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ABSTRACT. Nye's theory of the equilibrium profile of two-dimensional ice caps is modified to include 
longitudinal stress and creep rate effects. A more generalized law for the sliding velocity of a glacier over its 
bed is introduced into the analysis in order to permit the inclusion of these additional complications. It is 
found that in the case of small ice caps (of the order of 30 km. in width), it is important to include the 
longitudinal stress. A somewhat " flatter" profile than that calculated by Nye is obtained. For ice sheets of 
the dimensions of the Greenland or Antarctic Ice Sheets, the additional stress causes essentially no modification 
in Nye's theory. Nye's theory also has been extended to include an isostatic sinking under the weight of the 
ice of the bedrock below an ice cap. 

REsUME. La theorie de Nye du profil d'equilibre d'un indlandsis a deux dimensions est modifiee pour 
tenir compte de la contrainte longitudinale et d e la vitesse de fluage. Une loi plus generale de la vitesse de 
gl issement d 'un glacier sur son lit est introduite dans I'analyse pour pouvoir tenir compte de ces complications 
supplementaires. 11 en resulte que pour des calottes de glace de faible dimension (de l'ordre de 30 km de 
diametre) il est important d ' introduire la contrainte longitudinale. On obtient ainsi un profil plus applati 
que celui calcule par Nye. Pour les indla ndsis analogues a ceux du Groenland et de l'Antarctique, la contrainte 
additionnelle ne change en rien la theorie de Nye. La theorie de Nye a eteelargie pour tenir compte de I'enfonce­
ment isostatique du socle sous-glaciaire sous le poids de glace. 

Z USAMMENFASSUNG. Nye's Theorie des Gleichgewichtsprofiles von zweidimensionalen Eisschilden wird so 
verandert, dass sie Langsdruck und Kriechvorgange zu erfassen gesta ttet. Durch EinfUhrung eines allgemein­
eren Gesetzes fUr die Gleitgeschwindigkeit eines Gletschers auf seinem Untergrund werden auch diese 
verwickelteren Vorgange der Analyse zuganglich. Bei kleineren Eisschilden (mit etwa 30 km Durchmesser) 
erweist sich die Berucksichtigung des Langsdrucks als bedeutungsvoll. Es ergibt sich ein etwas " flacheres" 
Profil a ls das von Nye berechnete. FUr Eisschilde von der Grosse des gronlandischen oder antarktischen 
Inlande ises erbringt die zusatzliche Druckkraft im wesentlichen keine Anderung del' Nye'schen Theorie. 
Eine and ere Erweiterung der Theorie Nye's erlaubt die BerUcksichtigung des isostatischen Einsinkens des 
Felsuntergrundes unter d em Gewicht eines Eisschildes. 

INTRODUCTION 

In a recent paper Nye I has calcula ted the equilibrium profile of an ice sheet under the 
assumption that almost all of the relative motion of ice is concentrated at, or very near to, the 
bottom of the ice mass . This calculation represents a considerable improvement over his older 
analysis 2 , 3 based on a theory of perfect plasticity. The new equation which he has obtained 
for the surface profile of a two-dimensional ice sheet lying on a ' horizontal bed is 

(~) 2+ 1/"'+ (i)'+I/m = 1. (1) 

Here h is the height of the upper surface at a distance x from the center, H is the height at the 
center, and L is the distance from the center of the ice sheet to its edge. The constant m in this 
equation has a value between 2 and 12 . 5. (Equation ( I) applies in particular to the case where 
the accumulation of ice and snow is a constant over the ice sheet. If the accumulation rate is 
not constant with :0:, a slightly different equation would be obtained.) Besides being based 
on a better plastic flow relationship, Nye's present theory predicts that the slope of the upper 
surface at the center of an ice sheet is zero, whereas the previous theory (which can be obtained 
when m is set equal to infinity) led to a finite slope. 

This paper presents a refinement on Nye's calculation of the profile of the upper surface, 
with special reference to the central region of an ice cap, where equation (1) is not free from 
objection even though it does predict the correct slope at x = o. Nye assumed in his analysis 
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that the longitudinal stresses are relatively unimportant and that the shear stress parallel to 
the bed of an ice cap is the dominant stress. This shear stress T is determined by ice thickness 
and slope of the upper surface, and is given to a very good approximation by 

T = -pgh (dh/ dx) (2) 

where p is the average density of the ice and g is the gravitational acceleration. Near the center 
of an ice cap, the slope approaches zero and hence the shear stress at bedrock also must 
approach zero. One would anticipate, therefore, that the longitudinal stresses are important 
in this region. Our refinement of the surface profile problem attempts to bring the longitudinal 
stresses into the analysis. The correction obtained to the profile found by Nye is important 
only near the center of an ice cap. 

Another difficulty in the treatment of the flow of ice in the central region of an ice cap 
cannot be handled by a simplified analysis. The same type of difficulty has caused the break­
down of all theories in the vicinity of the edge of a glacier or ice sheet. Up to now, it has been 
assumed in all theories that the stresses and rate of flow are slowly varying functions of the 
distance x. Since the stresses depend on the thickness of the ice and on the surface slope, this 
implies that the change in h, and also in dh jdx, must be small over a distance in the x direction 
of the order of the thickness of the ice. The condition that h be a slowly varying function of 
distance means that 

! dh/ dx I ~ I 

and the condition that the slope also be a slowly varying function of distance implies that 

1 h (d2h/ dx2
) I ~ I dh/ dx I . 

It is well known that solutions of the profile such as that given by equation ( I) lead to an infinite 
slope at the edge of the ice mass, and thus violate inequality (3 ). Hence, the edge region must 
be excluded from consideration. Similarly, equations of type (I) are not applicable in the 
central region since inequality (4) no longer is valid. The region from the center to a distance 
of the thickness of the ice must be excluded from the analysis. This is true of both Nye's 
analysis and also the refinement of it that we consider here. It would appear that the fl ow of 
ice at the very edge and very center of an ice cap can be solved only with an exact and rather 
difficult treatment of the problem. It is fortunate that these regions are so small, and that 
approximate analyses satisfactorily deal with the major part of the ice in glaciers and ice sheets. 

The principal new feature in the modification of Nye's theory developed in the following 
section is the introduction of a more general law for the sliding of ice over the bedrock surface 
at the bottom of an ice cap or glacier. With this more general sliding law, longitudinal stresses 
and creep rates can be taken into account without an undue complication in Nye's analysis. 
It is found that for large ice sheets no modification really is needed for Nye's equation for the 
profile. For small ice caps, a correction over an appreciable fraction of the ice is required. 

Throughout this paper it is assumed that the creep properties of ice are isotropic and that 
the conditions, such as roughness at the bottom of an ice mass, are the same everywhere. 

THEORY 

Effective sliding velocity. In his analysis, Nye considered that most of the differential motion 
occurred at, or near to, the bottom ice surface. This differential motion gives the overlying 
ice some average velocity u (an "effective" sliding velocity) . On the basis of theoretical ex­
pressions for both the differential motion within the bulk of the ice mass and the velocity 
of sliding of a glacier over the bedrock, I, 4 it is reasonable to use, as Nye does, the equation 

(5) 

where T is the shear stress at the bottom, B is a constant, and m has a value between 2 and 

https://doi.org/10.3189/S0022143000017366 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000017366


EQUILIBRIUM PROFILE OF ICE CAPS !:J55 

2·5. Using equation (2 ) to determine T, the profile of the ice mass can be calculated from 
x 

uh = J a dx (6) 
o 

where a is the rate of accumulation of snow or ice (measured in equivalent of high-density ice) 
at the distance x from the center of a two-dimensional glacier or ice cap. When a is a constant, 
Nye's equation (I ) is obtained. 

Nye's treatment has the great advantage that the variation of ice velocity with vertical 
distance y has been eliminated from the analysis without any great loss in accuracy, since 
N ye's arguments indicate that most of the variation of velocity with vertical distance occurs 
in a narrow region near the bottom of the ice, a nd can therefore be ignored. The average 
velocity u depends only on hand dh/dx, and an equation can be obtained relating h with the 
dista nce x . 

It is possible to introduce longitudinal stress and still retain the advantages of Nye's 
theory by modifying equation (5). That this equation must be modified when other stresses 
are present is to be expected. Suppose there exists an effective longitudinal stress* a in addition 
to the shear stress T. By Nye's generalization 5 of the creep equation in uniaxial stress to that in 
multiaxial stress, the shear creep rate dE /dt is no longer given by the equation 

dE 
_ = A - nT " 

dt 

(where A is a temperature-dependent but stress-independent term, and 11 is a constant whose 
value is about 3 to 4), but is generalized to 

dE 
- = A - IlT(T'+ !a')! (Il - I) (8) 
dt 

The creep in shear therefore is influenced by the longitudinal stress, very strongly if this stress 
is large. The effective sliding velocity given by equation (5) is a combination of the actual 
sliding of ice over bedrock and differential motion within the ice mass. Both of these mechan­
isms I, 4 involve the creep of ice and lead to an equation of the type given by equation (5) 
when the longitudinal stress is small or zero. If the longitudinal stress a is not negligible, one 
might expect from equation (8) that the effective sliding equation (5) will be modified to 

u = BT(T' +!ab) !(m- I) (9) 

(Hereafter ab is the value of a at the bottom surface, and T is the shear stress only at the very 
bottom of an ice mass. ) From the theory of sliding that we have proposed,2 one would expect 
such an equation, since the longitudinal stress will speed up the creep flow of ice around 
irregularities in the bedrock. An equation of the form of equation (9) should also give an 
estimate of the contribution of a longitudinal stress to the "effective sliding" of the differential 
motion within the ice mass. 

In the following, equation (9) is used to determine the average velocity of ice through any 
cross-section of a two-dimensional glacier or ice cap. It is, admittedly, not the exact equation 
for this velocity, but it contains the features to be expected when the longitudinal stress is 
introduced. The average effective sliding velocity is increased when ab, the value of a at the 
bottom of the ice mass, is increased, and the equation reduces to equation (5), the previously 
known relation, as ab approaches zero. Equation (9) does not necessarily require exact solu­
tion of the differential motion of ice in both the x and y directions, as would be required by 

* On the basis of Nye's analysis 5 of creep in multiaxial stress, the effective longitudinal stress a is given by 
a = az-a" where az and ay are the usual stresses on planes perpendicular to the x andy axes. The longitu­
dinal stress a is a deviator stress and would be zero for pure hydrostatic pressure. 
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the introduction of a longitudinal stress if equation (5) were used as the boundary condition 
for the bottom ice surface. However, equation (5) is not expected to give the correct estimate 
for the velocity of sliding when a longitudinal stress is present (i.e. the longitudinal stress, 
itself, will change the boundary condition at the bottom surface) and so would have to be 
abandoned in any event. 

Estimate of stresses. Equation (9) requires an estimate of the shear and longitudinal stresses 
in a glacier. The shear stress a xy is given by 

dh 
a xy = -pg(h-y) d" ( loa) 

wherey = 0 is taken to be at bedrock. Hence, the shear stress T = a xy , (y = 0) at the bottom 
surface is 

dh 
- pgh- . 

dx 
( lob) 

Nye found that the longitudinal creep rate, Ex = i!!!, where u now is also a function of the ox 
vertical distancey, is independent ofy. By making use of this fact the longitudinal stress, a (now 
considered as a function ofy) can be found from the equation 

la(a;y +!:a, )Hn-, ) = An<. (1 la) 

The vaI'ue of a at y = 0 can be found by substituting equation ( lob) into equation (IIa). 
The longitudinal strain rate can be obtained from equation (6) and is 

vu a u dh 

OX h hdx 
(lIb) 

We will be concerned primarily with the case where aJh is the predominant term on the right 
side of the equation and the other term can be discarded ,* thus 

a 
E = -. 

x h 

At the bottom surface the approximate equations are: 
when ab is larger than T, 

{ n-l( T )'} ab = 2AE,/n 1 --- - - . 
x 2n AE~/n ' 

when T is larger than a b, 

_ 2AnEx{ n-l (AnEx)'} 
ab - - - 1--- - - . 

Tn- l 2 T" 

* When a is a constant, 

(lIe) 

(1 n) 

( 12b) 

(lId) 

From equations ( 18) and (21 ), one can show that the x term in equation ( I Id) is negligible in the central region of 
an ice cap and therefore can be dropped. Away from the center, but exclusive of the very edge, it is of the order of, 
but less than, one, if equation (2 I ) is used to estimate its magnitude. However, for the strain-rate to influence the 
profile in this region, its magnitude must be very much greater than a/h. Thus, equation (IIC) is not actually 
applied in our analysis where it is invalid. At the very edge of an ice cap, Nye's analysis breaks down anyway, and 
it is immaterial that equation (I IC) also is no longer correct. 
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An expression can be obtained for the differential motion of ice by making use of the 
stresses given by equations (lOa) and ( IIa). The shear creep rate Exy is found to be 

(
OU ov) ( )Hn-,) 

<y = t oy + ox = A-naxy a~y +ia2 (13) 

where v is the velocity in the y direction. Nye 6 has shown that v does not depend on x, and 
hence its derivative with respect to x is zero. If the ov/ox is dropped out of equation (13), 

fy ()Hn-,) fYa 

u=uo+2A-n a xy a~y+ia2 dy=uo+4< ;dy (14) 

o o 

where Uo is the actual velocity of sliding over bedrock at y = o. The major contribution to the 
integral in this last equation comes near the bottom surface, since a xy has its largest and a its 
smallest value there. Because of this behavior the differential motion within the ice again can 
be considered to ·occur mainly near the bedrock and as making a contribution to the "effective 
sliding velocity." * 

Although it is laborious to work out an exact solution for the integral given in equation 
(14), it is simple to set limits to its value. With the use of equation (lOa) one easily obtains 

A - n ()t(n-,) ()Hn-,) 
uo+ n+I hT T2 +!ab < 11 < uo+A-nhT T2 +iab (15) 

h 

where il is the average velocity, -if u dy. Since it is to be expected that the actual sliding 

o 
velocity Uo is proportional to T(T2 +ta2)t(m-I), where m = tCn+ I), the inequality (15) 
implies that equation (9) is a reasonable approximation for the "effective sliding velocity". 

Surface profile calculations. Nye used equation (6) to determine the surface profile. We shall 
consider how to find the profile for the case of a constant accumulation rate a. The two stresses 
T and ab can be obtained from equations ( lOb), ( I la) , and ( I IC). Substituting these into equa­
tion (9) gives the average velocity U of the ice, which is needed in equation (6). As the resultant 
equation is very clumsy, it is difficult to find a solution for the ice thickness h as a function of 
the distance x. We can obtain more manageable equations by considering the two limiting 
regions of the stresses T and ab. Near the center of an ice cap, ab is much larger than T; away 
from the center, T is larger than ab. We can solve equation (6) for either of the two cases, and 
then obtain a more general solution by combining these special solutions. 

When ab is much larger than T, equations (6) and (9), with the help of equation (In), 
reduce to 

( 16) 

which can be reduced further to 

(a) -I+ (m-I );n dh ( X2) - ' 
EpgA m-1 - h- = X 1+-

h dx x~ 

where 
m-l(a) 2 (a) -Om;n x2 = __ _ A - 2m ._ • 

o 2n hE h 

* We have assumed in equation ( 14) that temperature, and hence A, is not a function ofy. Nye J has shown 
that for the case when the lower ice layers are warmer than the upper ones that the differential motion is even 
more concentrated into the lower layers. 

l e 
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Since this equation will be applied only in the center of an ice cap where the thickness of 
the ice is not changing very rapidly, a further approximation can be made by substituting H, 
(the height of the ice at the center of the ice cap) for h in the terms XO' Equation (17) becomes 
invalid when x2jx~ becomes comparable to one. Upon integration, equation (17) becomes 

HS_hS = x~ D log ( I +~) Xo 
where S = 3-(m-I) jn 
and" 

When the shear stress T is the dominant stress, equations (6) and (9) become 

_ (aX)l /m{ m-I (Ana)2}-1 
T- - 1+-- ---Bh 2m T

n h ( 19) 

This equation reduces to the relation found by Nye when the stress T is large, so that the 
second term on the right-hand side can be neglected. Since the second term on the right-hand 
side will be appreciable only near the center of an ice cap, we can approximate equation ( 19) 
by the following: 

dh _ (ax) I/m{ m- 1 (Ana) 2 (BH) ,nlm} pgh- - - - 1--- -- --dx Bh '2m H ax 
which, when integrated, gives 

where 

and 

h,+'/m = EL' + ' /m{I + (~ornlm}_ [Ex' + ' /m{I + (~ornlm} J ('21 ) 

L = o 

E =.!.... (!!'.) I/m (2m +l) 
pg B m+1 

{ m'- I }m1211 Am(HB) (!.. )mln 
2(2n-m-l ) a H 

and L , as before, is the distance from the center to the edge of an ice cap. Equation ('2 1) gives 
the profile in the central region, but is not valid elsewhere. In these equations there is one 
constant which still has to be determined. It is the thickness H at the center of an ice cap. 
Once it is known, equations (18) and (21 ) will give the profile of an ice cap since all other 
terms appearing in these equations are known. As a first approximation, His the height which 
was determined by Nye. The profile he obtained is valid up to a region close to the center of 
an ice cap and the slope is approximately zero near the center. A better approximation or 
H can be found from the following argument. Equation (18) breaks down at a distance of 
approximately Xo and equation (21 ) at a distance x approximately equal to Lo. From equations 
(18) and (21 ), it can be seen that Xo and Lo are approximately of the same magnitude, Xo 
being somewhat greater. The average of these two distances x is : 

x=tAm(HIIB) (.!!...)mlll [ { m'-I }ml'n+(~) tJ. (22) 
a Hn 2(2n-m-l ) m-I 
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We have substituted for H in this equation the value Hn from Nye's theory, which is given by 

Since x is larger than Lo and smaller than Xo> equations (18) and (21 ) can both be a pplied to 
this value of x . The distance x is thus a reasonable value of x at which to join equations (18) 
and (21 ) . The value of H then will be fixed automatically. It is found to be approximately 

{
m (x)'+'/m D } H = Hn 1 - --- - +- x' . 

2m+1 L sH~ 

In this approximation for H we have used some of the sample calculations given later in order 
to drop a number of terms which are smaller than those retained above. 

In joining equations (18) and (21 ) together at x = x, we obtain a profile which has no 
discontinuities in h but does have, in general, a discontinuity in the slope a t the point X. 
Obviously, the exact profile passes smoothly through this point. It is a simple matter, however, 
to construct a solution which joins equations (18) and (2 I) smoothly. The following construc­
tion would be reasonable : 

h = h,exp ( -x/ x) + h2 exp ( -x/ x) 
exp ( -x/ x) + exp ( -x/x) 

where h, is the value of h as determined by equation (18) and h, the value of h as determined 
by equation (21 ). The use of the exponential function insures that, when x is much different 
from x, either h , or h, determines the value of h, and when x = x, then h, = h, = h. However, 
equations (18) and (21 ) are very easily joined together graphically as is shown in Figure 3. 

Effect of the weight of ice on the bedrock base. Hitherto we have considered the problem of an ice 
cap resting on a fl a t , rigid base. Actually, the weight of the ice may cause the bedrock plat­
form to subside. If isostatic conditions prevai l, a thickness h of ice will cause the bedrock to 
sink below its origina l level by an amount equal to h( P;/Pr) , where Pi and Pr refer to the average 
density of ice and rock respectively. The ratio of these densities is about t. Consider a base 
which would be flat if no ice were resting on it. With an ice cap placed upon it, the thickness 
h of the ice is 

ha 
h = ha+hb = -( I- p-;j-:-P-r) 

where ha is the thickness above the original position of the bedrock a nd hb is the thickness 
below it. The shear stress acting at the base of an ice mass depends almost solely upon the slope 
of the upper surface and is little influenced by the slope of the bedrock surface (Nye).7 
Hence the shear stress will be given by 

T 

The analysis for the profile of a n ice cap resting on a flat base is easily modified to take 
into account the subsidence of the bedrock and the effect of equation (27) . It is easiest to re­
work the equation in terms of the height ha above the original bedrock surface. Equation (27) 
can be satisfied if, in the old analysis, the average density p is replaced by 

Pi( l - p;jPr ) ; (28) 

h (regardless of whether or not it is being differentiated with respect to x) is replaced by 

and H is replaced by a term Ha ( I - P;/Pr)-' . The above substitutions are made in equations 
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( IS), (21 ), (22), (23), (24), and (25). The height of ice below the original bedrock surface 
hb is given by 

h - h Pi ( p,) - r 
b-a- I - -

Pr Pr 
(30 ) 

The profile and height above the original bedrock surface of the upper ice surface is, 
surprisingly, essentially the same as it was for the case where the base platform was perfectly 
rigid. The profile of the lower ice surface is just the mirror of the upper surface, except 
that the depth of ice below the original bedrock surface is scaled down by the factor 
(pJPr ) (I -pJPr)-r ~ t · 

SAMPLE CALCULATIONS 

To make sample calculations of the profiles of two-dimensional ice caps, we have to know 
the values of the various terms which appear in the equations of the previous section. 

The value of n has been measured in numerous creep experiments. Results range from about 
2' 5 to 4 ' 2. We shall use the value 3, which is close to that found by Glen 8 for his minimum 
creep rates, and is the result obtained recently by Butkovich and Landauer 9 from a very 
extensive series of tests. 

The value of A likewise can be determined from experiment. The Butkovich-Landauer 
set of experiments indicates that its value is about I' 54 bar yr.! at -5° C. (one bar equals 
106 dynejcm. 2 or approximately 1 kg. jcm.2 or about 14·5Ib. jin.2). Presumably the tempera­
ture at the bottom of an ice cap is usually at the pressure melting point. We assume that it is 
at approximately 0° C.* The value of A at 0° C. is calculated to be 1 '32 bar yr.! (using the 
commonly reported value 14 KC:1l. jmole for the creep activation energy). This value of A 
is used in the following calculations. 

The value of m never has been measured directly. Theoretically 4 it is equal to !(n+ I ) = 2 
if the sliding of ice over bedrock is the main mechanism of the ice motion, and equal to n if 
differential motion is the main mechanism. We shall take its value to be 2. (Our results 
would not be changed appreciably if the value 3 were used. ) 

The value of B is the most difficult to estimate. It has not been determined either experi­
mentally or from field observations. Unfortunately a value derived from theory 4 is extremely 
sensitive to the value taken for the "roughness" of the bedrock. Thus, B cannot be calculated 
reliably. We can obtain B, however, by using equation (23), which gives the approximate 
thickness of an ice cap. Rewriting this equation and making the substitutions given by equa­
tions (2S) and (29) to account for the subsidence of the bedrock surface gives 

and, assuming pJ Pr = ! : 
25 L 3 I 

B,...,, - a---. 
4 H~p~g2 

(31) 

In the dry-snow regions on the plateau of the north Greenland Ice Sheet (at about lat. 79°N. ), 
Langwayt has determined an accumulation rate of about IS cm. of water equivalent (about 

* In this section we assume that the bottom surfaces of the ice caps considered are at the melting point and that 
appreciable sliding can occur. Whether the bottom of the Greenland Ice Sheet or the Barnes Ice Cap is at the 
melting point is not known at the present time. The fact that inner moraines occur on the Barnes Ice Cap may be 
evidence that the bottom surface is at the melting point.'4 

t This figure was a preliminary estimate. In a later discussion of this work Langway 10 has given 18· 5 cm. of 
water equivalent as a mean value for the net accumulation rate for inland north Greenland. 
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16 cm. of high-density ice). Bull II has measured the thickness of ice in northern Greenland 
and obtained a value of 2,680 m. The width of the ice sheet in northern Greenland is about 
goo km. (L = 450 km. ). The term Pig is equal to 9 X 10- 2 bar/m. On the basis of tbese data, 
one finds that B is 81 . 2 m. /yr.-bar2

• This is a reasonable value from what little is known of 
glacier sliding velocities. 

In Figure I, we have calculated the upper and lower profiles of a two-dimensional ice 
cap by using the following values 

-- TH EORY 

n 3 
m 2 

A I . 32 bar yr.! 
a 0 . 16 m. /yr. 
L 450 km. 
B 8 I . 2 m /yr.-bar2 

Pig 0 'og bar/m. 
pJPr t · 

LONGITUOE (DASHED CURVE) 

------- -- NORTH GREENL.AND 

PJ.O~ll E OnU!N lfJEO BY BUll 

--1 ~ REGION OVER 
WHICH er> r ' 

BEDROCK SURFACE WHEN ICE IS REMovED 

-~ I / 

-, ~;: ~~~;;'i//-:;; I ;;;;;:;~ /i~ '/};' 
/ // 6;OROC" / // / </ / /,/ / / / 6EO)07/ / ~ 
/ / / / ' " / / / / / / / / // / / ,// / // / 

-2 ////~/' ////////, -/////////////~~ 
~_=~=~_ ~~O ~OO_~=~= __ 

KILOMETERS (SOLID CURVE) 

Fig, J. Profile of a large ice sheet. Solid curve: Theoretical profile of a large ice sheet for which the bedmck is ill isostatic 
equilibrium. If I he ice were removed, the bedrock surface would be flat. Dashed curve : Profile if the north Creenland Ice 
Sheet at about lat. 78° N , as determined by Bull." (Elevation scale has an arbitrary origin. Altitude above sea-level of the 
cen ter if the ice sheet is 2,527 m. at the top surface and - I53 m. at the bottom surface ) 

Also shown in this figure is the east- west profile of the ice sheet measured by Bull I I in northern 
Greenland. (The agreement at the center is, of course, due to the fact that we have determined 
B from the observed thickness. ) Since the major axis of the Greenland I ce Sheet is much 
longer than its minor axis, cutting the long axis produces a profile of an essentially two­
dimensional ice sheet. 

It would appear that once B is chosen from the thickness at the center of the ice cap, the 
remainder of the profile is reasonably well accounted for. Since the lower surface profile also 
approximates the theoretical curve (except for a buried mountain in the east) the bedrock 
would be a flat plane if the ice were removed. It was reasonable, therefore, to extend the analy­
sis of the surface profile to include the lower surface profile. The region where our modification 
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of Nye's theory is applicable is very small in the case of the Greenland Ice Sheet, only a dis­
tance of about 6 km. on either side of the center (see Fig. I). Nye's theory therefore can be 
applied e.ssentially over the whole ice sheet. This result will usually be true for any large ice 
sheet of the proportions of the Greenland or Antarctic I ce Sheets, if B is of the order of the 
value we used and if the accumulation rate does not fall below about I cm. jyr. 

The situation is different for small ice caps. In Figure 2 we have plotted a profile for an 
ice cap of the dimensions of the Barnes Ice Cap on Baffin Island. A profile measured by Orvig 12 

is also shown. The value of B determined from the Greenland Ice Sheet thickness was used 
for the theoretical curve. The distance L was taken to be 16 · 5 km. The accumulation on the 
Barnes Ice Cap (Baird 13) varies from 0 to 20 cm. jyr. in the accumulation area. We have 
assumed, for the purpose of calculation , a n average value for a of 10 cm. jyr. for the whole ice 
cap. The bottom surface is essentially flat and it is not necessary to make the correction for 
isostatic sinking of the bedrock. It can be seen from this figure that Nye's theory is inapplicable 
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Fig. 2 . Profile of a small ice cap. Solid curve: Theoretical profile of a small ice cap with aflat bedrock surface. Dashed curve: 
Profile of one section of the B arnes Ice Cap as determined by Orvig." (Elevation scale has an arbitrary origin. Altitude above 
sea-level at position 0 km. is 866 m. for the surface and 409 m. for the lower surface ) 

over an appreciable fraction of the tota l width of the ice cap, about 7 km. out of a total width 
of 33 km. 

The differences are better illustrated by magnifying the vertical scale . Figure 3 shows the 
profile in the centra l region of Figure 2 . The dashed curves give Nye's profile* and the one 
calculated by equation (18) . The solid line is the smoothed combination of these curves . The 
difference in thickness at the center of the profile between these curves is only about 13 meters, 
which is approxima tely 3 per cent of the total thickness. Our solution does, however, 
give a " fla tter" profile in the central region of an ice cap, as can be seen in Figure 3. 

The fact that the theoretical profile is slightly higher than the observed profile may be due 
to the fact that the ice cap approximates a three-dimensional more closely than a two-dimen­

. siona l ice cap. Nye has concluded that the thickness of a three-dimensional ice cap is about 
I I per cent smaller than tha t of a two-dimensional cap with the same accumulation rate. 

* In Figure 3 we have combined the curve given by equation ( [8) with that given by equation (21 ) but 
with the (Lo/xF"'m term dropped out of the latter equation. The purpose of dropping this term was to obtain a 
comparison with Nye's profile. Equation (2 [) without the (Lo/x )2",m term gives essentially Nye's profile. When 
x > x, the region where equation (2[ ) determined the combined profile, the (Lo/x)2n'm term becomes unimpor­
tant. 
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S UMMARY 

The law of sliding of ice over bedrock is generalized to include the effect of the presence 
of a longitudinal stress. The sliding velocity thus depends on both the shear stress acting a t the 
bottom of a n ice mass and the longitudinal stress . With this generalized law, it is still possible 
to make a one-dimensional analysis of the problem of calcula ting the profile of an ice cap or 
glacier, such as was carried out by Nye, and yet introduce the effect of large longitudinal 
stresses. 

As a result a profile can be calculated with two equations. One equation is a pplicable to 
the central region of an ice cap and the other equation (which was found by Nye) is valid 
elsewhere. By an appropria te joining of the profiles derived from these two equations, the 
complete profile of an ice cap can be obtained. From two sample calculations it is shown 
that, for a large ice sheet, N ye's theory is valid practically everywhere, and there is no real 
need to bring in the modification. For a small ice cap, the modifica tion to the profile is valid 
over an appreciable fraction of the total width of the ice cap. 

A very simple extension of the analysis of the ice cap profile allows for the effect of isosta tic 
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Fig. 3. Comparison of theoretical profiles (cen tral part oJ Fig. 2) determined by equation (21) (modified to give Nye's /lTOfile ) and 
by equation (18) (dashed lines) 

sinking of the bedrock surface under a large ice sheet. (An initia lly flat bedrock surface was 
assumed. The analysis can be extended to a llow for an arbitra rily shaped initial bedrock 
surface.) 
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