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Abstract
We propose and unify classes of different models for information propagation over graphs. In a first class, propa-
gation is modelled as a wave, which emanates from a set of known nodes at an initial time, to all other unknown
nodes at later times with an ordering determined by the arrival time of the information wave front. A second class
of models is based on the notion of a travel time along paths between nodes. The time of information propagation
from an initial known set of nodes to a node is defined as the minimum of a generalised travel time over subsets
of all admissible paths. A final class is given by imposing a local equation of an eikonal form at each unknown
node, with boundary conditions at the known nodes. The solution value of the local equation at a node is coupled
to those of neighbouring nodes with lower values. We provide precise formulations of the model classes and prove
equivalences between them. Finally, we apply the front propagation models on graphs to semi-supervised learning
via label propagation and information propagation on trust networks.

1. Introduction
Information propagation (also known as diffusion, cascade or spread) is of great importance in complex
networks where, given information at a small number of nodes of the network, the aim is to understand
the propagation to all the nodes. Social media networks provide typical examples including the breaking
of a news story and the spread of product advertisements, internet memes and misinformation to dif-
ferent users. The ability to predict propagation plays a key role in tasks such as informing how to seed
information for obtaining maximal coverage and influence [24, 26], or for identifying likely sources of
information provided that the times are given when the information was received [34]. Models may be
used for control and management of the propagation.

Our starting point is to model the underlying network as a given graph. The aim of this work is to
formulate models for inspired by the propagation of waves passing through continuous media. Elements
of the approach are that information has either arrived at a graph vertex or not, that information is
transmitted to a node only from neighbouring nodes at which information has arrived already and that
there is an arrival time for each node. These models for information propagation can then be used in
applications ranging from social media networks to semi-supervised learning.
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1.1. Continuum front propagation

In the continuum setting, there are three common viewpoints for modelling waves: front propagation,
first arrival times and local equations. To introduce these viewpoints, we consider an open bounded
domain � ⊂R

d for d � 1 with a Lipschitz boundary �, a given point x0 ∈ � and a continuous, positive
function s : �̄ →R which can be regarded as the impedance of the medium �̄.

A first approach proposes a propagating front separating the region for which the wave has arrived
from the remainder. The fronts initiate at x0 and are characterised by being level surfaces of the arrival
time from x0. The impedance s(x) is specific for the underlying medium and controls the additional
time required for the front to travel through the medium at x. We also refer to this approach as front
propagation.

A second classical approach consists of formulating a model based on finding the smallest travel time
over a set of possible paths and hence results in an optimisation problem. The aim of this model is to
determine the shortest travel time along any path from x0 to every x ∈ �̄, x �= x0, in the medium �̄ for a
given impedance s. This task can be expressed as the minimisation problem

u(x) = inf
ξ∈W1,∞([0,1],�̄),
ξ (0)=x0, ξ (1)=x

{∫ 1

0

s(ξ (r))‖ξ ′(r)‖2dr

}
, (1.1)

cf. [11], where ‖·‖2 denotes the 2-norm in R
d and ξ (·) is a parameterised path in the Sobolev space W1,∞.

Note that ξ ∈ W1,∞([0, 1]) is locally Lipschitz continuous and hence the integral in (1.1) is well defined.
Since large values of s slow down the movement and increase the travel time within the medium, we
sometimes refer to s as the slowness function, while its inverse 1

s
can be regarded as a velocity. We also

refer to this approach as first arrival times.
A third approach arises when regarding an optimal value u of (1.1) as a solution to the eikonal equa-

tion, an isotropic static Hamilton-Jacobi partial differential equation. The eikonal equation is given by

‖∇u‖2 = s in �\{x0} (1.2)

with boundary conditions

u(x0) = 0,

∇u(x) · ν(x) ≥ 0 for x ∈ �, (1.3)

where ν is the unit outer normal to �. We also refer to this approach as a local equation. Also it is
possible to pose and solve eikonal equations on connected (sub)Riemannian manifolds, see e.g. [23].

These three approaches of wave propagation in continuum settings have been exploited to advance
different fields of research. The optimisation over paths (also referred to as first arrival times) arises in
modelling of optimal logistics such as accessibility, evacuation planning, robot navigation and ray mod-
els. The study of the graph eikonal equation (i.e. a local equation) is of importance for proving theoretical
results on existence and uniqueness of solutions with certain monotonicity properties. Efficient numer-
ical methods such as fast marching algorithms take advantage of the front propagation approach when
solving the continuum eikonal equation [27, 37, 38]. This demonstrates that diverse perspectives on
modelling waves are crucial in the continuum setting for getting more insights into modelling, analysis
and numerical methods of the underlying continuum problem.

In contrast to the continuum setting, only a scattered picture is currently available for graphs, includ-
ing shortest paths, Dijkstra’s algorithm and graph-eikonal models. Motivated by the continuum setting,
the aim of this work is to propose and unify corresponding perspectives in the graph setting. We for-
mulate and relate several classes of models based on front propagation, first arrival time over sets of
admissible paths and a local equation considering arrival times at a given node and its neighbours. As
part of this, we introduce appropriate graph-based generalisations of the continuum counterparts for the
three classes of models. In the context of the Dijkstra algorithm, for instance, the Dijkstra algorithm can
be regarded as a front propagation model. For the local equation, we replace (1.2)–(1.3) in the continuum
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setting by a graph-based version of the local equation
‖∇u‖p = s in �\{x0}

for p = ∞ with boundary conditions (1.3), which leads to an �∞ graph-eikonal equation. We also propose
a first arrival time model, based on the travel time over paths, and prove its equivalence to Dijkstra’s
algorithm. Motivated by the special case p = ∞ for the local equation, we derive front propagation, first
arrival time and local equations for other cases of p. The main contribution of this paper is to model
wave propagation in the graph-based setting using three perspectives (front propagation, first arrival
times and local equations). We prove the equivalence of the models for special cases of p. It is important
to note that in the models we do not embed the vertices in any ambient Euclidean space.

1.2. Applications

It is natural to introduce the concept of information propagation to data classification and semi-
supervised learning. Motivated by this, we apply front propagation on graphs to classical examples
in semi-supervised learning such as the Two moons problem and Text classification datasets. Here the
information consists of a given finite set of labels, and the aim is to label all vertices in a graph based on
the knowledge of the labels on given small number of nodes. Labels are attached by ordering the mag-
nitudes of the arrival times of the information. In addition, we apply information propagation to Trust
networks. These are social networks whose users rate each other by trustworthiness. Examples include
collaborative networks such as a community of software engineers, or partners of a transaction within
cryptocurrency exchanges. Applied to the software community dataset soc-advogato [35], we show
that information propagation can use local trust information to create rankings of any collaborator on
the network. Our model-rankings are resistant to Sybil attack [1, 15, 44], where users artificially inflate
their reputation, by creating a group of fake users to giving them positive ratings.

1.3. PDE approaches

Many computational methods for semi-supervised and unsupervised classification [2, 6, 45] are based
on variational models and PDEs [22]. Examples include algorithms based on phase fields [4] and the
MBO scheme [31], as well as p-Laplacian equations [20, 29]. In a series of papers, Elmoataz et al.
[12, 13, 19, 39] postulate discrete eikonal equations and investigate label propagation on graphs with
applications in imaging and machine learning. Current analytical results include an investigation of
viscosity solutions for Hamilton-Jacobi equations on networks [10], the well-posedness of nonlinear
PDEs such as the Eikonal equation on finite graphs [32] and an approximation scheme for an eikonal
equation on a network [9], producing an approximation of shortest paths to the boundary. In addition,
limits and consistency of non-local and graph approximations to the time-dependent (local) eikonal
equation have been studied in [21]. The robustness of the solution to the eikonal equation for p = 1 and
its convergence to the shortest path distance as p → ∞ is shown in [8].

1.4. Contributions

Our contributions are as follows:

• Derivation of general model formulations for three perspectives (front propagation models, first
arrival time models, and local equations) in the graph-based setting that include established models
(Dijkstra’s algorithm, shortest paths, and �p graph-eikonal equations for p ≥ 1) as special instances.

• Unification of the three perspectives in the graph-based setting by proving equivalence of the models
(front propagation, first arrival times and discrete generalised eikonal models) depending on p.

• Application of front propagation on a weighted social network to calculate metrics of trust securely.
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• Application of front propagation on graphs to classical problems in semi-supervised learning for
point cloud datasets (two moons problem, text classification datasets Cora and CiteSeer).

1.5. Outline

We introduce several models for travel times on a graph in Section 2. Equivalences between certain
instances of the models are established in Section 3. In Section 4.1, we apply information propagation to
trust networks. The use of front propagation on graphs to semi-supervised learning via label propagation
is illustrated in Section 4.2. Finally, we make some concluding remarks in Section 5.

1.6. Notation

Following the terminology and setting in [17, 19, 22], we consider a finite, connected weighted graph
G = (V , E, w) with vertices V = {1, . . . , n}, edges E ⊂ V2 and nonnegative edge weights w. We assume
that the graph is simple, i.e. there exists at most one edge between any two vertices. We suppose that there
is a decomposition of V := ∂V ∪ ◦

V into two disjoint non-empty sets ∂V and
◦
V . The edge between node i

and node j is denoted by (i, j). For ease of notation, we regard the weights w as a weight matrix w ∈R
n×n

with entries wij, where we assume that there exists an edge (i, j) ∈ E if and only if wij > 0, while wij = 0
if (i, j) /∈ E. Since G is not necessarily undirected, wij �= wji in general. This framework also includes
unweighted graphs corresponding to the cases in which wij = 1 for all (i, j) ∈ E. Given a graph G, we
denote by N(i) ⊂ V the set of neighbours of node i ∈ V . We define j ∈ N(i) if there exists an edge (j, i) ∈ E,
and in general this does not imply existence of (i, j) ∈ E. The direction of this relationship is chosen for
convenient notation in the following. We introduce the notion of a path from node x ∈ V to y ∈ V and
write px,y = (x = i1, . . . , y = in(px,y)) for a path with n(px,y) nodes and n(px,y) − 1 edges (im−1, im) ∈ E for
m = 2, . . . , n(px,y) such that all nodes im for m ∈ {1, . . . , n(px,y)} are distinct, i.e. a path must not self-
intersect. Due to the assumption that the graph G is connected, for every x, y ∈ V there exists a path px,y

connecting x and y, i.e. there exists n(px,y) > 1 such that px,y = (x = i1, . . . , y = in(px,y)) is a path with edges
(im−1, im) ∈ E for m = 2, . . . , n(px,y). For a graph with |V| = n nodes, we denote by Hn the function space
of all functions defined on V , i.e. all v ∈Hn are of the form v : V →R. For v ∈Hn, we write vx = v(x)
for x ∈ V . We also assume that there is a given slowness function s ∈Hn with s ≥ 0.

2. Description of models
In this section, we propose several models for the propagation of information on graphs. The common
elements of the models are

• We suppose that either all information has arrived at a vertex or none.
• We introduce the variable u ∈Hn with ui for i ∈ V to denote the arrival time of information at

vertex i.
• We assume that u is prescribed on ∂V and we set u = 0 on ∂V , though in general the models can

accommodate a wider class of boundary conditions.
• We suppose that information propagation is local. That is, information arrives at a vertex only by

propagation from a neighbouring vertex for which information has arrived. Thus, there is a unique
travel time ui at each node i that can only depend on travel times at nodes j ∈ N(i) with uj < ui.

• The edge weights reflect the distance or resistance to propagation along an edge.
• The function s ∈Hn is a measure of slowness or resistance associated with each vertex.

The aim of a model is to associate a travel time ui with each vertex of the graph. Since the graph is
finite, u = {ui, i = 1, 2, . . . , n} attains an unknown number of J + 1 ∈N distinct values consisting of
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prescribed initial data U0 ∈R and unknown values U1, . . . , UJ ∈R ordered so that U0 < . . . < UJ . We
set V0 := ∂V as the set of initially labelled vertices and prescribe the initial data U0, i.e. ui = U0 for all
i ∈ V0. In the following, we set U0 = 0. We consider three classes of models. The first class of models
is based on the propagation of discrete fronts from an initial front ∂V (Model 1). The second class of
models considers first arrival times of sets of paths that link vertices in the initial set ∂V to vertices
in

◦
V = V\∂V (Model 2). For the third class of models, we postulate a generalised discrete �p eikonal

equation model (Model 3) depending on parameter p. We mainly focus on p ∈ {1, 2, ∞} below. Note
that some of the model instances may look rather complicated. However, the main motivation is to unify
graph-based models from three perspectives (front propagation, first arrival times, and local equations)
by proving their equivalence.

2.1. Front propagation models

In this approach, we view information propagation as an evolving front, i.e. a boundary that separates
the region for which the wave has arrived from the remainder. We decompose the set

◦
V of initially

unlabelled vertices into J disjoint sets V1, . . . , VJ such that for j ∈ {1, . . . , J} all vertices i ∈ Vj satisfy
ui = Uj. We define known sets K0, . . . , KJ and candidate sets C0, . . . , CJ as follows:

Kl =
⋃

j∈{0,...,l}
Vj, Cl =

⋃
j∈Kl

N(j) \ Kl.

Under the assumption that Uj and Vj for j = 0, . . . , k − 1 are known, implying that the value of ui for all
i ∈ Kk−1 is known, our task is to determine Uk and Vk. The front Fk−1 consists of all vertices in Kk−1 with
neighbours in Ck−1 and with F0 = V0. We determine candidate values ũi for each i ∈ Ck−1 using a model
(specified below), and we define Uk by choosing the smallest candidate value in the candidate set Ck−1:

Uk := min
i∈Ck−1

ũi. (2.1)

We then define Vk ⊂ Ck−1 to be the set where the minimum is attained and we set ui = Uk for all
i ∈ Vk. The above procedure depends on the definition of candidate values ũi for i ∈ Ck−1. We define
relationships for ũi that depend upon the set N(i) ∩ Kk−1. Using (2.1), the values U1, . . . , UL of the
solution u can then be determined. By construction, the solution u is unique for the function i �→ ũi.

2.1.1. Model 1(i)
Given the known arrival time uj for j ∈ Kk−1, and let j ∈ N(i) so edge (j, i) exists, then a candidate for the
arrival time at i, is given by uj + si

wj,i
. Choosing the smallest value of all these possible candidate values

results in the candidate

ũi = min
j∈N(i)∩Kk−1

{
uj + si

wj,i

}
(2.2)

for i ∈ Ck−1. Here, uj + si
wj,i

is the sum of the first arrival time uj at node j and si
wj,i

, which is the travel time
from j to i along edge (j, i). The travel time along (j, i) only depends on the slowness si at the endpoint of
(j, i) and the edge weight wj,i. The term si

wj,i
is inspired from the continuum setting (1.1) which suggests

that the travel time along an edge (i, j) is antiproportional to the velocity 1
si

and hence proportional to si.
(1.1) also suggests that the travel time is proportional to the length of an edge and thus proportional to

1
wi,j

if we regard wi,j as a characterisation of the connectivity of vertices i and j.
As the minimum in (2.2) can be associated with the �∞-norm, we will also see later that this model

is equivalent to the �∞ graph-eikonal equation.
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2.1.2. Model 1(ii)
While only the smallest neighbouring value has been considered in (2.2), which can be associated with
the �∞-norm, we consider a more averaging approach in the following instance of a front propagation
model motivated by weighing neighbouring known values in an �2-sense. We define z2

i := ∑
j∈N(i)∩Kk−1

w2
j,i

for i ∈ Ck−1, i.e. z2
i = ‖(wj,i)j∈N(i)∩Kk−1‖2

2. For i ∈ Ck−1, we set

ũi = μi +
√

s2
i

z2
i

− σ 2
i . (2.3)

Here,

μi = 1

z2
i

∑
j∈N(i)∩Kk−1

w2
j,iuj

can be regarded as the weighted mean travel time between any node j ∈ N(i) ∩ Kk−1 and node i as
1
z2
i

∑
j∈N(i)∩Kk−1

w2
j,i = 1. The weighted mean travel time to i balances the travel time to each known node

j with the squared weights between i and j. Further, we set

σ 2
i =

∑
j∈N(i)∩Kk−1

(
w2

i,j

z2
i

u2
j

)
− μ2

i

as the variance of the weighted mean travel time.
As an interpretation of (2.3), we can regard the wavefront of information travelling simultaneously

from all known nodes j ∈ Kk−1 to candidate node i where the averaged wavefront (in the �2-sense) depends
on the weighted mean travel time μi and its variance σ 2

i . With this model, one can interpret the neigh-
bours’ values as forming an estimate of a candidate value ũi from below, with a weighted mean square
error (ũi − μi)2 + σ 2

i = s2
i

z2
i
. We will also see later that this model is equivalent to the �2 graph-eikonal

equation.

2.1.3. Model 1(iii)
Similarly to (2.3), we consider an averaging approach in the following instance of a front propagation
model, but here we weigh neighbouring known values in an �1-sense. For i ∈ Ck−1, we define Mi,k =
|N(i) ∩ Kk−1| and yi := ∑

j∈N(i)∩Kk−1
wj,i, i.e. yi = ‖(wj,i)j∈N(i)∩Kk−1‖1. We set

ũi = 1

yi

∑
j∈N(i)∩Kk−1

(
wj,iuj

)+ si

yi

= 1

yi

∑
j∈N(i)∩Kk−1

wj,i

(
uj + si

Mi,kwj,i

)
(2.4)

for i ∈ Ck−1. The first term in (2.4) can be regarded as a weighted mean travel time to i, obtained by
balancing the travel time from each known node j with the weight wj,i between j and i, while the second
term si

yi
can be interpreted as bias. Like for the other instances, we can interpret (2.4) as the wavefront

of information travelling simultaneously from all known nodes j ∈ Kk−1 to candidate node i where the
averaged wavefront (in the �1-sense) depends on the weighted mean travel time and its bias. We will also
see later that this model is equivalent to the �1 graph-eikonal equation.

2.2. First arrival times

In this approach, we optimise travel times over path sets as a generalisation of travel times over paths. For
this, we define useful quantities for describing path sets. Then, we define some generalised travel time
models and first arrival times over path sets. In Remark 2.2, we show how this generalises the standard
travel time defined over paths. For two nodes x0, i ∈ V , let Px0,i be the set of admissible paths px0,i from x0

to i. Since the graph G = (V , E, w) is connected, Px0,i is non-empty. Let Px0,i ⊂ Px0,i denote a non-empty
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Figure 1. An illustration of a path set and its truncation. On the left we represent the set of all paths
Px0,i between two nodes x0 and i with black arrows from x0 to i. We represent a path set Px0,i ⊂ Px0,i in
pink. In particular, the path set Px0,i contains three paths. On the right of the figure, we zoom into the
neighbourhood N(i), represented as nodes on dotted circle; the pink nodes on the dotted circle represent
the penultimate truncation K(Px0,i) ⊂ N(i) of the path set. The pink edges therefore can be written as (j, i)
such that j ∈ K(Px0,i).

subset of paths from x0 to i, and we refer to Px0,i as a path set. We define the penultimate truncation of
a path px0,i ∈ Px0,i as a path px0,j, where j ∈ N(i) and px0,i = (px0,j, (j, i)). Similarly, for a path set Px0,i, we
define the penultimate truncations of Px0,i as the set {px0,j : j ∈ K(Px0,i)} where K(Px0,i) ⊂ N(i) such that
for every j ∈ K(Px0,i) there exist a path px0,j and a path px0,i ∈ Px0,i such that px0,i = (px0,j, (j, i)). Note, unlike
the set N(i) which depends only on the graph structure, K(Px0,i) depends on the choice of the path set
Px0,i. An illustration of a path set and its penultimate truncation is shown in Figure 1.

We assume that there exists a formula for a generalised travel time T(Q) for any path set Q ⊂ Px0,i.
Some specific examples are introduced below. We define ui for i ∈ V , as the first arrival travel times over
path sets by

ui = min
x0∈∂V

min
Px0,i⊂Px0,i

T
(
Px0,i

)
. (2.5)

For boundary nodes x0 ∈ ∂V , we set ux0 = 0. The inner minimisation in (2.5) is not over paths px0,i ∈ Px0,i,
but over path sets Px0,i ⊂ Px0,i.

We define a travel time T over a path set Px0,i with a local formula over the penultimate truncations
of Px0,i. In particular, T

(
Px0,i

)
is calculated as a function of T

(
Pi

x0,j

)
with j ∈ K(Px0,i), where Pi

x0,j = {px0,j ∈
Px0,j : (px0,j, (j, i)) ⊂ Px0,i}. By definition Pi

x0,j is also a path set. Since all nodes of a path are distinct by
definition, for all px0,j ∈ Pi

x0,j we have i /∈ px0,j.
The models we propose for the travel time T share similarities with the front propagation models 1(i),

1(ii), 1(iii) in Section 2.1 and are specified further below.

2.2.1. Model 2(i)
Similar to Model 1(i) in (2.2), we define

T
(
Px0,i

)= min
j∈K(Px0,i)

{
T
(
Pi

x0,j

)+ si

wj,i

}
. (2.6)

We will see later that this model is equivalent to the �∞ graph-Eikonal equation.
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2.2.2. Model 2(ii)
Similar to Model 1(ii) in (2.3), we consider

T
(
Px0,i

)= μx0,i +
√

s2
i

zx0,i

− σ 2
x0,i (2.7)

where

zx0,i =
∑

j∈K(Px0,i)

w2
j,i, μx0,i = 1

zx0,i

∑
j∈K(Px0,i)

w2
j,iT
(
Pi

x0,j

)

and

σ 2
x0,i =

∑
j∈K(Px0,i)

(
w2

j,i

zx0,i

(
T
(
Pi

x0,j

))2
)

− μ2
x0,i.

We will see later that this model is equivalent to the �2 graph-Eikonal equation.

2.2.3. Model 2(iii)
Similar to Model 1(iii) in (2.4), we define

T
(
Px0,i

)= 1

yx0,i

∑
j∈K(Px0,i)

wj,iT
(
Pi

x0,j

)+ si

yx0,i

(2.8)

where yx0,i := ∑
j∈K(Px0,i)

wj,i. We will see later that this model is equivalent to the �1 graph-Eikonal
equation.

Remark 2.1. Due to the assumption that the graph G is connected and the weights wj,i are positive,
there exists a solution to (2.5) for all the above choices of the travel time T . Clearly, first arrival time
solutions are well defined and unique. However, the minimising path sets are not unique in general.

Remark 2.2. Consider a singleton path set Px0,i = {px0,i} = {(x0 = i1, . . . , i = iM)}. We observe that the
value of T

(
Px0,i

)
calculated using models 2(i), 2(ii) or 2(iii) is equal to the following:

T
({px0,i}

)= T
({px0,iM−1}

)+ siM

wiM−1,iM

= T
({px0,iM−1}

)+ T ({(iM−1, iM)})

=
M∑

m=2

T ({(im−1, im)}) , (2.9)

where we used that the models 2(i), 2(ii) and 2(iii) satisfy

T ({(im−1, im)}) = sim

wim−1,im

. (2.10)

If we suppose that wim−1,im characterises the connectivity between nodes im−1 and im, and thus 1
wim−1,im

is
proportional to the travel time, the form of the travel time (2.9) can be regarded as a discretisation of∫ 1

0
s(ξ (r))‖ξ ′(r)‖2 dr in (1.1).
Classically, there is a known relationship between the discretisation of problem (1.1) and the

minimisation problem

ui = min
x0∈∂V

min
px0,i∈Px0,i

T
({px0,i}

)
, (2.11)

where ux0 = 0 on boundary nodes x0 ∈ ∂V . Under the assumption that only singleton sets Px0,i = {px0,i}
may be considered in (2.5), then (2.5) reduces to (2.11).
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Figure 2. Three different path sets shown in red on a square grid with wj,i = 1 and si = 1 for all nodes.
The numbers correspond to the values of the generalised travel time T(P(i)

x0,i) for model 2(ii) for each path
set.

Figure 3. Three different path sets shown in red on a rectangular grid with wj,i = 1 and si = 1 for all
nodes. The numbers correspond to the values of the generalised travel time T(P(i)

x0,i) for model 2(iii) for
each path set.

To understand the behaviour of model 2(i) in (2.6), substituting its definition in (2.5), we obtain
(2.11). Indeed,

ui = min
x0∈∂V

min
Px0,i⊂Px0,i

min
j∈K(Px0,i)

{
T
(
Pi

x0,j

)+ si

wj,i

}
= min

x0∈∂V
min

j∈K(Px0,i)

{
T
(
Pi

x0,j

)+ si

wj,i

}
= min

x0∈∂V
min

px0,i∈Px0,i

T
({px0,i}

)
.

Thus, when using model 2(i), a minimisation over path sets is thus reduced to a minimisation over paths.
To understand the behaviour of models 2(ii) and 2(iii), we calculate the generalised travel time of some

simple path sets over the square grid in two space dimensions with constant unit weights and slowness
function; see Figures 2 and 3, respectively. In each case, we calculate the travel times for the three path
sets P(1)

x0,i, P(2)
x0,i and P(3)

x0,i, where x0 = (0, 0) and i = (2, 2). Let U and R be the paths travelling ‘up’ and ‘right’
from a node to a neighbour on the square grid. We set P(1)

x0,i = {(U, R, U, R)}, P(2)
x0,i = P(1)

x0,i ∪ {(R, U, R, U)}
and P(3)

x0,i = P(2)
x0,i ∪ {(U, U, R, R), (R, R, U, U)}, so these path sets have 1, 2 and 4 elements, respectively.

We show the generalised travel time for path sets P(1)
x0,i, P(2)

x0,i and P(3)
x0,i for models 2(ii) and 2(iii) in Figures 2

and 3, respectively. Here, the numbers at nodes along the different paths denote the generalised travel
time from the origin x0 to the respective nodes. We see that P(3)

x0,i is optimal for model 2(ii) and 2(iii)
among {P(1)

x0,i, P(2)
x0,i, P(3)

x0,i} as shown in Figures 2 and 3. In fact, P(3)
x0,i is an optimal path set for model 2(ii)

and 2(iii) among all subsets of Px0,i on the square grid.
The properties of minimising path sets are left to future investigation. Heuristically, we see that the

travel times given by model 2(ii) or 2(iii) are small for path sets that contain short paths or paths, which
have many cross-overs among themselves (i.e. multiple distinct paths pass through common nodes). Such
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behaviour is observed in Figures 2 and 3, where the support of the minimizing paths is the rectangular
lattice between nodes x0 and i.

Remark 2.3. The notion of a minimising path in (2.5) also includes the case of a single element of ∂V ,
which corresponds to one label, i.e. ∂V = {x0} in which case

ui = min
Px0,i⊂Px0,i

T
(
Px0,i

)
.

Remark 2.4. It is possible that Gromov’s theory (e.g. [23]) provides a suitable framework with which
to view these constructions. In [23], a metric space (G, d) is endowed with an additional length structure
over curves between points in the space. A path-metric space is then defined if d(x, y) for x, y ∈ G is
equal to the shortest length of the curve connecting the x and y. This theory applies to the path-distance
metric d on a connected graph G, defining a length structure by (2.6). It will be an interesting future
direction of research to see if (2.7) and (2.8) define length structures and along with a suitable metric d
form a path-metric space.

2.3. Discrete generalised eikonal models

For i ∈ V , we define one-sided edge derivatives ∇+
w ui ∈R

|N(i)| by

∇+
w ui =

(
wj,i(ui − uj)

+)
j∈N(i)

.

Set,

‖∇+
w ui‖p =

(∑
j∈N(i)

(wj,i(ui − uj)
+)p

)1/p

for 1 ≤ p < ∞, (2.12)

and

‖∇+
w ui‖∞ = max

j∈N(i)

{
wj,i(ui − uj)

+} . (2.13)

2.3.1. Model 3(p)
Motivated by monotone discretisations of the continuum eikonal equation, we consider for any 1 ≤ p ≤
∞,

‖∇+
w ui‖p = si, i ∈ ◦

V ,

ui = 0, i ∈ ∂V . (2.14)

Note that (2.14) with p = 2 is of the same form as the continuum eikonal equation (1.2). We can rewrite
(2.14) as ∑

j∈N(i)

(
wj,i(ui − uj)

+)p = sp
i , i ∈ ◦

V ,

ui = 0, i ∈ ∂V , (2.15)

for 1 ≤ p < ∞, and

max
j∈N(i)

{
wj,i(ui − uj)

+}= si, i ∈ ◦
V ,

ui = 0, i ∈ ∂V , (2.16)

for p = ∞. The models satisfy a monotonicity condition characteristic of discrete Hamilton-Jacobi equa-
tions (c.f. [11]). Using a monotonicity condition and comparison principles, it has been shown that the
boundary value problems admit a unique solution and are well-posed, see [12] and [8, Th. 12]. The
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Table 1. We summarise proved equivalences between the front propa-
gation, arrival time (path and path set) and discrete Eikonal models

Front propagation First arrival Discrete Eikonal
Model 1(i) ⇔ Model 2(i) ⇔ Model 3(p = ∞)
Model 1(ii) ⇔ Model 2(ii) ⇔ Model 3(p = 2)
Model 1(iii) ⇔ Model 2(iii) ⇔ Model 3(p = 1)

authors in [8, Th. 12] also construct sub- and supersolutions of the unique solution, resulting in explicit
lower and upper bounds of the solution which are both linked to the graph distance.

Note that the �∞ eikonal equation is related to shortest path graph distances that approximate geodesic
distances. However, this is not the case for the �p eikonal equation with p finite as interaction between
neighbouring nodes is of importance here.

3. Relations between models
In this section, we investigate relations between the different modelling approaches, that is front propaga-
tion, first arrival time and discrete eikonal models, which are introduced in Section 2. The relationships
we prove between the models are summarised in Table 1, and the proofs are provided in the following
sections.

3.1. Equivalence of front propagation and discrete eikonal models.

In this section, we show the equivalence of front propagation models (2.2), (2.3), (2.4) (i.e. models
1(i),(ii),(iii)) and discrete eikonal models (2.15) for p = 1, p = 2 and (2.16) for p = ∞ (i.e. models
3(p = 1), 3(p = 2), 3(p = ∞)).

3.1.1. Equivalence of models 1(i) and 3(p = ∞)
Let i ∈ ◦

V be given. Hence, there exists k ∈ {1, . . . , L} such that i ∈ Vk. For this k, the definition of sets
Vk, Kk−1 and Ck−1, and of model 1(i) (2.2), give the value of ui as

ui = Uk = min
j∈N(i)∩Kk−1

{
uj + si

wj,i

}
,

that is

max
j∈N(i)∩Kk−1

{
wj,i(ui − uj) − si

wj,i

}
= 0.

Since wj,i > 0 for all edges (j, i) ∈ E, the model is equivalent to

max
j∈N(i)∩Kk−1

{
wj,i(ui − uj)

}− si = 0.

From minimality of ui ∈ Ck−1, we have uj ≥ ui for all j ∈ V\Kk−1. Recall wj,i > 0 and si > 0, then extending
the set over which the maximum is taken from N(i) ∩ Kk−1 to all of N(i) does not affect the maximum
value. Similarly, Kk−1 necessarily contains at least one point j with uj < ui, therefore replacing (ui − uj)
with (ui − uj)+ does not affect the maximum. This leaves

max
j∈N(i)

{
wj,i(ui − uj)

+}= si,

which is precisely (2.16), i.e. model 3(p = ∞). The counter direction runs exactly the same, with the
exception that one must show that ui is minimal over Ck−1, however, this follows by monotonicity of the
construction, as any j with uj < ui must belong to Kk−1 and cannot be in Ck−1.
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3.1.2. Equivalence of models 1(ii) and 3(p = 2)
Let i ∈ ◦

V , that is, there exists k ∈ {1, . . . , L} such that i ∈ Vk. First, we show that model 3(p = 2) in
(2.15) follows from model 1(ii) in (2.3). For this k, the definition of sets Vk, Kk−1 and Ck−1, the definition
zi =∑

j∈N(i)∩Kk−1
w2

j,i, and (2.3) implies that ui satisfies

∑
j∈N(i)∩Kk−1

w2
j,iui =

∑
j∈N(i)∩Kk−1

w2
j,iuj

+

√√√√√
⎛
⎝ ∑

j∈N(i)∩Kk−1

w2
j,iuj

⎞
⎠

2

− zi

⎛
⎝ ∑

j∈N(i)∩Kk−1

w2
i,ju

2
j − s2

i

⎞
⎠.

For this, we square both sides of the equality which yields

(ziui)
2 − 2uizi

∑
j∈N(i)∩Kk−1

w2
j,iuj = zis

2
i − zi

∑
j∈N(i)∩Kk−1

w2
i,ju

2
j .

Since zi > 0, we obtain ∑
j∈N(i)∩Kk−1

w2
j,i

(
ui − uj

)2 = s2
i , (3.1)

From the definition of Kk−1, the sum can be expanded to the entire neighbourhood N(i), by introducing
the maximum with zero, ∑

j∈N(i)

w2
j,i

(
(ui − uj)

+)2 = s2
i , (3.2)

This is equivalent to model 3(p = 2) in (2.15)
Next, we start from model 3(p = 2) in (2.15) for p = 2, or equivalently (3.1), and show that model

1(ii) in (2.3) follows. Note that (3.1) can be regarded as a quadratic equation in ui whose solution ui

satisfies

ui = 1

zi

⎛
⎜⎝ ∑

j∈N(i)∩Kk−1

w2
j,iuj ±

√√√√√
⎛
⎝ ∑

j∈N(i)∩Kk−1

w2
j,iuj

⎞
⎠

2

− zi

⎛
⎝ ∑

j∈N(i)∩Kk−1

w2
j,iu

2
j − s2

i

⎞
⎠
⎞
⎟⎠ .

The discriminant is nonnegative due to the existence of a unique real solution to (2.15). Since

1

zi

∑
j∈N(i)∩Kk−1

w2
j,iuj ≤ max

j∈N(i)∩Kk−1

uj ≤ ui,

this implies that the smaller solution contradicts the definition of i ∈ Vk and the larger solution of the
quadratic equation has to be considered, i.e.

ui = 1

wi

⎛
⎜⎝∑

j∈Ñ(i)

w2
j,iuj +

√√√√√
⎛
⎝∑

j∈Ñ(i)

w2
j,iuj

⎞
⎠

2

− wi

⎛
⎝∑

j∈Ñ(i)

w2
j,iu

2
j − s2

i

⎞
⎠
⎞
⎟⎠ ,

which yields (2.3), that is model 1(ii). ui is minimal over Ck−1 by construction, as any j with uj < ui must
belong to Kk−1 and thus cannot be in Ck−1.
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3.1.3. Equivalence of models 1(iii) and 3(p = 1)
Let i ∈ ◦

V be given. Hence, there exists k ∈ {1, . . . , L} such that i ∈ Vk. For this k, the definition of sets
Vk, Kk−1 and Ck−1, and Model 1(iii) in (2.4) show that ui satisfies

ui = 1

yi

⎛
⎝si +

∑
j∈N(i)∩Kk−1

wj,iuj

⎞
⎠ ,

which is equivalent to model 3(p = 1) in (2.15) by the definition of yi and the properties of i ∈ Vk, i.e.∑
j∈N(i) wj,i(ui − uj)+ = si.

3.1.4. Derivation of model of type 1 from model 3(p) for general p

We have proved in the previous subsections that there exists a model of type 1 for any model 3(p), for
p ∈ {1, 2, ∞}. In this subsection, we provide a procedure for deriving such a model of type 1.

For any finite p ≥ 1, the solution u of 3(p) satisfies (2.15). Starting from the boundary condition ∂V ,
we initialise the front propagation algorithm. At the kth iteration, the following steps are done:

1. From Kk−1 and the graph neighbourhood structure, create Ck−1.
2. By construction of solutions to Model 1, any admissible solution ũi has to satisfy ũi > uj for all

j ∈ N(i) ∩ Kk−1 and ũi ≤ uj for all j ∈ V\Kk−1. To compute the traveltimes ũi at candidates i ∈ Ck−1,
we use (2.15). Due to the properties of admissible solutions, it is sufficient to restrict the sum in
(2.15) to N(i) ∩ Kk−1 instead of N(i). Over this domain, the restriction to the positive part (·)+ may
be removed, and the problem is reduced to solving a polynomial equation in ui (via analytic formulae
or numerical solvers). As si and wj,i are positive, there exists at least one admissible solution ũi. The
uniqueness of ũi follows from contradiction: suppose that (2.15) has two admissible solutions ūi and
ûi with ūi > ûi ≥ uj ∀j ∈ N(i) ∩ Kk−1. Then,

sp
i =

∑
j∈N(i)∩Kk−1

(
wj,i(ūi − uj)

)p
>

∑
j∈N(i)∩Kk−1

(
wj,i(ûi − uj)

)p = sp
i

This is clearly a contradiction, and thus there is exactly one admissible solution. For all i ∈ Ck−1, we
denote this admissible solution by ũi and determine Uk with (2.1).

3. Add all nodes i ∈ Ck−1 with Uk = ũi into Vk, then generate Kk.

3.2. Equivalence of first arrival times over path sets and discrete eikonal models.

In this section, we equate the arrival time model (2.5) with travel times (2.6), (2.7), (2.8) (collectively
models 2(i), (ii), (iii)) of Section 2.2 with the discrete eikonal models, i.e. model 3(p = ∞) in (2.16),
and models 3(p = 1), 3(p = 2) in (2.15).

3.2.1. Equivalence between models 2(i) and 3(p = ∞)

Substituting travel time (2.6) of model 2(i) into (2.5) and using the definition of K(Px0,i) for Px0,i ⊂ Px0,i

yields

ui = min
x0∈∂V

min
Px0,i⊂Px0,i

T
(
Px0,i

)
= min

x0∈∂V
min

Px0,i⊂Px0,i

min
j∈K(Px0,i)

(
T
(
Pi

x0,j

)+ si

wj,i

)

= min
x0∈∂V

min
K⊂N(i)

min
{Px0,i⊂Px0,i : K(Px0,i)=K}

min
j∈K

(
T
(
Pi

x0,j

)+ si

wj,i

)
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= min
x0∈∂V

min
K⊂N(i)

min
j∈K

min
(Pi

x0,j ,(j,i))⊂Px0,i

(
T
(
Pi

x0,j

)+ si

wj,i

)

= min
x0∈∂V

min
j∈N(i)

min
(Pi

x0,j ,(j,i))⊂Px0,i

(
T
(
Pi

x0,j

)+ si

wj,i

)

Note that Pi
x0,j contains paths between x0 and j not containing node i. If we now consider Px0,j ⊂ Px0,j,

then there may be a path from x0 to j via i in Px0,j, but it is not a minimiser. To see that a path px0,j with
i ∈ px0,j is indeed not a minimiser, we consider px0,j = (i1 = x0, . . . , ik = i, . . . , iM = j) for some M ∈N

and 1 < k < M, implying that ik−1 ∈ N(i) and hence px0,i = (i1 = x0, . . . , ik−1, ik = i) ∈ (Pi
x0,j̃

, (j̃, i)) ⊂ Px0,i

for j̃ = ik−1 ∈ N(i) and some path set Pi
x0,j̃

⊂ Px0,j̃. As the travel time is nonnegative on every edge by
(2.10), the travel time is monotone over increasing path length, and we have T(px0,ik−1 ) < T(px0,j) with
ik−1, j ∈ N(i), implying that px0,j with i ∈ px0,j cannot be a minimiser. Hence, we write

ui = min
x0∈∂V

min
j∈N(i)

min
Px0,j⊂Px0,j

(
T
(
Px0,j

)+ si

wj,i

)

= min
j∈N(i)

((
min
x0∈∂V

min
Pi

x0,j⊂Px0,j

T
(
Px0,j

))+ si

wj,i

)
= min

j∈N(i)

(
uj + si

wj,i

)
.

We move ui to the right-hand side and use that min(x) = − max(−x), so that we obtain

0 = max
j∈N(i)

(
ui − uj − si

wj,i

)
= max

j∈N(i)

(
wj,i

(
ui − uj

)− si

wj,i

)
.

Due to the positivity of wij, this is equivalent to maxj∈N(i)

(
wj,i

(
ui − uj

)− si

)= 0, and as ui ≥ uj, this
yields maxj∈N(i)

(
wj,i

(
ui − uj

)+)= si, that is, we obtain model 3(p = ∞) in (2.16).

3.2.2. Equivalence between models 2(ii) and 3(p = 2)

Starting with (2.5) and considering travel time of model 2(ii) in (2.7) yields

ui = min
x0∈∂V

min
Px0,i⊂Px0,i

T
(
Px0,i

)

= min
x0∈∂V

min
Px0,i⊂Px0,i

⎛
⎝ 1

zx0,i

∑
j∈K(Px0,i)

w2
j,iT
(
Pi

x0,j

)

+ 1

zx0,i

√√√√√
⎛
⎝ ∑

j∈K(Px0,i)

w2
j,iT
(
Pi

x0,j

)⎞⎠
2

+ zx0,is2
i − zx0,i

∑
j∈K(Px0,i)

w2
j,i

(
T
(
Pi

x0,j

))2

⎞
⎟⎠

where zx0,i =∑
j∈K(Px0,i)

w2
j,i. We can write ui as

ui = min
x0∈∂V

min
K⊂N(i)

min
{Px0,i⊂Px0,i : K(Px0,i)=K}

(
1

zK

∑
j∈K

w2
j,iT
(
Pi

x0,j

)

+ 1

zK

√√√√(∑
j∈K

w2
j,iT
(
Pi

x0,j

))2

+ zKs2
i − zK

∑
j∈K

w2
j,i(T

(
Pi

x0,j

)
)2

⎞
⎠ ,

where zK =∑
j∈K w2

j,i. Since T
(
Pi

x0,j

)
is the only term depending on x0 ∈ ∂V and Pi

x0,j satisfying Px0,i =
(Pi

x0,j, (j, i)) ⊂ Px0,i with j ∈ K(Px0,i), we may pull the minimisation with respect to these parameters inside
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the expression and replace the minimisation with respect to Px0,i = (Pi
x0,j, (j, i)) ⊂ Px0,i with j ∈ K(Px0,i) by

Px0,j ⊂ Px0,j as in Section 3.2.1. This yields

ui = min
K⊂N(i)

⎛
⎝ 1

zK

∑
j∈K

w2
j,iuj + 1

zK

√√√√(∑
j∈K

w2
j,iuj

)2

+ zKs2
i − zK

∑
j∈K

w2
j,iu

2
j

⎞
⎠

where uj = minx0∈∂V minPx0,j⊂Px0,j T(Px0,j) by definition. Moving ui to the right-hand side and using
min(x) = − max(−x) provides

0 = max
K⊂N(i)

⎛
⎝ 1

zK

∑
j∈K

w2
j,i(ui − uj) − 1

zK

√√√√(∑
j∈K

w2
j,iuj

)2

+ zKs2
i − zK

∑
j∈K

w2
j,iu

2
j

⎞
⎠ .

To achieve that the expression vanishes, we require that the first term is nonnegative which is equivalent
to K ⊂ N(i) such that uj ≤ ui for all j ∈ K. Note that the first term is maximal for the set {j ∈ N(i) : uj ≤ ui}
and the magnitude of the second term decreases as the size of the set K increases. Hence, the maximiser
K with K = {j ∈ N(i) : uj ≤ ui} satisfies

zKui −
∑
j∈K

w2
j,iuj =

√√√√(∑
j∈K

w2
j,iuj

)2

+ zKs2
i − zK

∑
j∈K

w2
j,iu

2
j .

Squaring both sides and dividing by zK yields

zKu2
i − 2ui

∑
j∈K

w2
j,iuj = s2

i −
∑
j∈K

w2
j,iu

2
j ,

i.e.

s2
i =

∑
j∈K

w2
j,i(ui − uj)

2 =
∑

j∈N(i) : uj≤ui

w2
j,i(ui − uj)

2 =
∑
j∈N(i)

w2
j,i((ui − uj)

+)2,

that is model 3(p = 2) in (2.15).

3.2.3. Equivalence between models 2(iii) and 3(p = 1)

We begin by using the first arrival model (2.5) with travel time T given as in model 2(iii) by (2.8) which
yields

ui = min
x0∈∂V

min
Px0,i⊂Px0,i

T
(
Px0,i

)

= min
x0∈∂V

min
Px0,i⊂Px0,i

1∑
j∈K(Px0,i)

wj,i

⎛
⎝ ∑

j∈K(Px0,i)

wj,iT
(
Pi

x0,j

)+ si

⎞
⎠

= min
K⊂N(i)

min
x0∈∂V

min{Px0,i⊂Px0,i : K(Px0,i)=K}
1∑

j∈K wj,i

(∑
j∈K

wj,iT
(
Pi

x0,j

)+ si

)

= min
K⊂N(i)

1∑
j∈K wj,i

(∑
j∈K

wj,i min
x0∈∂V

min
Px0,j⊂Px0,j

T(Px0,j) + si

)

= min
K⊂N(i)

1∑
j∈K wj,i

(∑
j∈K

wj,iuj + si

)
,

where we can use a similar argument as in Section 3.2.1 in the fourth equality to consider the sets
Px0,j ⊂ Px0,j instead of the sets Px0,i = (Pi

x0,j, (j, i)) ⊂ Px0,i with j ∈ K(Px0,i). Then we rearrange the equation
resulting in
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min
K⊂N(i)

1∑
j∈K wj,i

(∑
j∈K

wj,i(uj − ui) + si

)
= 0,

and as
∑

j∈K wj,i > 0, we obtain

si = − min
K⊂N(i)

(∑
j∈K

wj,i(uj − ui)

)
= max

K⊂N(i)

∑
j∈K

wj,i(ui − uj).

If uj ≤ ui, then the summand is positive and therefore the maximiser over K ⊂ N(i) is the set {j ∈
N(i) : uj ≤ ui}. Hence, we arrive at

si =
∑

j∈N(i) : uj≤ui

wj,i(ui − uj) =
∑
j∈N(i)

wj,i(ui − uj)
+,

that is, model 3(p = 1) in (2.15).

4. Applications
In this section, we use information propagation in two applications: trust networks and semi-supervised
learning.

4.1. Applications to trust networks

In this section, we apply information propagation to a trust network, which is a weighted directed graph,
with nodes being users of a social network. The edges and their trust weights are reviews of trust among
users, for example, ωi,j implies that i trusts j with a rating ωi,j. The neighbourhood structure is there-
fore built around trusting nodes and their neighbours of trusted nodes. It is a directed relationship,
as trust may not be reciprocated (i.e. (i, j) may exist, but (j, i) does not), and may not be symmetric
(ωi,j �= ωj,i).

An example of a trust network is the advocato dataset [30], specifically soc-advocato obtained
from [35]. The dataset is a snapshot in time of a social network comprised of around 5000 software
developers, with four categorical weightings of trust based on users’ perceived contributions to open
software and programming skills. These weightings have been numerically equated, though somewhat
arbitrarily [30], to four values ωi,j ∈ (0.4, 0.6, 0.8, 1.0) where larger values correspond to larger levels of
trust. Structural information of the graph is found in [35]. For this experiment, we will investigate only
the largest connected component of this graph, which contains 5167 nodes (of which 4017 are trusting,
and 4428 are trusted) and 47,337 edges.

Consider the application of a software team searching for a new collaborator from the network. The
team seeks a notion of trustworthiness for each candidate collaborator. One can assess the level of trust
in each candidate by the team by using the information from the trust network. A seemingly simple
way to do this is to aggregate the trust given to them directly by other users (i.e. the weights from users
to the candidate). Unfortunately, a common subversion of this method is a Sybil attack [1, 15, 44]. In
its simplest form, a candidate creates a network of artificial community members, colloquially called
’Sybils’, who have high trust with each other and with the candidate. This will boost the candidates
aggregate trust. Instead of a neighbourhood-only measurement of trust, we propose using information
propagation of distrust to provide a ranking candidates from the perspective of the team in a way that is
resistant to Sybil attack.

We perform the propagation of distrust by setting boundary nodes ∂V as the software team. We
then set s = 1 at all nodes. We define the distrust weights wj,i = 1

ωj,i
, a reciprocal of the trust weights.

Candidates are selected on the network, and we calculate the (first arrival) times for the information
to propagate to all candidates from the team members by using a propagation model. The candidates
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Table 2. Ranking of trust of candidates A-H, for two experiments: a control experiment (Ctrl) and
an experiment with a cluster of 50 Sybils around candidate G (GSyb). Candidates A-H are alpha-
betically assigned by the order of the first column. The columns give trust rankings from different
information propagation models (p = 1, 2, ∞), or from using the average of neighbourhood distrust
(neighbour). The measure of absolute distrust of the candidate is given in brackets: for the first
three columns, this is the travel time, in the final two columns, this is the averaged distrust over the
neighbourhood of the candidate

Trust Rank p = 1 p = 2 p = ∞ Neighbour Neighbour
(1 = most trust) Ctrl & GSyb Ctrl & GSyb Ctrl & GSyb Ctrl GSyb
1 A (1.170) A (1.728) B (2.0) A, D, H (1.0) A, D, H (1.0)
2 B (1.360) B (2.001) A, C, E (2.2) A, D, H (1.0) A, D, H (1.0)
3 C (1.371) C (2.019) A, C, E (2.2) A, D, H (1.0) A, D, H (1.0)
4 D (1.573) E (2.084) A, C, E (2.2) B (1.167) G (1.029)
5 E (1.784) D (2.341) F, G (2.4) C, F (1.25) B (1.167)
6 F (2.005) F (2.354) F, G (2.4) C, F (1.25) C, F (1.25)
7 G (2.047) G (2.358) H (2.6) G (1.333) C, F (1.25)
8 H (2.148) H (2.574) D (2.8) E (1.458) E (1.458)

Figure 4. Result of the distrust propagation from a four-member software team, to eight candidates.
Edge arrows indicate direction of trust. The left panel shows the software team (magenta) and candidates
(cyan). The right panel shows the solved travel time field using model p = 1, with node colour indicating
the level of distrust of this community member by the software team.

with greater arrival time are less trustworthy according to the model. This method of measuring distrust
accounts for both the degree of separation between the team and the candidates, as well as the trust of
each review along such paths. It is resistant to Sybil attacks, as ’Sybils’ form a (largely) disconnected
cluster around a candidate, and so have little or no effect on path structures between the team and the
candidate.

The experiment configuration is shown overlaying a relevant portion of the network in the left panel
of Figure 4, we randomly select both a four-member team in magenta, and eight candidates in cyan
that we label A-H. For illustration, the travel times (level of distrust) of the displayed nodes according
to the propagation model with p = 1 are given in the right panel of Figure 4. We perform two control
experiments. In the first control experiment (Ctrl), we directly use the network of soc-advocato. In a
second experiment (GSyb), we modify the network by adding a fully connected Sybil cluster (of size
50) to candidate G. The members of this cluster are given by the highest trust weighting 1 from each
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other and the candidate G, and vice versa. For each experiment, we use different information propagation
models and the neighbour-averaging approach to calculate a trust ranking of the eight candidates. The
results of the experiments are given in Table 2. Candidates A-H are alphabetically assigned by the order
of the first column. The first three columns show ranks given by propagation model for p = 1, 2, ∞,
which is based on globally averaging distrust. The final two columns show ranks for candidate j based
on locally averaging distrust wi,j over i such that j ∈ N(i).

First, we look at experiment (Ctrl) in Table 2. Comparing the propagation-based and neighbour-based
ranks, we offer an interpretation of some interesting candidates. As candidate A is deemed trustworthy
across all methods, this implies that both locally and globally A is a trustworthy candidate. Candidate
H, on the other hand, is deemed trustworthy locally but suffers globally which indicates that there is an
overall untrustworthy pathway of reviewers between the team and H. Candidate D shows a difference
in ranking between travel time models p = 1, 2 and p = ∞, which implies that although the most trust-
worthy review path from the team to D is not very trustworthy (p = ∞ ranks D eighth), there are many
similarly trusted pathways from the team to D (p = 1, 2 rank D fourth and fifth). In this way, the models
for p < ∞ encode a concept of confidence over the network uncertainty into their travel time. In gen-
eral, we see that for p = 1 and p = 2, candidates enjoy similar rankings, while the p = ∞ model tends
to group candidates together, as for this model the travel times can only take more restrictive discrete
values. These preliminary results suggest that p < ∞ approaches provide solutions richer in information
from the network and may be more robust in discrete settings, and so we advocate further investigation
of their use in graph-based algorithms where p = ∞ may be the state of art.

Finally, the key result of comparing between the experiments (Ctrl) and (GSyb) is that the travel
time-based ranking did not change between the experiments, whereas the neighbour-averaged distrust
of candidate G reduced from 1.333 in (Ctrl) to 1.029 in (GSyb), thus increasing their rank from 7 to 4.
This provides concrete evidence to the susceptibility of neighbourhood-based approaches, while arrival
time approaches are completely resilient to this form of attack.

4.2. Applications to label propagation/semi-supervised learning

In this section, we consider an application to a semi-supervised learning approach to label propaga-
tion. The model consists of attaching L > 1 labels to n > 1 sets of features fj ∈Fj, j = 1, 2, . . . , n, where
Fj = {F i

j ∈ Fi}m
j=1 i = 1, 2, . . . , m and Fi is either R or B, B= {0, 1}. The first step consists of assign-

ing weights wi,j ≥ 0 whose reciprocal measures the distance between features fi and fj. If the distance
between features is sufficiently large according to some criterion, then the weight is set to zero. From this
we obtain the graph with vertices V = {1, 2, . . . , n} and edges E ∈ V2 consisting of the pairs satisfying
wi,j > 0. We assume there is a set of nodes ∂V� for each category � = 1, . . . , L so that label(i) = � for all
i ∈ ∂V�, that is, a set where the classification is known. Our semi-supervised learning task is to provide
all unlabelled nodes in V \ {∪�∂V�} with a label. The front propagation semi-supervised learning model
is to assign

label(i) =
{
� | u(�)

i = min
k=1,...,L

u(k)
i

}
(4.1)

for any i ∈ V \ {∪�∂V�}, where u(k)
i is the solution to a discrete eikonal equation (2.14) on a weighted graph

for some p ∈ [1, +∞], with boundary ui = 0 for i ∈ ∂Vk. We assume for this model that the slowness
function s ≡ 1. In this way, i is assigned the label � if the smallest travel time is found between ∂V� and
i among all sets of labels. This model requires to solve the discrete eikonal problem per label category,
which can be performed independently in parallel to each other. For each of the following experiments,
we carry out 20 simulations with differing random choices of known initial labels. We present the average
(and standard deviation) of the classification accuracy over these 20 simulations. The labelling accuracy
is calculated as the percentage of unlabelled nodes that are correctly classified.
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Table 3. Mean (standard deviation) of classification for the two moons
example

wi,j Eikonal model Two moons accuracy %
p = 1 92.7 (3.81)

exp

(
− ‖xi−xj‖2√

d10(xi)d10(xj)

)
p = 2 92.0 (2.80)

p = ∞ 89.5 (2.96)

Figure 5. Example travel time fields and classification for two moons problem projected into two dimen-
sions. The left and centre panels show the travel time field for labels 1 and 2, respectively. The right panel
shows the resulting classification with predicted label 1 (blue) and predicted label 2 (yellow) solved with
initially known labels 1 (orange), and 2 (dark blue). In this example, the accuracy was 94.7%.

4.2.1. High-dimensional two moons problem
We follow the construction of the two moons problem for classification as in [5, 7]. The feature vectors
here are taken to be the spatial coordinates of n nodes in R

m, i.e. Fi =R, ∀i. The construction is formed
by considering two planar half circles of radius 1. One is centred at the origin and the other is rotated
by π and centred (1, 0.5). We take n = 2000 points on these initial planar circles and then embed them
in R

100 by adding uniform Gaussian noise N(0, 0.02I100) where I100 is the identity matrix in R
100. We

define a classification problem by giving points on each initial circle a different binary label; for visual-
isation we project back onto the plane as seen in Figure 5. We proceed again as in [5, 7] by calculating
distances between pairs of points in R

100 and then setting all weights wi,j = 0 unless point j is within the
10 nearest neighbours of point i. The non-zero weights are then set according to the weight function
of [43]; a squared exponential function of distance, weighted by a local scaling d10(xi) = ‖xi − xj(i,10)‖,
where j(i, 10) is the 10th nearest neighbour of i (see Table 3). We perform each of the experiments by
choosing at random 15 nodes per moon to have known labels. The illustration of the travel time-based
classification is given in Figure 5. The accuracy results are given in Table 3. Here we observe high accu-
racy, with all choices of eikonal model comparable to experiments of unsupervised clustering in [5]
with near optimal parameter choices. Our method has no tuneable parameters, though the experiment
suggests best performance for p = 1.

4.2.2. Text classification dataset
We demonstrate the performance on the standard Cora and CiteSeer document classification datasets
[36]. In both cases, the graph nodes correspond to journal articles, and links between them are obtained
from citations, forming a directed graph. The featue vectors are binary valued of length 1433 (Cora,
i.e. Fi =B, ∀i) and 3703 (CiteSeer Fi =B, ∀i), based on whether or not the article contained specific
words from a unique dictionary. Following [28, 42], we symmetrise the adjacency matrix for each cita-
tion link. We benchmark with the resulting largest connected component of each dataset. The resulting
graphs have 2485 nodes and 5069 edges (Cora) and 2110 nodes and 3694 edges (CiteSeer). The reference
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Table 4. Mean (standard deviation) of classification accuracy given as percent-
ages, for the examples using different choices of weights. The function dmax(x) is the
Euclidean distance from xi to its furthest neighbour

wi,j Eikonal model Cora accuracy CiteSeer accuracy
p = 1 69.0 (7.49) 64.3 (1.64)

1/‖xi − xj‖�2 p = 2 68.9 (6.86) 62.6 (1.87)
p = ∞ 68.1 (3.86) 61.0 (2.26)

p = 1 72.4 (1.58) 64.3 (1.91)

exp

(
−‖xi−xj‖2

�2

500

)
p = 2 71.8 (1.88) 62.5 (2.12)

p = ∞ 69.2 (2.50) 60.8 (2.25)

p = 1 72.4 (1.56) 64.3 (2.06)

exp

(
− ‖xi−xj‖2

�2

100
√

dmax(xi)dmax(xj)

)
p = 2 71.7 (1.91) 62.5 (2.08)

p = ∞ 69.0 (2.42) 60.7 (2.22)

did not provide suggestion for the graph weights, thus some naive choices were taken, based on the �2-
norm over binary vectors (see Table 4). There are L = 7 (Cora) and L = 6 (CiteSeer) labels, respectively,
for each dataset, representing journal categories that we wish to classify. We take 20 labels from each
category. The classification accuracy experiments for the different datasets were applied to 20 random
seeds, and we display the results of the eikonal models for p ∈ {1, 2, ∞}. We assume for this application
that the slowness function s ≡ 1. The results are shown in Table 4. Performance is robust across seeds
and eikonal models chosen. The experiment suggests best performance at p = 1. The exponential-based
weighted graphs outperform the reciprocal distance-based weights and have less variation due to random
seeding. For this graph, dmax was relatively constant and did not aid performance. We did not optimise
the constants appearing in the weight functions and the algorithms performed similarly across an order
of magnitude. Several approaches have applied to these datasets in [42]. Here comparisons are quali-
tative, as different methods (e.g., [3, 25, 41]) use differing levels of information. On these datasets, the
front propagation approach performs comparably to Planetoid-T and Planetoid-I, the flagship methods
of [42].

5. Conclusion
In this paper, we proposed some models for information propagation on graphs. Underlying components
of the models include a subset of nodes forming the initial source of information, the arrival times of
information and the laws governing the transfer of information to nodes from their neighbours. The
models are collected into three viewpoints: an information wavefront hitting time, an optimal travel
time over sets of paths and a local equation for the time to receive information at a node given the
times to receive information at its neighbours. We showed equivalences between these different views,
as summarised in Table 1. In this framework, we provide examples such as a generalisation of classical
equivalence between optimal paths and Djikstra’s algorithm [14]. We applied our models to a social
network dataset soc-advogato [35], where directed edges are weighted by trust. Propagation of wave-
fronts from a group of nodes over such weighted networks define a notion of (dis)trust of this group on
all other nodes defined by the travel times to other nodes. This notion of trust is robust to local Sybil
attacks [15]. More generally, our models could be used as a back-end to replace path length or distance
calculations in other cybersecurity strategies [1], as qualitatively the p < ∞ approaches displayed better
solution properties than p = ∞. Extending the work of [40], we applied these models to label prop-
agation in a semi-supervised learning application. The eikonal-based classification algorithm obtains
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comparable performance to clustering algorithms with two labels (e.g. [5]), and with simple choices
of weight functions, it achieves comparable performance to machine-learning methods that learn graph
embeddings (e.g., [42]) without any tuning or training. While graph Laplacian methods are often used to
model information propagation on networks (e.g., [18, 20, 33]), the eikonal approach can also be applied
and encapsulates control problems (using s or w as controllers). Procedures based on front propagation
offer adjoint equations at no additional cost, leading to very efficient methods for inverse problems in
these settings [11, 16].
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