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Abstract Let X be a surface in Cn or Pn and let CX(X × X) be the normal cone to X in X × X

(diagonally embedded). For a point x ∈ X, denote by g(x) := ex(CX(X × X)) the multiplicity of
CX(X × X) at x. It is a former result of the authors that g(x) is the degree at x of the Stückrad–Vogel
cycle v(X, X) =

∑
C j(X, X; C)[C] of the self-intersection of X, that is, g(x) =

∑
C j(X, X; C)ex(C). We

prove that the stratification of X by the multiplicity g(x) is a Whitney stratification, the canonical one
if n = 3. The corresponding result for hypersurfaces in An or Pn, diagonally embedded in a multiple
product with itself, was conjectured by van Gastel. This is also discussed, but remains open.

Keywords: hypersurface singularities; normal cone; Whitney stratification

2000 Mathematics subject classification: Primary 32S15
Secondary 13H15;14C17

1. Introduction

In his article [20], Whitney introduced the notion of a regular stratification (later called
Whitney stratification) that turned out to be a very useful tool in the study of sin-
gular complex analytic spaces. Whitney’s regularity condition had been characterized
numerically by Teissier [17] using polar multiplicities. We will use Teissier’s numeri-
cal criterion (see § 2) and the algebraic approach to intersection theory by Stückrad
and Vogel (see § 3) to construct the canonical (or minimal) Whitney stratification of a
surface X in P

3. More precisely, let CX(X × X) be the normal cone to X in X × X

(diagonally embedded). For a point x ∈ X, denote by g(x) := ex(CX(X × X)) the
multiplicity of CX(X × X) at x. In [4] we proved that g(x) is the degree at x of the
Stückrad–Vogel cycle v(X, X) =

∑
C j(X, X; C)[C] of the self-intersection of X, that

is, g(x) =
∑

C j(X, X; C)ex(C) (see Proposition 3.6 for details). In this paper, our main
result, Theorem 4.2, states that the pointwise degree g(x) of the Stückrad–Vogel intersec-
tion cycle of the self-intersection of X is a stratifying function which gives the canonical
Whitney stratification. Our restriction to algebraic surfaces in P

3 or P
n is only for sim-

plicity. In fact, using Tworzewski’s extension of the Stückrad–Vogel cycle to the analytic

545

https://doi.org/10.1017/S0013091503000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000026


546 R. Achilles and M. Manaresi

case (see [18]), one has the analogous result for complex analytic surfaces in C
n. Both

in the projective and in the complex analytic case, the stratifying function g(x) can be
calculated by computer algebra systems—see our examples in § 4.

Van Gastel conjectured that for hypersurfaces in P
n or C

n, the pointwise degree g(x) of
the intersection cycle of a suitable multiple self-intersection should also give the canonical
Whitney stratification. However, we were not able to prove that the g-constant strata
are smooth. Hence we conclude our paper with some examples and open problems.

Notation 1.1. We denote the n-dimensional projective space over a field K by P
n
K . If

not explicitly stated to the contrary, our base field will always be the field of complex num-
bers and we simply write P

n. By a variety or subvariety of P
n
K we mean a closed reduced

(but possibly reducible) equidimensional subscheme of P
n
K without embedded compo-

nents. A surface is a 2-dimensional variety and a hypersurface an (n − 1)-dimensional
variety. The multiplicity of a scheme X at a point x, i.e. the multiplicity of the local ring
OX,x, will be denoted by mx(X) = ex(X) = e(OX,x). Finally, Xreg stands for the set of
closed points x of X such that OX,x is a regular local ring, and Sing X is the complement
of Xreg in the set of closed points of X.

2. Polar multiplicities and Whitney stratifications

Definition 2.1. Let X ⊂ P
n be a d-dimensional subvariety, with 0 � d � n − 1, and

for each 0 � k � d let L(k) be an (n − d + k − 2)-dimensional linear subspace of P
n. The

polar variety (or polar locus) P (L(k), X) of X associated with L(k) is the closure of

{x ∈ Xreg | dim(TxX ∩ L(k)) � k − 1}.

If n−d+k −2 = −1 we set P (L(k), X) = X and L(k) = ∅. This happens only in the case
k = 0 and d = n − 1.

Remark 2.2. If L(k) is a generic linear subspace of P
n, then the polar variety

P (L(k), X) is either empty or equidimensional of codimension k in X, and its degree
does not depend upon L(k) (see, for example, [16, Proposition 1.2 and the Transversality
Lemma 1.3]).

Notation 2.3. For L(k) generic we set Pk(X) := P (L(k), X) and call it the general
k-polar variety (or k-polar locus of X).

If
L : L(0) ⊂ L(1) ⊂ · · · ⊂ L(d)

is a generic flag of linear subspaces of P
n with dimL(k) = n − d + k − 2, then we have

the following inclusion of the corresponding polar varieties

X = P0(X) ⊃ P1(X) ⊃ · · · ⊃ Pd(X).

If x ∈ X, we can consider the sequence of multiplicities

MX,x(L) = (mx(P0(X)), . . . , mx(Pd−1(X))).
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This sequence does not depend upon the choice of the general flag L (see [17, IV 3.1,
p. 425]), and is in fact constant on a Zariski open subset of the variety of flags. The
number mx(Pk(X)), for k = 0, . . . , d − 1, is called the general k-polar multiplicity of X

at x. Note that mx(Pd(X)) = 0, since the germ of Pd(X) at the point x is empty
(see [17, IV 3.3]).

Remark 2.4. The polar varieties Pk(X) arise as sets of critical points of generic linear
projections (see [13, (2.2.3), pp. 462, 463] or [17, p. 314]).

We recall the definition of a critical point of a differentiable map.

Definition 2.5. Let f : M → N be a differentiable map. A point x ∈ M is called a
critical point of f if the rank of the tangent map

f∗x : TxM → Tf(x)N

is smaller than the maximal possible one, that is,

rank f∗x < min(dimx M, dimf(x) N).

Remark 2.6. Maintaining the notation of Definition 2.1 and Remark 2.4, we observe
that the k-polar variety P (L(k), X) is the closure of the set of critical points of the
restriction to X of the linear projection on P

d−k+1 with centre L(k). If dimL(k) = −1,
that is, if d = n − 1 and k = 0, we can consider the affine cones X̂ of X and L̂(0) = {0}
of L(0) = ∅ in A

n+1 and take the linear projection X̂ \ {0} → A
n. The closure of the set

of critical points of this map is X̂; in this sense, P0(X) = X can also be regarded as a
set of critical points.

Definition 2.7. Let X be d-dimensional complex projective variety and let Y be
a non-singular subvariety of X. We say that the pair (Xreg, Y ) satisfies the Whitney
conditions at a point x0 ∈ Y if for each sequence (xi) of points of Xreg and each sequence
(yi) of points of Y both converging to x0 and such that the limits limxi→x0 TxiX and
limxi,yi→x0 xiyi exist in the Grassmannians G(d, n) and G(1, n), respectively, one has

(a) limxi→x0 TxiX ⊃ Tx0Y ; and

(b) limxi→x0 Txi
X ⊃ limxi,yi→x0xiyi.

We remark that (b) implies (a).

Theorem 2.8 (Teissier [17]). With the above notation, the pair (Xreg, Y ) satisfies
the Whitney conditions in x0 if and only if the sequence of polar multiplicities

my(X), my(P1(X)), . . . , my(Pd−1(X))

is locally constant in Y around x0.

Definition 2.9. With the above notation, a Whitney stratification of X is given by a
filtration of X by algebraic sets Fi

X = F0 ⊇ F1 ⊇ · · · ⊇ Fd+1 = ∅

with the following properties.
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(i) For each i = 0, . . . , d, the locally closed subset Fi \Fi+1 is either empty or is a non-
singular quasi-projective variety of pure codimension i. (The connected components
of Fi \ Fi+1 (i = 0, . . . , d) are called the strata of the stratification.)

(ii) Whenever Sj and Sk are connected components of Fi \ Fi+1 and Fl \ Fl+1, respec-
tively (i, l = 0, . . . , d), with Sj ⊂ S̄k, then the pair (Sk, Sj) satisfies the Whitney
conditions (a) and (b).

Remark 2.10. In the case of a (reduced) surface X ⊂ P
n, the above Theorem 2.8 of

Teissier implies that a Whitney stratification of X can be obtained as follows. Set F0 = X,
F1 = Sing X (the singular locus of X), and, if F1,1, . . . , F1,m are the 1-dimensional
irreducible components of F1, set

F2 = Sing F1 ∪ {0-dimensional components of F1}

∪
m⋃

j=1

{x ∈ F1,j | (mx(X), mx(P1(X))) is different from its generic value in F1,j}

and F3 = ∅. This is the so-called canonical Whitney stratification, which is characterized
by the fact that the connected components of the differences Fi \ Fi+1 are the strata of
the minimal or coarsest Whitney stratification (see [17, Chapter 6]).

3. Intersection cycle of Stückrad and Vogel

Let X, Y be equidimensional closed subschemes of P
n
K = Proj(K[X0, . . . , Xn]), where K

is an arbitrary field. For indeterminates Uij (0 � i, j � n) let L be the pure transcendental
field extension K(Uij)0�i, j�n and XL := X ⊗K L, etc. Proving a Bezout Theorem
for improper intersections, Stückrad and Vogel (see [8]) introduced a cycle v(X, Y ) =
v0 + · · · + vn+1 on XL ∩ YL, which is obtained by an intersection algorithm on the ruled
join variety

J := J(XL, YL) ⊂ P
2n+1
L = Proj(L[X0, . . . , Xn, Y0, . . . , Yn])

as follows.
Let ∆ be the ‘diagonal’ subspace of P

2n+1
L given by the equations

X0 − Y0 = · · · = Xn − Yn = 0,

let Hi ⊆ J be the divisor given by the equation

�i :=
n∑

j=0

Uij(Xj − Yj) = 0,

and set �
¯

:= (�0, . . . , �n). Then one defines cycles βk and vk inductively by setting β0 :=
[J ]. If βk is already defined, decompose the intersection

βk ∩ Hk = vk+1 + βk+1 (0 � k � dim J),
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where the support of vk+1 lies in ∆ and where no component of βk+1 is contained in ∆. It
follows that vk is a (dim J − k)-cycle on XL ∩YL

∼= J ∩∆. The part of dimension k of the
cycle v(X, Y ) := v(�

¯
, J) :=

∑
vk will be denoted by vk, so that the upper index denotes

the codimension in the ruled join and the lower one the dimension of the cycle. In general,
the cycle v(X, Y ) is defined over L. By a result of van Gastel [19, Proposition 3.9], a
K-rational irreducible subvariety C of XL ∩ YL occurs in v(X, Y ) if and only if C is a
distinguished variety of the intersection of X and Y in the sense of Fulton [9, p. 95], and
this is equivalent to the maximality of the analytic spread (see [2]) or the maximality of
the dimension of the so-called limit of join variety (see [7]).

Definition 3.1 (2.2.1 in [8]). The cycle v(X, Y ) is called the v-cycle of the intersec-
tion of X and Y . An irreducible subvariety C of XL ∩ YL is said to be a characteristic
subvariety if C occurs in v(X, Y ). The coefficient of C in v(X, Y ) is denoted by j(X, Y ; C).
Thus

v(X, Y ) =
∑
C

j(X, Y ; C)[C],

where C runs through the characteristic subvarieties. The set of all these subvarieties is
denoted by C = C(X, Y ). Moreover, the set of all elements of C which are defined over
K is denoted by Crat = Crat(X, Y ), that is, Crat is the set of K-rational or distinguished
or fixed subvarieties and C \ Crat is the set of the so-called non K-rational or movable
subvarieties of the intersection of X and Y .

Remark 3.2. The Stückrad–Vogel intersection cycle can also be constructed in the
same way for more than two equidimensional closed subschemes X1, . . . , Xr ⊆ P

n
K by

applying the intersection algorithm to the join variety J(X1, . . . , Xr) ⊆ P
N , N := r(n +

1)−1, and generic hyperplanes H0, . . . , HN−n−1 ⊂ P
N whose intersection is the diagonal

∆ ⊂ P
N (see, for example, [8, Remark 2.2.14]). The resulting cycle will be denoted

by v(X1, . . . , Xr).
We observe that for improper intersections the associativity law does not hold, that

is, in general, v(X1, v(X2, X3)) �= v(v(X1, X2), X3) and both of these cycles may be also
different from v(X1, X2, X3) (see [8, Example 2.2.15]). In § 4 we will compare the cycles
v(X, X, X) and v(v(X, X), X).

In the case of a self-intersection, we define inductively

X(1) := X and X(m) := v(X(m−1), X),

and we will see that on the smooth locus of X this cycle is composed of polar varieties
(see Proposition 3.5 below). In order to prove this proposition, we need the following
definition and result from [6].

Definition 3.3 (Definitions 3.5 and 4.1 in [6]). The map

p := (�0 : · · · : �r) : P
n
L ��� P

r
L

is called the rth generic linear projection.
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The set

Sm(X, Y ) := {x ∈ X ∩ Y | X, Y and X ∩ Y are smooth at x}

is called the smooth locus of the pair (X, Y ).

Theorem 3.4 (Theorem 4.6 in [6]). Let X, Y ⊆ P
n be algebraic varieties of dimen-

sion d and e, respectively. Let t be an integer such that 0 � t � dim X ∩ Y − 1 and
n � d + e − t − 1. Let p : XL ∪ YL → P

d+e−t−1
L be the generic linear projection and

R(p) = R(p, XL, YL) its ramification locus. Then dim R(p) � t, and the associated t-cycle
[R(p)]t is just vt(X, Y ) on Sm(XL, YL).

We observe that in a projective space over an infinite field K the Stückrad–Vogel
intersection cycle can be constructed also with elements uij from K instead of indeter-
minates Uij . It is sufficient to choose these elements such that the linear forms �i avoid
a finite number of certain prime ideals (see [3] for the precise conditions). The above
results remain valid if we specialize the indeterminates Uij to generic elements uij in K.

Proposition 3.5. Let X ⊂ P
n be a hypersurface (reduced and equidimensional with-

out embedded components). Define inductively X(1) := X and X(m) := v(X(m−1), X).
Then

X(m) =
m−1∑
k=0

(
m − 1

k

)
[Pk(X)] + wm, 2 � m � n,

where the support of wm is contained in the singular locus of X.

Proof. For m = 2 the result follows immediately from Theorem 3.4, with t = n − 2
and d = e = n − 1, and Remark 2.4 with k = 1 (since [P0(X)] = [X]). By induction
assume m � 3 and that

X(m−1) =
m−2∑
k=0

(
m − 2

k

)
[Pk(X)] + wm−1.

Hence by the linearity of the Stückrad–Vogel cycle

X(m) = v(X(m−1), X) =
m−2∑
k=0

(
m − 2

k

)
v(X, Pk(X)) + v(X, wm−1).

Observe that the support of v(X, wm−1) is contained in the singular locus of X. Now, if
Pk(X) �= ∅,

v(X, Pk(X)) = [Pk(X)] + vn−k−2(X, Pk(X))

(see [8, Remark 2.2.7.(2)]). Moreover, again by Remark 2.4 and Theorem 3.4 in the non-
trivial case where Pk(X) �= ∅, with t = n − k − 2, d = n − 1 and e = n − 1 − k, noting
that Pk(X) ⊆ X,

v(X, Pk(X)) = [Pk(X)] + [Pk+1(X)] + w̃k,
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where w̃k is supported by the singular locus of X. Then we obtain

X(m) =
m−2∑
k=0

(
m − 2

k

)
([Pk(X)] + [Pk+1(X)]) + wm,

and an easy computation gives the result. �

For an arbitrary irreducible subvariety Z ⊆ XL ∩ YL ⊂ P
n
L we set Z∆ := J(Z, Z) ∩ ∆.

By Ĵ and Ẑ∆ we denote the affine cones of the ruled join

J := J(XL, YL) ⊂ P
2n+1
L

and Z∆ in the affine space A
2n+2
L . Let (A,m) be the local ring OĴ,Ẑ∆

and let I ⊂ A be
the ideal of the diagonal subspace ∆ and let G(X, Y ; Z) denote the associated graded
ring

GI(A) =
∞⊕

j=0

Ij/Ij+1.

If Z is the empty subvariety of P
n, then A becomes the homogeneous ring of coordinates

of the ruled join J ⊂ P
2n+1
L localized at the irrelevant maximal ideal; that is, we obtain

a global picture of the intersection algorithm. Let e(B) denote the multiplicity of a local
ring (or graded ring) B with respect to its unique maximal (or homogeneous maximal)
ideal. Finally, we denote by

ck := ck(I, A) := ck(Gm(GI(A))) (0 � k � dim A =: d)

the generalized Samuel multiplicities of the ideal I ⊂ A, which are defined by the leading
coefficients of the Hilbert polynomial belonging to the twofold sum transform of the
Hilbert function of the bigraded ring R = ⊕∞

i,j=0Rij with

Rij = Gi
m(Gj

I(A)) = (miIj + Ij+1)/(mi+1Ij + Ij+1)

(see [4, Definition 2.2]).

Proposition 3.6 (Proposition 2.5, Corollary 4.2 and Corollary 4.4 in [4]).
With the preceding notation,

e(G(X, Y ; Z)) = e(GI(A)) =
∑
C

j(X, Y ; C)e(OC,Z) =
d∑

k=0

ck(I, A),

where C runs through the characteristic subvarieties of X and Y with C ⊇ Z.
If Z = ∅, then d = dimA = dimJ + 1,

c0 = j(X, Y ; ∅), c1 = deg v0, c2 = deg v1, . . . , cd = deg vd−1,

and if k > dim(X ∩ Y ) + 1, then ck = 0.

https://doi.org/10.1017/S0013091503000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000026


552 R. Achilles and M. Manaresi

If Z �= ∅ is K-rational, then d = dimA = dimJ − dim Z and

ck =
∑
C

j(X, Y ; C)e(OC,Z) (0 � k � d),

where C runs through all varieties of C(X, Y ) with C ⊇ Z and codimC Z = k. If k >

dim(X ∩ Y ) − dim Z, then ck = 0.

Remark 3.7 (analytic case). In the paper [18], Tworzewski has constructed an
intersection cycle of complex analytic subsets X and Y of a manifold M which do not
necessarily intersect properly. His construction is based on a pointwise defined intersec-
tion multiplicity g(x) = g(X × Y, ∆M , x) for a point x ∈ ∆M , where ∆M is the diagonal
of M × M and g(x) is the sum of the coordinates of the so-called extended index of
intersection g̃(x) (see [18, Definition (4.2), p. 185]).

Let A = OX×Y,x and I = I∆M
OX×Y,x. Nowak [14, 15] (see also [5]) has recently

proved that g(x) = e(GI(A)) and that g̃(X) is composed of the generalized Samuel
multiplicities c0(I, A), . . . , cdim(X∩Y )(I, A) and of zeros.

In the analytic case, the Segre numbers of an ideal I introduced by Gaffney and Gassler
[10] are also special cases of the generalized Samuel multiplicities ck(I, A) (see [5]).

4. Self-intersection and Whitney stratification

If one wants to use the Stückrad–Vogel intersection cycle of a self-intersection of a surface
X in P

3 for the construction of a Whitney stratification of X, then it seems to be natural
to consider v(X, X, X) or v(v(X, X), X) rather than v(X, X), since the latter cycle cannot
have a 0-dimensional part (see [8, Remark 2.2.7.(2)]).

Van Gastel proposed to use v(X, X, X) and conjectured that

v(X, X, X) = v(v(X, X), X)

(up to a field extension or up to rational equivalence). Such an associativity formula
would then allow an application of Proposition 3.5. Unfortunately, the associativity law
does not hold. Flenner suggested to us the following example from [8, Example 2.2.15]
in order to show that in general v(X, X, X) �= v(v(X, X), X).

Example 4.1. Consider the configuration of two lines V1, V2 and of a conic V3 in the
projective plane (Figure 1).

Let Xi be the cone over Vi with common vertex C in P
3 and denote by LP , LQ the

lines PC and QC, respectively. We want to calculate the twofold self-intersections of the
surface

X := X1 ∪ X2 ∪ X3 ⊂ P
3 = Proj(C[x, y, z, w]),

which is given by the equation xy(yz − x2) = 0. Obviously,

v(X1, X1) = X1, v(X1, X2) = LP , v(X2, X2) = X2,

v(X2, X3) = LP + LQ and v(X3, X3) = X3 + L1 + L2,
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Q
V2

V3

V1P

.

.
Figure 1. Comparison of threefold self-intersections.

where L1 and L2 are movable lines on the cone X3 passing through the vertex C. Hence

v(X1, Li) = C, v(X2, Li) = C, v(X3, Li) = Li + C.

Furthermore,

v(X1, LP ) = LP , v(X1, LQ) = C, v(X2, LP ) = LP ,

v(X2, LQ) = LQ, v(X3, LP ) = LP + C, v(X3, LQ) = LQ + C.

Using the bilinearity of the Stückrad–Vogel cycle we get

v(v(X, X), X) = X1 + X2 + X3 + 32LP + 6LQ + L1 + · · · + L4 + 18C,

where L3 and L4 are two further movable lines on X3 going through C. The calculation
of v(X, X, X) is more difficult. Again by the bilinearity of the cycle, we have to sum up
27 cycles vijk := v(Xi, Xj , Xk), which by symmetry can be grouped as follows:

v123 = v132 = v213 = v231 = v312 = v321 = LP + C,

v112 = v121 = v211 = v122 = v212 = v221 = LP ,

v113 = v131 = v311 = 2LP ,

v133 = v313 = v331 = 2LP + 2C,

v223 = v232 = v322 = LP + LQ,

v233 = v323 = v332 = LP + LQ + 2C

v111 = X1 and v222 = X2,

v333 = X3 + L1 + · · · + L4 + 2C,

where L1, . . . , L4 are again movable lines as before. It follows that

v(X, X, X) = X1 + X2 + X3 + 30LP + 6LQ + L1 + · · · + L4 + 20C.

This time the contribution of the vertex C is higher by 2, but that of the line LP smaller
by 2 so that we have of course the same Bezout number 64.
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Surprisingly, it turns out that neither v(X, X, X) nor v(v(X, X), X) is needed in order
to get a Whitney stratification of the surface X. As we will see in the next theorem, it
is sufficient to consider the self-intersection v(X, X) and to take its local degree g(x) as
a stratifying function.

Theorem 4.2. Let X ⊂ P
n be a (reduced) surface, x ∈ X be a closed point and

g : X → N be the map defined by g(x) = e(G(X, X; x)). Then

Xj := {x ∈ X | g(x) � j}, j = 0, 1, . . . ,

are closed subschemes of X or empty, and the connected components of

Sg(j) := g−1(j) = Xj \ Xj+1

are the strata of a Whitney stratification of X (the coarsest one if n = 3).

Proof. At first we will show that Xj is closed. In fact, given a closed point x ∈ X \Xj ,
we will construct a Zariski open subset U of X containing x such that g(y) � g(x) for
each closed point y ∈ U . Let

C(X, X) = {C1, . . . , Cs, Ds+1, . . . , Dt}

be the set of the characteristic subvarieties of the self-intersection of X, and assume that
C1, . . . , Cs pass through x but Ds+1, . . . , Dt do not. By [12, Lemma 2.2] the sets

Di := {y ∈ Ci | e(OCi,y) > e(OCi,x)}, i = 1, . . . , s,

are closed in Ci and hence in X. Then

U := X \
( t⋃

i=1

Di

)

is a Zariski open subset of X containing x such that

g(y) =
s∑

i=1

j(X, X; Ci)e(OCi,y) � g(x) =
s∑

i=1

j(X, X; Ci)e(OCi,x)

for all y ∈ U .
Now we prove that Sg(j) is smooth.
At first we note that g(x) = 1 if and only if X is smooth at x. In fact, g(x) = 1 forces

X to be irreducible at x. Thus g(x) = mx(X) + · · · = 1, which implies mx(X) = 1.
Conversely, the regularity of OX,x implies the regularity of A = OĴ,x̂∆

(see, for example,
[8, Corollary 1.3.15]) and of A/I ∼= OX̂,x̂, where we used our notation introduced before
Proposition 3.6. Hence I is generated by regular parameters, GI(A) is a polynomial ring
over the regular local ring A/I, and g(x) = e(GI(A)) = 1.

If dim(Sing X) = 0, then, by the above consideration, the stratification is given by X

and by the singular points of X. So the strata are smooth.
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If dim(Sing X) = 1, then

v(X, X) = [X] + [P1(X)] +
t∑

k=1

jk[Ck] + eventual 0-dimensional part,

where the Ck (k = 1, . . . , t) are all the 1-dimensional irreducible components of the
singular locus of X counted by their intersection numbers jk (see Proposition 3.5 and [2,
Corollary 2.5]). The 0-dimensional part can only occur if n � 4 (see [8, Remark 2.2.7.(2)]),
and its fixed part (if there is any) is supported on Sing X (see [2, Corollary 2.5]) and its
movable part is [P2(X)]. Note that for a point x ∈ X, g(x) is the degree of v(X, X) at x

(Proposition 3.6):

g(x) = mx(X) + mx(P1(X)) +
t∑

k=1

jkmx(Ck) + j(X, X; x).

Here we have used that mx(P2(X)) = 0 (see the remark at the end of Notation 2.3).
Now consider a point x on a fixed Ck, and call it a general point of Ck if the following
four conditions are satisfied.

(i) x is a smooth point of Ck (equivalently, mx(Ck) = 1) and mx(X) = e(OX,Ck
).

(ii) x �∈ P1(X); that is, mx(P1(X)) = 0.

(iii) x does not belong to Ci with i �= k; that is, mx(Ci) = 0 if i �= k.

(iv) x does not belong to the 0-dimensional part of v(X, X); that is, j(X, X; x) = 0.

In all general points of Ck, the function g takes the same value a := e(OX,Ck
) + jk, but

g(x) will be strictly larger than a if x ∈ Ck is not a general point of Ck. This can be
easily seen from the above description of g(x). For example, if x is a singular point of
Ck, then mx(Ck) = e(OCk,x) > 1. It follows that the 1-dimensional strata are formed
by the general points of Ck (k = 1, . . . , t) and that they are smooth. As in the case
dim(Sing X) = 0, every isolated singular point of X (which could also be in v(X, X) if
n � 4) itself forms a stratum. The 2-dimensional strata, being the connected components
of X \ Sing X, are obviously smooth.

Now we know that Sg(j) := g−1(j) = Xj \ Xj+1 is smooth and that, by construction,
for all x ∈ Xj \ Xj+1 it holds that, following the notation of Proposition 3.5,

g(x) = mx(X) + mx(P1(X)) + mx(w) = j.

Here w denotes the part of v(X, X) whose support is contained in the singular locus of X,
and we have used that, as noted previously, mx(P2(X)) = 0 (which is relevant only if n �
4). By the upper-semicontinuity of the multiplicities mx(· · · ), it follows that both mx(X)
and mx(P1(X)) must be constant on the connected components of Sg(j) and hence, by
Teissier’s result (Theorem 2.8), the connected components of Sg(j) are the strata of a
Whitney stratification of X. Moreover, if n = 3, we have then obtained the coarsest
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(0,3,2)

(0,2,2)

(0,0,1)

x
y

z

. .

.

Figure 2. The g-stratification of the Whitney umbrella.

Whitney stratification of X. In fact, to get smooth strata,
∑t

k=1 jkmx(Ck) = mx(w)
(for this equality we have used that n = 3) must be constant along each stratum of an
arbitrary Whitney stratification and hence, again by Theorem 2.8, g(x) must be constant,
which is the condition used to construct our stratification. This finishes the proof. �

One is tempted to ask whether a Whitney stratification of a surface X can be obtained
by other stratifying functions coming from self-intersections. Of course, by Remark 3.2,
one could also consider the cycles v(X, X, X) and v(v(X, X), X) and take again their
pointwise degree as stratifying functions to obtain what we call the g-stratifications of X

by v(X, X, X) and v(v(X, X), X), respectively. Or one could stratify X by the pointwise
degree of the fixed part only of v(X, X), v(X, X, X) and v(v(X, X), X), getting stratifi-
cations which we call the distinguished stratifications of X by v(X, X), v(X, X, X) and
v(v(X, X), X), respectively.

The complete comparison of the g-stratifications and of the distinguished stratifications
by v(X, X), v(X, X, X) and v(v(X, X), X) is still open. In particular, it is not known
if the distinguished stratification by v(X, X, X) coincides with the g-stratification by
v(X, X, X), but an example from Teissier [17, p. 315] shows that for v(X, X) the two
stratifications may differ and that the distinguished one does not need to be a Whitney
stratification.

Example 4.3 (Teissier). Consider the hypersurface X ⊂ C
3 with the defining equa-

tion y2 − x3 − z2x2 = 0: see Figure 2.
The singular locus of X is the z-axis, which is the only distinguished subvariety (except

the whole surface X). So the distinguished stratification has only two strata and hence
is not a Whitney stratification (see [17, p. 315]). In order to find the g-stratification of
the preceding theorem, we calculate the generalized Samuel multiplicities

(c0(I, A), c1(I, A), c2(I, A))

for A := OX×X,a (a ∈ X, and X is considered to be diagonally embedded in X × X)
and I = I∆A. This can be done by using the computer program Cali [11], a Reduce

package for commutative algebra, together with the script [1] written by Aliffi and the
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first author. We obtain (0, 3, 2) if the point a ∈ X is the origin, (0, 2, 2) for a on the z-axis
but different from the origin, and (0, 0, 1) for all smooth points a of X (see Figure 2).
Note that g(a) = c0(I, A)+c1(I, A)+c2(I, A). Therefore, we have three strata: the origin
with g = 5 (which is not a stratum in the distinguished stratification); the z-axis except
the origin with g = 4; and Xreg with g = 1.

In a similar way one finds the canonical Whitney stratification of the projective closure
X̄ of X in P

3 = Proj(C[t, x, y, z]). The singular locus of X̄ consists of the two lines
L1 : x = y = 0 and L2 : t = x = 0, which intersect at the point P3 = (0, 0, 0, 1). To
construct a Whitney stratification, the points P1 = (1, 0, 0, 0) and P2 = (0, 0, 1, 0) are
also needed. The canonical Whitney stratification of X̄ has the following six strata: X̄reg

with g = 1, L1 \ (P1 ∪ P3) and L2 \ (P2 ∪ P3) with g = 4, the point P1 with g = 5, and
the points P3 and P2 with g = 6.

In the following example we study a surface X whose g-stratification by v(X, X) is
different from its distinguished stratification by v(v(X, X), X).

Example 4.4. Let X ⊂ C
3 be the union of the plane X1 with defining equation

z = 0 and the non-singular surface X2 with defining equation z − x3 + y2 = 0. Then
the singular locus of X is the cuspidal plane curve C := X1 ∩ X2 with cusp point O. By
the bilinearity of the Stückrad–Vogel cycle we get easily v(X, X) = X1 + X2 + 2C + P ,
where P is a (movable) polar curve of X2 that can be moved away from O. Using again
the bilinearity we find v(X, v(X, X)), and since O is a smooth point both of X1 and X2

and is not lying on a general polar curve P , the point O will not appear in the cycle
v(X, v(X, X)). But the point O is a singular point of C = Sing X and hence the function
g(x) = mx(X1) + mx(X2) + 2mx(C) (see v(X, X) above), being 1 on X \ C and 4 on
C \ O, has in O the value 1 + 1 + 2mx(C) = 6.

Let X be a hypersurface in P
n and consider the g-stratifications of X coming from

X(n−1) or X(n), respectively. If the g-constant strata were smooth, then one could gen-
eralize Theorem 4.2 to X ⊂ P

n, n � 4. Unfortunately, this is not the case, at least for
reducible hypersurfaces. We have the following counterexample.

Example 4.5. Consider the projective closure in P
4 of the hypersurface X ⊂ C

3 which
is defined as the union of the two smooth hypersurfaces X1 : t = 0 and X2 : t+z(z+y2 −
x3) = 0. The singular locus of X is X1∩X2 and consists of the plane S1 : t = z = 0 and the
smooth surface S2 : t = z+y2 −x3 = 0. Note that C := Sing(Sing X) = S1 ∩S2 is a plane
curve with a cusp at the origin. We will see that the stratifying function g is constant
on C and does not jump at the cusp point. To this end we calculate the Stückrad–Vogel
cycle that defines g. Obviously, v(X1, X1) = X1, v(X2, X2) = X2, v(X1, X2) = S1 + S2,
and using the bilinearity of the Stückrad–Vogel cycle we get

v(X, X) = X1 + X2 + 2(S1 + S2), X(3) = v(v(X, X), X) = X1 + X2 + 6(S1 + S2)

and
X(4) = v(X(3), X) = X1 + X2 + 14(S1 + S2).

This implies that g is constant on C, namely 14 if g is defined by X(3) or 30 if it is
defined by X(4).
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We conclude with two open problems.

Problem 4.6. Let X be an irreducible (and reduced) hypersurface in P
n and con-

sider the g-stratification of X by X(n). Are the g-constant strata smooth? A positive
answer would allow us to generalize Theorem 4.2 to such X ⊂ P

n—but see the preceding
counterexample if X is not irreducible.

Problem 4.7. Let X be a (reduced) surface in P
3. Is the distinguished stratification

by v(X, X, X) equal to the g-stratification by v(X, X), that is, to the canonical Whitney
stratification of X?
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12. M. Idà and M. Manaresi, Some remarks on normal flatness and multiplicity in complex
spaces, in Commutative algebra, Trento, 1981, pp. 171–182, Lecture Notes in Pure and
Applied Mathematics, vol. 84 (Dekker, New York, 1983).
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