, which we can term X ™ This leads to the following decomposition (e.g.,
Becker 1992):

=V, +xr (18)

The sampling variance—covariance matrix V; will always be present—as sample correlation coef-
ficients naturally are not estimated without error—and should be in line with expected sam-
pling error of the sample correlation coefficients. The random effects variance—covariance matrix
> Tan) can differ, however, and can contain large or small elements depending on the level of
(assumed) heterogeneity. Of note, in the fixed-effects approach taken above we implicitly assumed
E(ran) = 0.

For estimating the random-effects MAGNA we will use a two-step approach, in which we first
estimate V; separately, and subsequently treat this estimate as known in a second step in which
the remaining model matrices are estimated. We make use of this two-step approach, because the
structure of sampling variation can be well estimated before estimating other parameters in the
model, and because it would otherwise not be possible to estimate both sampling variation and
heterogeneity (co)variance parameters. Below, we will first outline how the random effects are
modeled in Sect. 5.2.1. Next, we will discuss how V; can be estimated in Sect. 5.2.2. Finally, we
discuss the required derivatives for parameter estimation in Sects. 5.2.3 and 5.2.3.

5.2.1. Model Setup  To ensure X ™" is positive semi-definite, we will model this matrix using
a Cholesky decomposition:

s — T, (19)

in which T is a lower triangular matrix with unique parameters T = vech (T') (not to be confused
with 72, which is sometimes used to denote sampling variation in meta-analyses). As such, treating
Vi as known, the set of model parameters becomes:

e:m.

The set of free parameters, ¥, will contain all elements of T, which we estimate without constraints,
and either all elements of w or a subset of elements of w indicating edge-weights that are nonzero.

5.2.2. Handling Sampling Variation =~ We can take two approaches in utilizing estimates for V;
in estimating the random-effects MAGNA model (see e.g., Hafdahl 2008). First, we can form
an estimate for each individual study ?,- and utilize FIML estimation in which the variance—
covariance structure is specified differently per study:

%, =V, +nn, (20)

Second, we can form a single averaged estimate for V; that is the same for each study (dropping
subscript i), V., which we can plug into (18) such that regular ML estimation can be used:

T=V,+
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The averaged approach implicitly assumes that sampling variation is the same across studies, and
may not adequately take large differences in sample size into account. The per study approach, on
the other hand, is computationally more challenging and may lead sooner to numeric optimization
problems.

There are two ways in which the estimates ?i and ?* can be obtained. In individual estima-
tion, we fit an unconstrained correlation model to each dataset separately as described in Sect. 3.3.
An estimate for V; can then be directly obtained from the parameter variance—covariance matrix V
described in Eq. (9). Following, an estimate for V . can be obtained by averaging these estimates:

P .
V*:;ZVi.

i=1

If desired, a different averaging function can also be used, such as taking a weighted average in
which the individual estimates are weighted with the sample size. In pooled estimation, we fit a
multi-dataset pooled correlation model as described in stage 1 of two-stage fixed-effects MAGNA
estimation (Sect. 4.2.1), and obtain an estimate for V., by multiplying the estimated parameter
variance—covariance matrix (obtained by plugging the Fisher information matrix from Sect. 4.2.1
in Eq. (6)) with the number of datasets. Estimates for the dataset specific sampling variation
matrices can then be obtained by weighing this estimate:

~ n -~
Vi = _V*a
nj

in which n = n/k is the average sample size.

In sum, when dealing with the sampling error matrices there are two different estimation pro-
cedures that can be used: averaged estimation in which the implied variance—covariance structure
is the same over all datasets, and estimation per study in which the implied variance—covariance
structure differs across datasets. There are also two different methods for constructing the sam-
pling variation estimates: individual formation, in which the estimate is formed per study (and
averaged for averaged estimation), and pooled estimation, in which the pooled model is used to
estimate one sampling variation matrix (which can be weighted per study).

5.2.3. Derivatives of the Random-Effects MAGNA Model ~ With an estimate of V at hand, we
can now determine the required derivatives for estimating the parameters of interest (network
parameters in @ and the Cholesky decomposition of random-effects variances and covariances
in 7). To do this, we can numerically solve Eq. (3), in which the gradient is formed as using the
Jacobian elements described in Eq. (4). Subsequently, we can assess significance of parameters by
forming the parameter variance—covariance matrix from Eq. (6), which uses the Fisher information
formed in Eq. (5). In this section, we discuss the fit function and all required derivatives for this
optimization problem.

First, we discuss the averaged estimation routine, in which a single estimate ?* is used across
all studies. Let 7 denotes the average sample correlation coefficient:

1 k
f:zZri,

i=1
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and let S represent the variance-covariance matrix of sample correlations:
1 k
= o\ T
S = %;(ri —r)ri—r),
1=

the fit function then becomes:
F=trace(SK)+F—pn)' K F—p) —In|K]|, (1)

in which K now represents the inverse of 2. The distribution Jacobian then becomes:

a5 =) e,

with the following blocks:

(B—F> =2F-w'K
o

(8—F> = —vec (K (S +FE-wFE -’ - 2) K)TD’

Jo

in which D is a duplication matrix, further discussed in the appendix. The distribution Hessian

becomes:
< oVF _ HIL (0]
8¢ 0 HO‘ )

with the following blocks:

H, =2K
H, =D" (K®K)D.

The model Jacobian takes the following form:
op
0 _ [(m) ° ]
a b
0 Lo (%)
We may recognize that the mean structure from Eq. (17) takes the form of the strict half-vectorized

GGM structure of Eq. (1). As such, the block dp/dw takes the exact same form as in Eq. (11).
The model Jacobian for the Cholesky decomposition becomes:

% L eh+0) ((T®I)LT>,
0T

in which C is a commutation matrix as further discussed in the appendix.
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o~

For estimation per study, we use a separate estimate V; and utilize FIML estimation. Sup-
plement 3 details FIML estimation in more detail, and shows that only study-specific variants of
the fit function, distribution Jacobian and distribution Hessian are required. These can readily be
obtained using the same derivatives described above by replacing r with r;, S with O, u with u;
(a subset of u in the case there are missing variables in dataset i), and K with K; (the inverse of
%, as formed as per Eq. (20)). For example, making these changes makes the study-specific fit
function from Eq. (21):

Fi=(ri—m) Ki@ri—p)—In|K;|

The distribution Jacobian and distribution Hessian can similarly be formed in this manner and
need not be discussed seperatly in more detail.

5.3. Estimating the Random-Effects MAGNA Model

To summarize the above, in random-effects MAGNA we treat the observed sample correlation
coefficients as the data. We model the expected value of these correlation matrices through a
GGM, of which potentially some elements are constrained to zero (pruned model). The variance—
covariance structure is modeled in two parts: a matrix of variation due to sampling-variation,
and a matrix of variation due to heterogeneity. We make use of prior estimates of the sampling-
variation matrix when estimating the heterogeneity matrix, which is modeled through the use of a
Cholesky decomposition. The sampling-variation is formed either with individual estimation of
an unconstrained correlation model for each individual study, or pooled estimation by estimating a
single pooled correlation model across studies. Subsequently, the matrix can be used in estimation
per study, evaluating the likelihood per study, or averaged estimation, in which a single estimate
of the sampling variation matrix is used. This leads to four variants of random-effects MAGNA,
which we assess in more detail below in simulation studies.

6. Simulation Study

We performed a simulation study to assess the performance of fixed-effects and random-
effects MAGNA. In each replication, we generated a true network structure using the bootnet
package:

library ("bootnet")
genGGM (nNode, nei = 2, propPositive = 0.9, p = 0.25,
constant = 1.5)

The structure is set up according to the Watts-Strogatz network model (Watts and Strogatz 1998),
which starts the structure with nodes placed in a circle connected to their four nearest neighbors
(the nei argument), and subsequently rewiring 25% of the edges at random (the p argument).
The algorithm of Yin and Li (2011) is used to weight the edges, with a constant of 1.5 and 90% of
the edges simulated to be positive (constant and propPositive arguments). We varied the
number of nodes between 8 and 16; the procedure generated 8-node networks with 16 out of 28
potential edges (57.1%) and 16-node networks with 32 out of 120 potential edges (26.7%). This
algorithm leads to an average absolute edge weight of 0.17. An example of networks generated
with this procedure can be seen in Fig. 1. When simulating correlated random effects, the random
effects variance—covariance matrix was generated using the rcorrmatrix function from the
clusterGeneration package (Joe 2006; Qiu and Joe 2015):
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FIGURE 1.
Example of true network structures used in simulation studies.

library("clusterGeneration")
ranEffect”™2 * rcorrmatrix(nNode * (nNode-1) / 2)

in which ranEf fect indicates the random effect standard deviation for all correlations.

We assessed the performance of GGM estimation with significance pruning at « = 0.05 using
two variants of fixed-effects MAGNA (two-stage and multi-dataset) and four variants of random-
effects MAGNA (varying sampling variance construction and estimation methods). We generated
correlated random effects with random effect standard deviations varied between 0, 0.05, and
0.1 (higher values often lead to non-positive definite correlation matrices to be generated). We
varied the number of datasets between 4, 8, 16, 32, and 64 with each dataset consisting of a
sample size randomly chosen between n; = 250 and n; = 1,000. Each condition was replicated
100 times, leading to a total of 2 (number of nodes) x5 (number of datasets) x3 (random effect
size) x 6 (estimation method) x 100 (replications) = 18,000 generated datasets. We assessed for
each dataset the absolute correlation between estimated and true edge weights, the sensitivity
(proportion of true edges detected in the estimated network, also termed “true positive rate”), the
specificity (proportion of true zeroes detected in the estimated network, also termed “true negative
rate”), and the average absolute bias in the standard error estimates of random effects.

Figure 2 shows the results for the correlation, sensitivity and specificity metrics, and Fig. 3
shows the results from random effect standard deviation bias assessment. The black horizontal
line in the specificity panels of Fig. 2 highlights the expected specificity level of 1 — a = 0.95.
A first thing to notice about the figures is that both fixed-effects MAGNA methods perform
interchangeably, as do all four random-effects MAGNA methods. To this end, we will not discuss
the methods specifically but rather limit discussion to fixed-effects MAGNA and random-effects
MAGNA methods only. We will first discuss results from fixed-effects MAGNA, after which we
turn evaluate random-effects MAGNA.

Fixed-effects MAGNA without cross-study heterogeneity Investigating only the performance
of the two fixed-effects MAGNA methods in estimating a pooled network structure in
settings where the fixed-effects model is true, we can look at the “Random effect SD:
0” panels of Fig. 2. These show a remarkably strong performance of both fixed-effects
MAGNA methods across the board: for any number of studies, sensitivity and edge-weight
correlations are on average near 1, and specificity is on average exactly at the expected
level of 0.95. To this end, fixed-effects MAGNA can be shown to perform well when the
fixed-effects MAGNA model is true.
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Fixed-effects MAGNA with cross-study heterogeneity Investigating the other panels of Fig. 2
shows that the performance of fixed-effects MAGNA drops markedly with added cross-
study heterogeneity. Although sensitivity is higher for the fixed-effects MAGNA methods
compared to the random-effects MAGNA methods (likely more power due to reduced
model complexity), specificity severely drops with larger levels of cross-study heterogene-
ity. This indicates that aggregating over datasets without taking cross-study heterogeneity
into account can lead to severely false conclusions in which the false inclusion rate is much
higher than the expected @« = 0.05 and can even rise above 0.50. This marks a distinct
need for cross-study heterogeneity to be taken into account.

Random-effects MAGNA without cross-study heterogeneity Figure 2 shows that random-
effects MAGNA estimation performs well across the board in retrieving the pooled network
structure when there is no cross-study heterogeneity: all three measures are near 1. This
marks an interesting comparison to fixed-effects MAGNA: random-effects MAGNA seems
to perform even better than fixed-effects MAGNA, as the false inclusion rate is lower.
However, this is not entirely accurate, as specificity should be at 0.95 and should not
be expected to be higher. As such, the random-effects MAGNA model seems to be too
conservative in this setting. It could be that the sparse nature of the true underlying model
plays a role in the strong performance in correlation and sensitivity, and that random-
effects MAGNA would perform less well with more complex network structures. Figure 3
shows furthermore that the average bias of estimated random effect standard deviations
does not go to zero with larger sample sizes as should be expected. To this end, it seems
that random-effects MAGNA will always estimate some level of heterogeneity (around
0.3-0.5 on average). This average bias rarely was higher than 0.6.

Random-effects MAGNA with cross-study heterogeneity In the conditions where cross-study
heterogeneity was included, Figs. 2 and 3 show that random-effects MAGNA converges to
desirable properties with increasing numbers of included studies, as should be expected:
the sensitivity and correlation go to 1, the specificity goes to 0.95, and the bias goes to 0.
At low numbers of studies, in particular the condition with 4 studies, the sensitivity and
correlation are only around 0.7 and the specificity is a bit lower than the expected level of
0.95. While the performance is not bad in this condition, this should be taken into account
in empirical applications, and a larger number of studies (e.g., 16 or more) is recommended
for applied research.

7. Empirical Applications: Meta-analytic Network Models for PTSD Networks

In this section, we show two empirical applications of MAGNA analysis in multiple datasets
of PTSD symptoms. The first is a fully reproducible example of MAGNA analysis on a set of
four datasets on PTSD symptoms (Fried et al. 2018), and the second is a description of a large-
scale meta-analysis using MAGNA, which we describe in more detail elsewhere (Isvoranu et al.
in press) Supplement 4 furthermore shows a second empirical example on a homogeneous set
of datasets studying anxiety, depression and stress symptoms (Lovibond and Lovibond 1995),
obtained from the Open Source Psychometrics Project (openpsychometrics.org). All data and
code to reproduce the two empirical examples are available in our online supplementary materials
on the Open Science Framework. '3

7.1. Empirical Example: 4 Datasets of PTSD Symptoms

To illustrate the functionality of MAGNA, we make use of the materials made available by
Fried et al. (2018) in their cross-cultural multisite study of PTSD symptoms. The study estimated

13https://www.osf.io/ 67bxd/.
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FIGURE 2.
Results of the simulation study using significance pruning at « = 0.05. Lines indicate means over all replications and
boxplots indicate the spread across replications. Correlation indicates the correlation between absolute true and estimated
edge weights in the pooled GGM, sensitivity—also termed the “true positive rate”—indicates the proportion of true edges
included the estimated GGM, and specificity—also termed the “true negative rate”—indicates the proportion of true
absent edges correctly not included in the estimated GGM.

regularized partial correlation networks of 16 PTSD symptoms across four datasets of traumatized
patients receiving treatment for their symptoms. The data were collected in the Netherlands
and Denmark, resulting in a total of n = 2,782 subjects. The first sample consisted of 526
traumatized patients from a Dutch mental health center specializing in treatment of patients with
severe psychopathology and a history of complex traumatic events. The second sample consisted
of 365 traumatized patients from a Dutch outpatient clinic specializing in treatment of anxiety
and related disorders encompassing various trauma types. The third sample consisted of 926
previously deployed Danish soldiers receiving treatment for deployment-related psychopathology
at the Military Psychology Clinical within the Danish Defense or were referred for treatment at
specialized psychiatric clinical or psychologists in private practice. Finally, the fourth sample
consisted of 956 refugees with a permanent residence in Denmark, diagnosed with PTSD and
approximately 30% suffered from persistent trauma-related psychotic symptoms.

The Harvard Trauma Questionnaire (HTQ; Mollica et al. 1992) was used to assess symp-
tomatology in samples 1 and 4, the Posttraumatic Stress Symptom Scale Self-Report (PSS-SR;
Foa et al. 1997) was used to assess symptomatology in sample 2, and the Civilian version of the
PTSD checklist (PCL-C; Weathers et al. 1993) was used to assess symptomatology in sample 3.
All instruments were Likert-type scales ranging from 1 to 4 or from 1 to 5. The PCL-C and PSS-
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FIGURE 3.
Average absolute deviations between estimated and true random effect standard deviations across all four random-effects
MAGNA methods. The legend is the same as in Fig. 2.

SR measured 17 items rather than 16 (i.e., physiological and emotional reactivity symptoms were
measured separately). To match the number of items to the HTQ, Fried et al. (2018) combined
the two items and used the highest score on either of the two in the analyses.

7.1.1. Single-Group Analyses  Even though Fried et al. (2018) based their main analyses on
polychoric correlation matrices because the data were assessed on a likert scale, we make use of
the Pearson correlation matrices provided in their supplementary materials. We do this because
polychoric correlations do not evaluate to the likelihood of the data, and because polychoric
correlations have been found to be quite