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Abstract
We propose Rényi information generating function (RIGF) and discuss its properties. A connection between the
RIGF and the diversity index is proposed for discrete-type random variables. The relation between the RIGF and
Shannon entropy of order q> 0 is established and several bounds are obtained. The RIGF of escort distribution
is derived. Furthermore, we introduce the Rényi divergence information generating function (RDIGF) and discuss
its effect under monotone transformations. We present nonparametric and parametric estimators of the RIGF. A
simulation study is carried out and a real data relating to the failure times of electronic components is analyzed. A
comparison study between the nonparametric and parametric estimators is made in terms of the standard deviation,
absolute bias, and mean square error. We have observed superior performance for the newly proposed estimators.
Some applications of the proposed RIGF and RDIGF are provided. For three coherent systems, we calculate the
values of the RIGF and other well-established uncertainty measures, and similar behavior of the RIGF is observed.
Further, a study regarding the usefulness of the RDIGF and RIGF as model selection criteria is conducted. Finally,
three chaotic maps are considered and then used to establish a validation of the proposed information generating
function.

1. Introduction

It is well-known that entropy and divergence measures play a pivotal role in different fields of sci-
ence and technology. For example, in coding theory, Farhadi and Charalambous [7] used the concept
of entropy for robust coding in a class of sources. In statistical mechanics, Kirchanov [24] adopted
generalized entropy to describe quantum dissipative systems. In economics, Rohde [34] made use of
the J-divergence measure to study economic inequality. An important generalization of the Shannon
entropy is the Rényi entropy, which also unifies other entropies like the min-entropy or collision entropy.
Consider two absolutely continuous non-negative random variables X and Y with respective proba-
bility density functions (PDFs) f (·) and g(·). Henceforth, the random variables are considered to be
non-negative and absolutely continuous, unless otherwise stated. The Rényi entropy of X and Rényi
divergence between X and Y are, respectively, given by (see [33])

HU (X) = X(U) log
∫ ∞

0
f U (x)dx and RDU (X, Y) = X∗(U) log

∫ ∞

0
f U (x)g1−U (x)dx, (1.1)
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where X(U) = 1
1−U

, X∗(U) = 1
U−1 , 0 < U < ∞, U ≠ 1. Throughout the paper, “log” is used to denote the

natural logarithm. It can be easily established that when U → 1, the Rényi entropy and Rényi divergence
reduce to the Shannon entropy (see [40]) and Kullback–Leibler (KL)-divergence (see [25]), respectively,
given by

H (X) = −
∫ ∞

0
f (x) log f (x)dx and KL(X, Y) =

∫ ∞

0
f (x) log

f (x)
g(x) dx. (1.2)

In distribution theory, properties like mean, variance, skewness, and kurtosis are extracted using
successive moments of a probability distribution, which are obtained by taking successive derivatives
of the moment-generating function at the origin. Likewise, the information generating functions (IGFs)
for probability distributions are constructed in order to compute many information quantities like the
KL-divergence and Shannon entropy. In Physics and Chemistry, the non-extensive thermodynamics
and chaos theory depend on the IGF, also referred to as the entropic moment. In 1966, Golomb [11]
introduced the IGF and showed that its first-order derivative at 1 yields negative Shannon entropy. For
a random variable X with PDF f (·), the Golomb’s IGF, for W > 0, is defined as

GW (X) =
∫ ∞

0
f W (x)dx. (1.3)

It is clear that GW (X)
��
W=1 = 1 and d

dWGW (X)
��
W=1 = −H (X). Again, for W = 2, the IGF in (1.3) reduces to

the Onicescu’s informational energy (IE) (see [30]), given by

IE(X) =
∫ ∞

0
f 2(x)dx. (1.4)

The IE has many applications in different fields; for example, IE is used as a correlation measure in
systems of atoms and molecules (see [9]), and highly correlated Hylleraas wave functions in the analysis
of the ground state helium (see [31]). Later, motivated by the Golomb’s IGF, Guiasu and Reischer [13]
proposed relative IGF. For random variables X and Y, the relative IGF, for \ > 0, is given by

RI\ (X, Y) =
∫ ∞

0
f \ (x)g1−\ (x)dx.

Apparently, RI\ (X, Y) |\=1 = 1 and d
d\ RI\ (X, Y) |\=1 = KL(X, Y). Recently, the IGFs have been studied

in great detail due to their capability of generating various useful uncertainty and divergence measures.
Kharazmi and Balakrishnan [18] introduced Jensen IGF and IGF for a residual lifetime and discussed

their important properties. Kharazmi and Balakrishnan [19] introduced a generating function for the
generalized Fisher information and established various results using it. Kharazmi and Balakrishnan
[20] proposed cumulative residual IGF and relative cumulative residual IGF. In addition to these, one
may also refer to [17, 21, 23, 41, 42, 44] and [4] for more work on generating functions. Recently, Saha
and Kayal [37] proposed general-weighted IGF and general-weighted relative IGF and developed some
associated results.

Motivated by the usefulness of the previously introduced IGFs as described above, we develop here
some IGFs and explore their properties. We mention that the IGFs with utilities were introduced earlier
by Jain and Srivastava [16] only for discrete cases. In this paper, we mainly focus on the generalized
versions of the IGFs in the continuous framework. The key contributions made here are described below:

• In Section 2, we propose the Rényi information generating function (RIGF) for both discrete and
continuous random variables and discuss various properties. For discrete distributions, a relation
between the RIGF and the Hill number (a diversity index) is obtained. The RIGF is expressed in
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terms of the Shannon entropy of order q> 0. We also obtain a bound for RIGF. The RIGF is then
evaluated for escort distributions.

• In Section 3, we introduced the Rényi divergence information generating function (RDIGF). The
relation between the RDIGF of generalized escort distributions is evaluated, the RDIGF and
RIGF of baseline distributions is then established. Further, the RDIGF is examined under strictly
monotone transformations.

• In Section 4, we propose nonparametric and parametric estimators of the proposed RIGF and IGF
according to [11]. A Monte Carlo simulation study is carried out for both these estimators. Further,
the nonparametric and parametric estimators are compared on the basis of standard deviation (SD),
absolute bias (AB), and mean square error (MSE) for the case of Weibull distribution. A real dataset
is considered and analyzed finally in Section 5.

• Section 6 discusses some applications of the proposed generating functions. The RIGF is stud-
ied for coherent systems. Several properties including bounds are obtained. In particular, three
coherent systems are considered, and then the numerical values of RIGF, IGF, Rényi entropy, and
varentropy are computed for them. It is observed that the proposed measure can be considered as an
alternative uncertainty measure since it has a similar behavior as other well-established information
measures. Further, we have established that the RDIGF and RIGF can be considered as effective
tools for model selection. Furthermore, three chaotic maps, namely, logistic map, Chebyshev map,
and Hénnon map, have been considered for the validation of the proposed IGF. Finally, Section 7
presents some concluding remarks.

Throughout the paper, all the integrations and differentiations involved are assumed to exist.

2. Rényi information generating functions

We propose RIGFs for discrete and continuous random variables and discuss some of their properties.
First, we present RIGF for a discrete random variable. Hereafter, N is used to denote the set of natural
numbers.

Definition 2.1. Suppose X is a discrete random variable taking values xi, for i = 1, . . . , n ∈ N with
PMF P(X = xi) = pi > 0,

∑n
i=1 pi = 1. Then, the RIGF of X is defined as

RU
V (X) = X(U)

(
n∑

i=1
pU

i

)V−1

, 0 < U < ∞, U ≠ 1, V > 0, (2.1)

where X(U) = 1
1−U

.

Clearly, RU
V
(X) |V=1 = X(U) and RU

V
(X) |V=2,U=2 = −∑n

i=1 p2
i = −S, where S is known as the Simpson’s

index (see [12]). We recall that the Simpson’s index is useful in ecology to quantify the biodiversity of
a habitant. In addition, the proposed RIGF given in (2.1) can be connected with the Hill number (see
[15]), which is also an important diversity index employed by many researchers in ecology (see [5, 6,
29]). Consider an ecological community containing up to n distinct species, say xi according to a certain
process X, in which the relative abundance of species i is pi, for i = 1, . . . , n with

∑n
i=1 pi = 1. Then, the

Hill number of order U is defined as

DU (X) =
(

n∑
i=1

pU
i

) 1
1−U

, U > 0, U ≠ 1. (2.2)
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Table 1. The RIGF and Rényi entropy of some discrete distributions.
PMF RIGF Rényi entropy

pi =
1
n , i = 1, 2, . . . , n ∈ N X(U)n(1−U) (V−1) log n

pi = bai, a + b = 1, i = 0, 1, · · · X(U)
(

bU

1−aU

)V−1
X(U) log bU

1−aU

pi =
i−a

q (a) , a > 1; q(a) = ∑∞
i=1 i−a, i = 1, 2, . . . X(U)

(
q (Ua)
qU (a)

)V−1
X(U) log q (Ua)

qU (a)

Thus, from (2.1) and (2.2), we obtain a relation between the RIGF and Hill number of order U as:

RU
V (X) = X(U) (DU)

V−1
X (U) , U > 0, U ≠ 1, V > 0.

Further, the pth-order derivative of RU
V
(X) with respect to V is obtained as

mpRU
V
(X)

mVp = X(U)
(

n∑
i=1

pU
i

)V−1 (
log

n∑
i=1

pU
i

)p

, (2.4)

provided that the sum in (2.4) is convergent. In particular,

mRU
V
(X)

mV

���
V=1

= X(U) log
n∑

i=1
pU

i

is the Rényi entropy of the discrete random variable X in Definition 2.1. Next, we obtain closed-form
expressions of the Rényi entropy for some discrete distributions (see Table 1) using the proposed RIGF
in (2.1). We mention here that the RIGF is a simple tool to obtain the Rényi entropy of probability
distributions.

Next, we introduce the RIGF for a continuous random variable.

Definition 2.2. Let X be a continuous random variable with PDF f (·). Then, for 0 < U < ∞, U ≠

1, V > 0, the RIGF of X is

RU
V (X) = X(U)

(∫ ∞

0
f U (x)dx

)V−1
= X(U)

[
E(f U−1(X))

]V−1 , (2.5)

where X(U) = 1
1−U

.

Note that the integral in (2.5) is convergent. The derivative of (2.5) with respect to V is

mRU
V
(X)

mV
= X(U)

(∫ ∞

0
f U (x)dx

)V−1
log

∫ ∞

0
f U (x)dx,

and consequently, the pth-order derivative of RIGF, also known as the pth entropic moment, is obtained
as

mpRU
V
(X)

mVp = X(U)
(∫ ∞

0
f U (x)dx

)V−1 (
log

∫ ∞

0
f U (x)dx

)p
.

We notice that the RIGF is convex with respect to V for U < 1 and concave for U > 1. Some important
observations of the proposed RIGF are as follows:
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Table 2. The RIGF and Rényi entropy for uniform, exponential, and Weibull distributions. For
convenience, we denote l1 =

U(c−1)+1
c .

PDF RIGF Rényi entropy

f (x) = 1
b−a , x ∈ (a, b) X(U) (b − a) (1−U) (V−1) log (b − a)

f (x) = _e−_x, x ≥ 0, _ > 0 X (U)_(U−1) (V−1)

UV−1 X(U) log( _U−1

U )
f (x) = cxc−1e−xc , x ≥ 0, c > 1 X(U) ( cU−1

Ul1 Γ(l1))V−1 X(U) log( cU−1

Ul1 Γ(l1))

Figure 1. Plots of the RIGFs of uniform distribution (U (a, b)) for x ∈ [0.1, 4], exponential distribution
(Exp(_)) for _ = 1.5, and Weibull (Wei(c)) distribution for c = 1.4, (a) for U = 0.7 and (b) for U = 1.5
in Table 2.

• RU
V
(X)

��
V=1 = X(U);

mRU
V
(X )

mV

���
V=1

= HU (X), where HU (X) is as in (1.1);

• RU
V
(X)

��
V=2,U=2 = −IE(X), where IE(X) is the IE, given in (1.4).

The expressions of the RIGF and Rényi entropy for some continuous distributions are presented
in Table 2. Here, Γ(·) denotes the complete gamma function. To observe the behavior of the RIGF of
different distributions in Table 2 with respect to V, some graphical plots are presented in Figure 1. From
these figures, we notice that they are increasing with respect to V for fixed U. Also, we observe from the
graphs that the RIGF is concave when U = 0.7(< 1) and convex when U = 1.5(> 1).

In the following proposition, we establish that the RIGF is shift independent, that is, it gives equal
significance or weight to the occurrence of every event. We note that the shift-independent measures
play a vital role in different fields, especially in information theory, pattern recognition, and signal
processing. There is a chance of having time delays of signals in communication systems. In order to
check the efficiency of such communication systems, the shift-independent measure is crucial since it
allows to measure the information conveyed in these signals without requiring precise alignment. This
procedure helps one to understand data transmission in different networks in a better way.

Proposition 2.3. Suppose the random variable X has PDF f (·). Then, for a> 0 and b ≥ 0, the RIGF
of Y = aX + b is

RU
V (Y) = a(1−U) (V−1)RU

V (X), U > 0, U ≠ 1, V > 0. (2.6)

Proof. Under the assumption made, the PDF of Y is obtained as g(x) = 1
a f ( x−b

a ), where x ≥ b. Now,
using this PDF in Definition 2.2, the proof follows, and so it is omitted. �
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Remark 2.4. We note that some of the results presented here can be related to the properties of a
variability measure in the sense of [2]. For example, under suitable assumptions, the following properties
hold:

• if X and Y are equal in law, then RU
V
(X) = RU

V
(Y);

• RU
V
(X) > 0 for all V > 0 and 0 < U < 1;

• RU
V
(X + b) = RU

V
(X) for all b ≥ 0;

• RU
V
(aX) = aRU

V
(X) for all a> 0, and U and V such that (1 − U) (V − 1) = 1;

• X ≤disp Y implies RU
V
(X) ≤ RU

V
(Y) (see Part (A) of Proposition 2.10).

In the information theory, it is always of interest to find a connection between a newly proposed
information measure with other well-known information measures. In this regard, we next establish
that the RIGF can be expressed in terms of the Shannon entropy of order q> 0. We recall that for a
continuous random variable X, the Shannon entropy of order q is defined as (see [18])

bq (X) =
∫ ∞

0
f (x) (− log f (x))qdx. (2.7)

Proposition 2.5. Let f (·) be the PDF of a random variable X. Then, for V ≥ 0 and 0 < U < ∞, U ≠ 1,
the RIGF of X can be represented as

RU
V (X) = X(U) ©«

∞∑
q=0

(1 − U)q

q!
bq (X)

ª®¬
V−1

, (2.8)

where bq (X) is as given in (2.7).

Proof. From (2.5), we have

RU
V (X) = X(U)

(
E [e−(1−U) log f (X ) ]

)V−1

= X(U) ©«
∞∑

q=0

(1 − U)q

q!

∫ ∞

0
f (x) (− log f (x))qdxª®¬

V−1

. (2.9)

From (2.9), the result in (2.8) follows directly, which completes the proof of the proposition. �

We now obtain upper and lower bounds for the RIGF. We recall that the bounds are useful to treat
them as estimates when the actual form of the RIGF for distributions is difficult to derive.

Proposition 2.6. Suppose X is a continuous random variable with PDF f (·). Then,

(A) for 0 < U < 1, we have

RU
V (X)


≤ X(U)GUV−U−V+2(X), if 0 < V < 1 and V ≥ 2,
≥ 1

2R
U+1

2
2V−1(X), if V ≥ 1,

≤ 1
2R

U+1
2

2V−1(X), if 0 < V < 1;

(2.10)
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(B) for U > 1, we have

RU
V (X)


≤ X(U)GUV−U−V+2(X), if 1 < V < 2,
≤ 1

2R
U+1

2
2V−1(X), if V ≥ 1,

≥ 1
2R

U+1
2

2V−1(X), if 0 < V < 1,

(2.11)

where GUV−U−V+2(X) =
∫ ∞
0 f UV−U−V+2(x)dx is the IGF of X.

Proof. (A) Let U ∈ (0, 1). Consider a positive real-valued function g(·) such that
∫ ∞
0 g(x)dx = 1. Then,

the generalized Jensen inequality for a convex function k(·) is given by

k

(∫ ∞

0
h(x)g(x)dx

)
≤

∫ ∞

0
k(h(x))g(x)dx, (2.12)

where h(·) is a real-valued function. Set g(x) = f (x), k(x) = xV−1 and h(x) = f U−1(x). For 0 < V < 1
and V ≥ 2, the function k(x) is convex with respect to x. Thus, from (2.12), we have

X(U)
(∫ ∞

0
f U (x)dx

)V−1
≤ X(U)

∫ ∞

0
f UV−U−V+2(x)dx ⇒ RU

V (X) ≤ X(U)GUV−U−V+2(X), (2.13)

which establishes the first inequality in (2.10).
In order to establish the second and third inequalities in (2.10), we require the Cauchy–Schwartz

inequality. It is well-known that, for two real integrable functions h1(x) and h2(x), the Cauchy–Schwartz
inequality is given by (∫ ∞

0
h1(x)h2(x)dx

)2
≤

∫ ∞

0
h2

1(x)dx
∫ ∞

0
h2

2(x)dx. (2.14)

Taking h1(x) = f U
2 (x) and h2(x) = f 1

2 (x) in (2.14), we obtain(∫ ∞

0
f

U+1
2 (x)dx

)2
≤

∫ ∞

0
f U (x)dx. (2.15)

Now, from (2.15), we have for V ≥ 1,

1
2(1 − U+1

2 )

(∫ ∞

0
f

U+1
2 (x)dx

)2(V−1)
≤ X(U)

(∫ ∞

0
f U (x)dx

)V−1
, (2.16)

and for 0 < V < 1,

1
2(1 − U+1

2 )

(∫ ∞

0
f

U+1
2 (x)dx

)2(V−1)
≥ X(U)

(∫ ∞

0
f U (x)dx

)V−1
. (2.17)

The second and third inequalities in (2.10) now follow from (2.16) and (2.17), respectively.
The proof of Part (B) for U > 1 is similar to the proof of Part (A) for different values of V. So, the

proof is omitted for brevity. �

We now present an example to validate the result in Proposition 2.6.
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Figure 2. Graphs of RU
V
(X), 1

2R
U+1

2
2V−1(X) and X(U)Gl (X), for (a) _ = 2, V = 1.5, and U > 1 and (b)

_ = 2, V = 2.5 and U < 1 in Example 2.7.

Example 2.7. Suppose X has an exponential distribution with PDF f (x) = _e−_x, x ≥ 0, _ > 0. Then,

RU
V (X) = X(U)

(
_U−1

U

)V−1

, R
U+1

2
2V−1(X) = X(U)

(
2_ U−1

2

1 + U

)2(V−1)

, and Gl (X) =
_l−1

l
,

where l = UV−U− V+2. In order to check the first two inequalities in (2.11), we have plotted the graphs
of RU

V
(X), 1

2R
U+1

2
2V−1(X) and X(U)Gl (X) in Figure 2 for some choices of _, V, and U.

Suppose X and Y have PDFs f (·) and g(·), respectively. The PDF of the sum of X and Y, say Z = X+Y ,
is

fZ (z) =
∫ z

0
f (x)g(z − x)dx, z ≥ 0.

This is known as the convolution of X and Y. The convolution property is essential in various fields,
particularly in signal processing, image processing, and deep learning. Convolution is used to filter
signals, extract features, and perform operations like smoothing and differentiation in signal processing.
In image processing, it is fundamental in operations like blurring, sharpening, and edge detection. Here,
we study the RIGF for the convolution of two random variables X and Y.

Proposition 2.8. Let f (·) and g(·) be the PDFs of independent random variables X and Y, respectively.
Further, let Z = X + Y . Then, for 0 < U < ∞, U≠ 1,

(A) RU
V
(Z) ≤ RU

V
(X)(GU (Y))V−1, if 0 < V < 1;

(B) RU
V
(Z) ≥ RU

V
(X)(GU (Y))V−1, if V ≥ 1,

where GU (Y) is the IGF of Y.
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Proof. (A) Case I: Consider 0 < V < 1 and 0 < U < 1. From (2.5), applying Jensen’s inequality and
Fubuni’s theorem, we obtain∫ ∞

0
f UZ (z)dz =

∫ ∞

0

(∫ z

0
f (x)g(z − x)dx

)U
dz

≥
∫ ∞

0

(∫ z

0
f U (x)gU (z − x)dx

)
dz

=

∫ ∞

0
f U (x)

(∫ ∞

x
gU (z − x)dz

)
dx

=⇒ X(U)
(∫ ∞

0
f UZ (z)dz

)V−1
≤ X(U)

(∫ ∞

0
f U (x)

(∫ ∞

x
gU (z − x)dz

)
dx

)V−1
. (2.18)

Case II: Consider 0 < V < 1 and U > 1. Here, the proof follows similarly to the Case I. Thus, the result
in Part (A) is proved.

The proof of Part (B) is similar to that of Part (A) and is therefore omitted. �

The following corollary is immediate from Proposition 2.8.

Corollary 2.9. For independent and identically distributed random variables X and Y, with 0 < U < ∞,
U≠ 1, we have

(A) RU
V
(Z) ≤ RU

2V−1(X), if 0 < V < 1,
(B) RU

V
(Z) ≥ RU

2V−1(X), if V ≥ 1.

Numerous fields have benefited from the usefulness of the concept of stochastic orderings, includ-
ing actuarial science, survival analysis, finance, risk theory, nonparametric approaches, and reliability
theory. Suppose X and Y are two random variables with corresponding PDFs f (·) and g(·) and CDFs
F (·) and G(·), respectively. Then, X is less dispersed than Y, denoted by X ≤disp Y , if g(G−1(x)) ≤
f (F−1(x)), for all x ∈ (0, 1). Further, X is said to be smaller than Y in the sense of the usual stochastic
order (denote by X ≤st Y) if F (x) ≥ G(x), for x > 0. For more details, one may refer to [39].

The quantile representation of the RIGF of X is given by

RU
V (X) = X(U)

(∫ 1

0
f U−1(F−1(u))du

)V−1

.

The next proposition deals with the comparisons of RIGFs of two random variables. The sufficient
conditions here depend on the dispersive order and some restrictions of the parameters.

Proposition 2.10. Consider two random variables X and Y such that X ≤disp Y. Then, we have

(A) RU
V
(X) ≤ RU

V
(Y); for {U < 1; V ≥ 1} or {U > 1; V ≥ 1},

(B) RU
V
(X) ≥ RU

V
(Y), for {U < 1; V < 1} or {U > 1; V < 1}.

Proof. (A) Consider the case {U < 1; V ≥ 1}. The proof for the case {U > 1; V ≥ 1} is quite similar.
Under the assumption made, we have

X ≤disp Y =⇒ f (F−1(u)) ≥ g(G−1(u)) =⇒ f U−1(F−1(u)) ≤ gU−1(G−1(u)) (2.19)
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for all u ∈ (0, 1). Thus, from (2.19), we have∫ 1

0
f U−1(F−1(u))du ≤

∫ 1

0
gU−1(G−1(u))du

=⇒ X(U)
(∫ 1

0
f U−1(F−1 (u))du

)V−1

≤ X(U)
(∫ 1

0
gU−1(G−1(u))du

)V−1

,

establishing the required result. The proof for Part (B) is similar and is therefore omitted. �

Let X be a random variable with CDF F (·) and quantile function QX (u), for 0 < u < 1, given by

QX (u) = F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1).

It is well-known that X ≤st Y ⇐⇒ QX (u) ≤ QY (u), u ∈ (0, 1), where QY (·) is the quantile function
of Y . Moreover, we know that if X and Y are such that they have a common finite left end point of their
supports, then X ≤disp Y ⇒ X ≤st Y (see [39]). Next, we consider a convex and increasing function
k(·) and then obtain inequalities between the RIGFs of k(X) and k(Y).

Proposition 2.11. For the random variables X and Y, with X ≤disp Y , let k(·) be convex and strictly
increasing. Then, we have

RU
V (k(X))

{
≥ RU

V
(k(Y)), for {U > 1, V ≤ 1} or {U < 1, V ≥ 1},

≤ RU
V
(k(Y)), for {U > 1, V ≥ 1} or {U < 1, V ≤ 1}.

(2.20)

Proof. Using the PDF of k(X), the RIGF of k(X) can be expressed as

RU
V (k(X)) = X(U)

(∫ 1

0

f U−1(F−1(u))
(k′ (F−1(u)))U−1 dx

)V−1

.

Since k(·) is assumed to be convex and increasing, with the assumption that X ≤disp Y , we obtain

f (F−1(u))
k′ (F−1(u))

≥ g(G−1(u))
k′ (G−1(u))

.

Now, using U > 1 and V ≤ 1, the first inequality in (2.20) follows easily. The inequalities for other
restrictions on U and V can be established similarly. This completes the proof of the proposition. �

Escort distributions are useful in modeling and analyzing complex systems, where traditional prob-
abilistic models fail. They provide a flexible and robust framework for dealing with non-standard
distributions, making them essential in many areas of research and applications. Escort distributions
are also used for the characteristic of chaos and multifractals in statistical physics. Abe [1] showed
quantitatively that it is inappropriate to use the original distribution instead of the escort distribution for
calculating the expectation values of physical quantities in nonextensive statistical mechanics. Suppose
X and Y are two continuous random variables and their PDFs are f (·) and g(·), respectively. Then, the
PDFs of the escort and generalized escort distributions are, respectively, given by

fe,r (x) =
f r (x)∫ ∞

0 f r (x)dx
, x > 0, and gE,r (x) =

f r (x)g1−r (x)∫ ∞
0 f r (x)g1−r (x)dx

, x > 0. (2.21)

In the following proposition, we express the RIGF of the escort distribution in terms of the RIGF of
baseline distribution. The result follows directly from (2.5) and (2.21).
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Table 3. The RDIGF and Rényi divergence for Pareto type-I, exponential, and Lomax distributions.
PDFs RDIGF Rényi divergence

f (x) = c1x−(c1+1) , g(x) = c2x−(c2+1) , x >

1, c1, c2 > 0
X∗ (U)

(
cU1 c1−U

2
Uc1+(1−U)c2

)V−1
X∗ (U) log

(
cU1 c1−U

2
Uc1+(1−U)c2

)
f (x) = _1e−_1x, g(x) = _2e−_2x, x > 0, _1,_2 > 0 X∗ (U)

(
_U

1 _1−U
2

(U−1)_2−U_1

)V−1
X∗ (U) log

(
_U

1 _1−U
2

(U−1)_2−U_1

)
f (x) =

b1
a (1 + x

a )
−(b1+1) , g(x) =

b2
a (1 +

x
a )

−(b2+1) , x > 0, a, b1, b2 > 0
X∗ (U)

(
bU

1 b1−U
2

U(b1−b2 )+b2

)V−1
X∗ (U) log

(
bU

1 b1−U
2

U(b1−b2 )+b2

)

Proposition 2.12. Let X be a continuous random variable with PDF f (·). Then, the RIGF of the escort
random variable of order r can be obtained as

RU
V (Xe,r) =

(1 − Ur)
(1 − U) (1 − r) ×

RUr
V
(X)

Rr
UV−U+1(X)

,

where Xe,r is the escort random variable.

3. Rényi divergence information generating function

We propose an IGF of the Rényi divergence. Suppose X and Y are two continuous random variables
and their PDFs are f (·) and g(·), respectively. Then, the RDIGF is given by

RDU
V (X, Y) = X∗(U)

(∫ ∞

0

(
f (x)
g(x)

)U
g(x)dx

)V−1

= X∗(U)
(
Eg

[
f (X)
g(X)

] U)V−1

. (3.1)

Clearly, the integral in (3.1) exists for 0 < U < ∞ and V > 0. The kth-order derivative of (3.1) with
respect to V is obtained as

mRDU
V
(X, Y)

mVk = X∗(U)
(∫ ∞

0

(
f (x)
g(x)

)U
g(x)dx

)V−1 (
log

∫ ∞

0

(
f (x)
g(x)

)U
g(x)dx

)k

, (3.2)

provided the integral exists. The following observations from (3.1) and (3.2) can be readily made:

• RDU
V
(X, Y) |V=1 = X∗(U); m

mV
RDU

V
(X, Y) |V=1 = RD(X, Y);

• RDU
V
(X, Y) = UX∗(U)RD1−U

V
(Y , X),

where RD(X, Y) is the Rényi divergence between X and Y given in (1.1). In Table 3, we present closed-
form expressions of the RDIGF and Rényi divergence for some continuous distributions. In addition, to
check the behavior of the RDIGFs in Table 3, we plot them in Figure 3. We notice that the RDIGFs are
increasing with respect to V > 0.

The following proposition states that the RDIGF between two random variables X and Y becomes
the RIGF of X if Y follows uniform distribution in [0, 1]. The proof here is omitted since it is
straightforward.

Proposition 3.1. Let X be a continuous random variable and Y be a uniform random variable, i.e.
Y ∼ U (0, 1). Then, the RDIGF of X reduces to the RIGF of X.
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Figure 3. Plots of the RDIGFs of Pareto type-I (PRT) with c1 = 0.8, c2 = 1.5, exponential (Exp) with
_1 = 0.8, _2 = 0.5, and Lomax (LMX) distributions with a = 0.5, b1 = 0.8, and b2 = 0.4 when (a)
U = 0.5 and (b) U = 1.5.

Next, we establish a relation between the RIGF and RDIGF. In this regard, we consider the
generalized escort distribution with PDF as in (2.21).

Proposition 3.2. Let Ye,r , Xe,r be the escort random variables and YE,r be the generalized escort random
variable. Then,

RU
V (YE,r)RDr

UV−U+1(X, Y) = (1 − U)RU
rV−r+1(X)R

U
(1−r) (V−1)+1(Y)RDr

V (Xe,U, Ye,U).

Proof. Using (2.5) and (2.21), we obtain

RU
V (YE,r) = X(U)

©«
∫ ∞

0

f Ur (x)gU(1−r) (x)dx(∫ ∞
0 f r (x)g(1−r) (x)dx

)U ª®®¬
V−1

= X(U)

(∫ ∞
0 f Ur (x)gU(1−r) (x)dx

)V−1

(∫ ∞
0 f r (x)g(1−r) (x)dx

)U(V−1)

= X(U)

(∫ ∞
0 f Ur (x)gU(1−r) (x)dx

)V−1

(r − 1)RDr
UV−U+1(X, Y)

= X(U)

(∫ ∞
0 ( f U (x)∫ ∞

0 f U (x)dx
)r ( gU (x)∫ ∞

0 gU (x)dx
)1−rdx

)V−1
{(

∫ ∞
0 f U (x)dx)r (

∫ ∞
0 gU (x)dx)1−r}V−1

(r − 1)RDr
UV−U+1(X, Y) .

(3.3)

Now, the required result follows easily from (3.3). �

Monotone functions are fundamental in many theoretical and practical applications due to their pre-
dictability, order-preserving nature, and the mathematical simplicity they bring to various problems. In
optimization problems, monotone functions are particularly useful because they simplify the process of
finding maximum or minimum values. In statistics, monotone likelihood ratios are used in hypothesis
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testing and decision theory, where the monotonicity of certain functions ensures the validity of statistical
tests and models. In the following, we discuss the effect of the RDIGF for monotone transformations.

Proposition 3.3. Suppose f (·) and g(·) are the PDFs of X and Y , respectively, and k(·) is a strictly
monotonic, differential, and invertible function. Then,

RDU
V (k(X),k(Y)) =


RDU

V
(X, Y), if k is strictly increasing,

−RDU
V
(X, Y), if k is strictly decreasing.

Proof. The PDFs of k(X) and k(Y) are

fk (x) =
1

|k′ (k−1(x)) |
f (k−1(x)) and gk (x) =

1
|k′ (k−1(x)) |

g(k−1(x)), x ∈
(
k(0),k(∞)

)
,

respectively. Let us first consider k(·) to be strictly increasing. From (3.1), we have

RDU
V (k(X),k(Y)) = X∗(U)

(∫ k (∞)

k (0)
f Uk (x)g1−U

k (x)dx
)V−1

= X∗(U)
(∫ k (∞)

k (0)

f U (k−1(x))g1−U (k−1(x))
k′ (k−1(x))

dx
)V−1

= X∗(U)
(∫ ∞

0
f U (x)g1−U (x)dx

)V−1
.

Hence, RDU
V
(k(X),k(Y)) = RDU

V
(X, Y). We can similarly prove the result for strictly decreasing

function k(·). This completes the proof of the proposition. �

4. Estimation of the RIGF

In this section, we discuss some nonparametric and parametric estimators of the RIGF. A Monte Carlo
simulation study is then carried out for the comparison of these two estimators. A real dataset is also
analyzed for illustrative purposes.

4.1. Nonparametric estimator of the RIGF

We first propose a nonparametric estimator of the RIGF in (2.5) based on the kernel estimator. Denoted
by f̂ (·), the kernel estimator of the PDF f (·) is given by

f̂ (x) = 1
nVn

n∑
i=1

J
(
x − Xi

Vn

)
, (4.1)

where J (·) (≥ 0) is known as kernel and {Vn} is a sequence of real numbers, known as bandwidths,
satisfying Vn → 0 and nVn → 0 for n → 0. For more details, see [35] and [32]. Note that the kernel
J (·) satisfies the following properties:

(a) It is non-negative, i.e. J (x) ≥ 0;
(b)

∫
J (x)dx = 1;

(c) It is symmetric about zero;
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(d) J (·) satisfies the Lipschitz condition.

Thus, based on the kernel estimator, a nonparametric kernel estimator of the RIGF in (2.5) is defined
as

R̂U
V (X) = X(U)

(∫ ∞

0
f̂ U (x)dx

)V−1
, 0 < U < ∞, U ≠ 1, V > 0. (4.2)

Further, a nonparametric kernel estimator of the IGF given in (1.3) is obtained as

ĜU (X) =
∫ ∞

0
f̂ U (x)dx, U > 0. (4.3)

Next, we carry out a Monte Carlo simulation study to examine the performance of the nonparametric
estimators of the RIGF and IGF given in (4.2) and (4.3), respectively. We use Monte Carlo simulation
to generate data from Weibull distribution with shape parameter k > 0 and scale parameter _ > 0 for
different sample sizes. The SD, AB, and MSE of the kernel-based nonparametric estimators of the
RIGF in (4.2) and IGF in (4.3) are then obtained based on 500 replications. Here, we have employed
the Gaussian kernel, given by

k(z) = 1
√

2c
e−

z2
2 , −∞ < z < ∞. (4.4)

The SD, AB, and MSE of the nonparametric estimators R̂U
V
(X) and ĜU (X) are then computed and are

presented for different choices of n, k,_,U, and V in Tables 4 and 5. The software “Mathematica” has
been used for simulational purposes. From Tables 4 and 5, we observe the following:

• The SD, AB, and MSE decrease as the sample size n increases, verifying the consistency of the
proposed estimators;

• The nonparametric estimator of the RIGF performs better than that of the IGF in terms of the SD,
AB, and MSE.

4.2. Parametric estimator of the RIGF

In the previous subsection, we examined the performance of the nonparametric estimators of both RIGF
and IGF. Here, we will focus on the parametric estimation of the RIGF and IGF when the probability
distribution is Weibull. For the Weibull distribution with shape parameter k > 0 and scale parameter
_ > 0, the RIGF and IGF are, respectively, given by

RU
V (X) = X(U)

(∫ ∞

0

{ k
_

( x
_

)k−1
e−( x

_
)k
}U

dx
)V−1

, 0 < U < ∞, U ≠ 1, V > 0, (4.5)

and

GU (X) =
∫ ∞

0

{ k
_

( x
_

)k−1
e−( x

_
)k
}U

dx, U > 0. (4.6)

For the estimation of (4.5) and (4.6), the unknown model parameters k and _ are estimated using the
maximum likelihood method. The maximum likelihood estimators (MLEs) of RIGF in (4.5) and IGF

https://doi.org/10.1017/S0269964825000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825000038


Probability in the Engineering and Informational Sciences 411

Ta
bl

e
4.

C
om

pa
ri

so
n

be
tw

ee
n

th
e

no
np

ar
am

et
ri

c
es

tim
at

or
so

ft
he

IG
F

in
(4

.3
)a

nd
RI

G
F

in
(4

.2
)i

n
te

rm
so

ft
he

AB
,M

SE
,a

nd
SD

fo
rd

iff
er

en
tc

ho
ic

es
of

U
,V

,k
,_

,a
nd

n.
U

n
V
=

1.
1,
_
=

1.
5,

k
=

2
V

n
U
=

0.
3,
_
=

1,
k
=

2

IG
F

R
IG

F
IG

F
R

IG
F

SD
A

B
SD

A
B

SD
A

B
SD

A
B

(M
SE

)
(M

SE
)

(M
SE

)
(M

SE
)

15
0

0.
10

18
9

0.
06

81
2

0.
00

65
9

0.
00

44
8

15
0

0.
07

57
5

0.
04

74
5

0.
02

48
4

0.
01

61
5

(0
.0

15
02

)
(0

.0
00

06
)

(0
.0

07
99

)
(0

.0
00

88
)

0.
3

30
0

0.
07

85
0

0.
05

58
1

0.
00

50
5

0.
00

36
4

0.
4

30
0

0.
05

91
5

0.
04

52
4

0.
01

94
9

0.
01

51
0

(0
.0

09
28

)
(0

.0
00

04
)

(0
.0

05
55

)
(0

.0
00

61
)

50
0

0.
06

86
7

0.
04

70
3

0.
00

44
0

0.
00

30
5

50
0

0.
05

28
3

0.
03

55
7

0.
01

72
3

0.
01

18
2

(0
.0

06
93

)
(0

.0
00

03
)

(0
.0

04
06

)
(0

.0
00

44
)

15
0

0.
01

24
9

0.
00

86
1

0.
00

52
1

0.
00

36
0

15
0

0.
07

73
7

0.
04

82
4

0.
01

92
7

0.
01

23
1

(0
.0

00
23

)
(0

.0
00

04
)

(0
.0

08
31

)
(0

.0
00

52
)

0.
8

30
0

0.
00

86
5

0.
00

50
6

0.
00

36
0

0.
00

21
1

0.
6

30
0

0.
06

29
1

0.
04

28
6

0.
01

54
4

0.
01

07
8

(0
.0

00
10

)
(0

.0
00

02
)

(0
.0

05
79

)
(0

.0
00

35
)

50
0

0.
00

67
8

0.
00

34
4

0.
00

28
1

0.
00

14
3

50
0

0.
05

24
8

0.
04

01
2

0.
01

28
9

0.
00

99
9

(0
.0

00
06

)
(0

.0
00

01
)

(0
.0

04
36

)
(0

.0
00

27
)

(C
on

tin
ue

d)

https://doi.org/10.1017/S0269964825000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825000038


412 S. Saha et al.

Ta
bl

e
4.

(C
on

tin
ue

d.
)

U
n

V
=

1.
1,
_
=

1.
5,

k
=

2
V

n
U
=

0.
3,
_
=

1,
k
=

2

IG
F

R
IG

F
IG

F
R

IG
F

SD
A

B
SD

A
B

SD
A

B
SD

A
B

(M
SE

)
(M

SE
)

(M
SE

)
(M

SE
)

15
0

0.
00

91
6

0.
02

13
6

0.
00

55
8

0.
01

28
8

15
0

0.
07

91
5

0.
04

80
6

0.
00

58
7

0.
00

36
5

(0
.0

00
54

)
(0

.0
00

20
)

(0
.0

08
57

)
(0

.0
00

05
)

1.
2

30
0

0.
00

65
5

0.
01

69
7

0.
00

39
7

0.
01

02
0

0.
9

30
0

0.
06

01
7

0.
04

17
0

0.
00

44
3

0.
00

31
2

(0
.0

00
33

)
(0

.0
00

12
)

(0
.0

05
36

)
(0

.0
00

03
)

50
0

0.
00

49
5

0.
01

44
7

0.
00

29
9

0.
00

86
8

50
0

0.
05

43
0

0.
03

99
5

0.
00

40
0

0.
00

29
8

(0
.0

00
23

)
(0

.0
00

08
)

(0
.0

04
54

)
(0

.0
00

02
)

15
0

0.
01

60
1

0.
02

63
1

0.
00

50
2

0.
00

81
8

15
0

0.
07

67
6

0.
04

36
6

0.
01

35
7

0.
00

78
8

(0
.0

00
95

)
(0

.0
00

09
)

(0
.0

07
80

)
(0

.0
00

25
)

1.
5

30
0

0.
01

08
3

0.
02

10
0

0.
00

33
8

0.
00

64
9

1.
2

30
0

0.
06

11
1

0.
03

89
2

0.
01

07
4

0.
00

69
6

(0
.0

00
56

)
(0

.0
00

05
)

(0
.0

05
25

)
(0

.0
00

16
)

50
0

0.
00

92
1

0.
01

77
9

0.
00

28
6

0.
00

54
8

50
0

0.
05

31
0

0.
03

82
9

0.
00

93
5

0.
00

68
1

(0
.0

00
40

)
(0

.0
00

04
)

(0
.0

04
29

)
(0

.0
00

13
)

15
0

0.
02

04
5

0.
02

76
5

0.
00

47
7

0.
00

63
6

15
0

0.
07

74
0

0.
04

88
5

0.
05

22
0

0.
03

32
5

(0
.0

01
18

)
(0

.0
00

06
)

(0
.0

08
38

)
(0

.0
03

83
)

2.
0

30
0

0.
01

53
9

0.
02

24
4

0.
00

35
3

0.
00

51
1

1.
6

30
0

0.
06

52
8

0.
03

73
0

0.
04

38
7

0.
02

53
3

(0
.0

00
74

)
(0

.0
00

04
)

(0
.0

05
65

)
(0

.0
02

57
)

50
0

0.
01

14
5

0.
01

95
9

0.
00

26
2

0.
00

44
2

50
0

0.
05

50
3

0.
03

50
2

0.
03

70
4

0.
02

37
1

(0
.0

00
51

)
(0

.0
00

03
)

(0
.0

04
25

)
(0

.0
01

93
)

https://doi.org/10.1017/S0269964825000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825000038


Probability in the Engineering and Informational Sciences 413

Ta
bl

e
5.

C
on

tin
ua

tio
n

of
Ta

bl
e

8.
k

n
U
=

0.
3,
V
=

0.
5,
_
=

1
_

n
U
=

0.
3,
V
=

0.
5,

k
=

2

IG
F

R
IG

F
IG

F
R

IG
F

SD
A

B
SD

A
B

SD
A

B
SD

A
B

(M
SE

)
(M

SE
)

(M
SE

)
(M

SE
)

15
0

0.
98

45
4

4.
33

51
6

0.
03

81
4

0.
11

77
4

15
0

0.
07

17
0

0.
04

46
2

0.
02

31
4

0.
01

50
0

(1
9.

76
29

)
(0

.0
15

32
)

(0
.0

07
13

)
(0

.0
00

76
)

0.
5

30
0

0.
78

26
3

3.
95

49
5

0.
02

78
8

0.
10

21
6

0.
9

30
0

0.
05

47
8

0.
03

71
8

0.
01

77
0

0.
01

22
7

(1
6.

25
41

)
(0

.0
11

21
)

(0
.0

04
38

)
(0

.0
00

46
)

50
0

0.
72

23
0

3.
69

86
4

0.
02

41
1

0.
09

29
2

50
0

0.
04

83
0

0.
03

30
8

0.
01

55
2

0.
01

08
5

(1
4.

20
16

)
(0

.0
09

22
)

(0
.0

03
43

)
(0

.0
00

36
)

15
0

0.
34

11
4

0.
90

74
3

0.
03

68
7

0.
08

44
1

15
0

0.
08

68
7

0.
05

43
2

0.
02

09
8

0.
01

34
9

(0
.9

39
81

)
(0

.0
08

48
)

(0
.0

10
50

)
(0

.0
00

62
)

0.
8

30
0

0.
26

95
1

0.
80

97
8

0.
02

77
2

0.
07

30
5

1.
2

30
0

0.
07

16
5

0.
04

23
8

0.
01

69
9

0.
01

04
1

(0
.7

28
38

)
(0

.0
06

10
)

(0
.0

06
93

)
(0

.0
00

40
)

50
0

0.
21

77
2

0.
72

04
5

0.
02

14
6

0.
06

34
4

50
0

0.
05

67
5

0.
03

60
1

0.
01

34
7

0.
00

87
3

(0
.5

66
45

)
(0

.0
04

45
)

(0
.0

04
52

)
(0

.0
00

26
)

(C
on

tin
ue

d)

https://doi.org/10.1017/S0269964825000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825000038


414 S. Saha et al.

Ta
bl

e
5.

(C
on

tin
ue

d.
)

k
n

U
=

0.
3,
V
=

0.
5,
_
=

1
_

n
U
=

0.
3,
V
=

0.
5,

k
=

2

IG
F

R
IG

F
IG

F
R

IG
F

SD
A

B
SD

A
B

SD
A

B
SD

A
B

(M
SE

)
(M

SE
)

(M
SE

)
(M

SE
)

15
0

0.
23

47
5

0.
47

73
1

0.
03

45
7

0.
06

49
8

15
0

0.
10

71
5

0.
06

77
7

0.
01

90
3

0.
01

24
5

(0
.2

82
93

)
(0

.0
05

42
)

(0
.0

16
07

)
(0

.0
00

52
)

1.
0

30
0

0.
17

89
6

0.
40

07
7

0.
02

55
5

0.
05

29
2

1.
6

30
0

0.
08

04
1

0.
05

21
1

0.
01

41
4

0.
00

94
0

(0
.1

92
64

)
(0

.0
03

45
)

(0
.0

09
18

)
(0

.0
00

29
)

50
0

0.
15

19
5

0.
38

03
7

0.
02

14
5

0.
04

96
9

50
0

0.
07

33
4

0.
04

84
5

0.
01

29
4

0.
00

87
0

(0
.1

67
77

)
(0

.0
02

93
)

(0
.0

07
73

)
(0

.0
00

24
)

15
0

0.
11

08
9

0.
15

13
8

0.
02

54
5

0.
03

40
3

15
0

0.
12

28
0

0.
07

07
8

0.
01

72
5

0.
01

03
0

(0
.0

35
21

)
(0

.0
01

81
)

(0
.0

20
09

)
(0

.0
00

40
)

1.
5

30
0

0.
09

53
0

0.
12

62
6

0.
02

15
2

0.
02

80
2

2.
0

30
0

0.
10

03
6

0.
06

67
8

0.
01

40
8

0.
00

95
6

(0
.0

25
02

)
(0

.0
01

25
)

(0
.0

14
53

)
(0

.0
00

29
)

50
0

0.
07

91
9

0.
12

34
6

0.
01

78
0

0.
02

71
7

50
0

0.
08

26
2

0.
06

35
5

0.
01

15
5

0.
00

89
9

(0
.0

21
51

)
(0

.0
01

06
)

(0
.0

10
86

)
(0

.0
00

21
)

15
0

0.
06

08
9

0.
00

06
7

0.
02

08
7

0.
00

03
5

15
0

0.
14

47
9

0.
08

92
2

0.
01

60
8

0.
01

02
5

(0
.0

03
71

)
(0

.0
00

44
)

(0
.0

28
92

)
(0

.0
00

36
)

2.
5

30
0

0.
04

58
0

0.
00

43
4

0.
01

57
3

0.
00

18
3

2.
5

30
0

0.
11

92
1

0.
07

27
6

0.
01

31
6

0.
00

82
6

(0
.0

02
12

)
(0

.0
00

25
)

(0
.0

19
50

)
(0

.0
00

24
)

50
0

0.
03

82
2

0.
00

09
6

0.
01

31
5

0.
00

01
0

50
0

0.
09

86
5

0.
07

26
8

0.
01

09
0

0.
00

81
5

(0
.0

01
46

)
(0

.0
00

17
)

(0
.0

15
01

)
(0

.0
00

19
)

https://doi.org/10.1017/S0269964825000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825000038


Probability in the Engineering and Informational Sciences 415

in (4.6) are then obtained as

R̂U
V (X) = X(U)

(∫ ∞

0

{ k̂
_̂

( x
_̂

) k̂−1
e−( x

_̂
) k̂ }U

dx

)V−1

, 0 < U < ∞, U ≠ 1, V > 0, (4.7)

and

ĜU (X) =
∫ ∞

0

{ k̂
_̂

( x
_̂

) k̂−1
e−( x

_̂
) k̂ }U

dx, U > 0, (4.8)

where k̂ and _̂ are the MLEs of the unknown model parameters k and _, respectively. To obtain the SD,
AB, and MSE values of R̂U

V
(X) in (4.7) and ĜU (X) in (4.8), we carry out a Monte Carlo simulation using

R software with 500 replications. The SD, AB, and MSE values are then obtained for different choices
of parameters U (for fixed V = 1.1, k = 2, and _ = 1.5), V (for fixed U = 0.3, k = 2, and _ = 1), k (for fixed
U = 0.3, V = 0.5, and _ = 1), _ (for fixed U = 0.3, V = 0.5, and k = 2), and sample sizes n = 150, 300, 500.
We have presented the SD, AB, and MSE in Tables 6 and 7. We observe the following:

• The values of the SD, AB, and MSE decrease as the sample size n increases for all cases of the
parameters U, V, k, and _;

• In general, the SD, AB, and MSE values of the parametric estimator of the RIGF are lesser than
those of the IGF, implying a better performance of the estimator of the proposed RIGF than IGF;

• Similar behavior is observed for other choices of the parameters;
• It is observed from Tables 4–7 that the parametric estimator in (4.7) performs better than the non-

parametric estimator in (4.2) based on the values of AB and MSE for Weibull distribution, as one
would expect.

5. Real data analysis

We consider a real dataset related to the failure times (in minutes) of 15 electronic components in an
accelerated life test. The dataset is taken from [26], which is provided in Table 5. For the purpose of
numerical illustration, we use here the Gaussian kernel given in (4.4). Here, we consider four statis-
tical models: exponential (EXP), Weibull, inverse exponential half logistic (IEHL), and log-logistic
(LL) distributions to check the best-fitted model for this dataset. The negative log-likelihood criterion
(− ln L), Akaike-information criterion (AIC), AICc, and Bayesian information criterion (BIC) have all
been used as measures of fit. From Table 9, we notice that the exponential distribution fits the dataset
better than other considered distributions since the values of all the measures are smaller than those
for other distributions, namely, Weibull, IEHL, and LL. The value of the MLE of the unknown model
parameter _ is 0.036279. We have used 500 bootstrap samples with size n= 15 and chose Vn = 0.35 for
computing purposes. The values of AB and MSE for different choices of U (for fixed V = 2.5) and V (for
fixed U = 3.5) are presented in Table 10. We observe that the values of AB and MSE all become smaller
for larger values of n, verifying the consistency of the proposed estimator.

6. Applications

In this section, we discuss some applications of the proposed RIGF. At the end of this section, we
highlight that the newly proposed RIGF can be used as an alternative tool to measure uncertainty. First,
we discuss its application in reliability engineering.
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Table 8. The dataset on failure times (in minutes), of electronic components.

1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.

Table 9. The MLEs, BIC, AICc, AIC, and negative log-likelihood values of some statistical models for
the real dataset in Table 5.
Model Shape Scale -ln L AIC AICc BIC

EXP _̂ = 0.036279 64.7382 131.4765 131.7841 132.1845
Weibull Û = 1.008962 _̂ = 50.68767 67.01285 138.0257 139.0257 139.4418
IEHL Û = 0.69014 _̂ = 0.0099735 70.4478 144.8957 145.8957 146.3118
LL Û = 1.751468 _̂ = 20.82626 173.1330 350.2659 351.1659 351.6820

Table 10. The AB, MSE of the nonparametric estimator of the RIGF, and the value of RU
V
(X) based on

the real dataset in Table 5 for different choices of U (for fixed V = 2.5) and V (for fixed U = 3.5).
U AB RU

V
(X) V AB RU

V
(X)

(V = 2.5) (MSE) (U = 3.5) (MSE)

1.5 0.17419 -0.09050 1.2 0.07171 -0.0593
(0.03660) (0.00552)

1.6 0.17419 -0.04163 1.3 0.05191 -0.02283
(0.01491) (0.00301)

1.7 0.07552 -0.01981 1.4 0.03559 -0.00879
(0.00670) (0.00144)

1.8 0.05011 -0.00967 1.5 0.02193 -0.00339
(0.00303) (0.00056)

1.9 0.03382 -0.00482 1.6 0.01402 -0.00130
(0.00140) (0.00024)

2.0 0.02251 -0.00244 2.0 0.00192 -0.00003
(0.00062) (0.00001)

2.5 0.00359 -0.00010 2.5 0.0001601 -0.0000002
(0.00002) (0.000000007)

3.0 0.000667 -0.000005 3.0 0.0000146 -0.000000002
(0.000001) (0.000000001)

Application in reliability engineering

Coherent systems are essential in both theoretical and practical contexts because they provide a clear
and structured way to analyze, design, and model complex systems. Their predictability, robustness,
and applicability across various fields make them indispensable in ensuring the reliability, safety, and
efficiency of systems in real-world applications. Here, we propose the RIGF of coherent systems and
discuss its properties.

We consider a coherent system with n components and lifetime of the coherent system is denoted
by T. For details of a coherent system, one may refer to [27]. The random lifetimes of n components
of the coherent system are identically distributed (i.d.) with a common CDF and PDF F (·) and f (·),
respectively. The CDF and PDF of T are defined as

FT (x) = q(F (x)) and fT (x) = q′ (F (x))f (x),
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Figure 4. Graphs of the RIGF of parallel system for (a) U = 0.6 and (b) U = 1.5 in Example 6.1. Here,
we have considered a = 0.5, 1.2, 1.5.

respectively, where q : [0, 1] → [0, 1] is the distortion function (see [28]) and q′ ≡ dq
dx . We recall that

the distortion function depends on the structure of a system and the copula of the component lifetimes.
It is an increasing and continuous function with q(0) = 0 and q(1) = 1. Several researchers studied
various information measures for coherent systems. In this direction, readers may refer to [3, 43], [36],
and [38]. The RIGF of T can be expressed as

RU
V (T) = X(U)

( ∫ ∞

0
kU

(
FT (x)

)
dx

)V−1
= X(U)

( ∫ 1

0

kU

(
q(u)

)
f (F−1(u))

du
)V−1

, (6.2)

where kU (u) = f UT (F−1
T (u)), for 0 ≤ u ≤ 1.

Next, we consider an example to obtain the RIGF of a coherent system.

Example 6.1. Suppose X1, X2, and X3 denote the independent lifetimes of the components of a coherent
system. Assume that they all follow power distribution with CDF F (x) = xa, x ∈ [0, 1] and a> 0. We
take a parallel system with lifetime T = X3:3 = max{X1, X2, X3} whose distortion function is q(u) =

u3, 0 ≤ u ≤ 1. Thus, from (6.2), the RIGF of the coherent system, for 0 < U < ∞, U ≠ 1 and V > 0, is
obtained as

RU
V (T) = X(U)

{ (3a)U
1 + 2Ua(a − 1)

}V−1
.

In order to check the behavior of the RIGF of a coherent system with respect to V in Example 6.1,
its graphs are plotted in Figure 4 for different values of a.

Next, we establish a relationship between the RIGF of a coherent system and that of its components.

Proposition 6.2. Suppose T is the lifetime of a coherent system with identically distributed compo-
nents and q(·) is a distortion function. Assume that X is the component lifetime of the coherent system
with CDF and PDF F (·) and f (·), respectively, and kU (u) = f UT (F−1

T (u)), qU (u) = f U (F−1(u)). If
kU (q(u)) ≥ (≤)qU (u) for 0 ≤ u ≤ 1, then

RU
V (T)

{
≥ (≤)RU

V
(X), for {U > 1, V ≤ 1} or {0 < U < 1, V ≥ 1},

≤ (≥)RU
V
(X), for {U > 1, V ≥ 1} or {0 < U < 1, V ≤ 1}.
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Proof. Consider 0 < U < 1, V ≥ 1 and kU (q(u)) ≥ qU (u). Then,

kU (q(u))
f (F−1(u))

≥ qU (u)
f (F−1(u))

⇒ X(U)
( ∫ 1

0

kU (q(u))
f (F−1(u))

du
)V−1

≥ X(U)
( ∫ 1

0

qU (u)
f (F−1(u))

du
)V−1

, (6.3)

from which the result RU
V
(T) ≥ RU

V
(X) follows directly. Proofs for other cases are similar and are

therefore omitted. �

In the following proposition, we establish that two coherent systems are comparable based on the
proposed generating function. The dispersive ordering has been used for this purpose.

Proposition 6.3. Let T1 and T2 be the lifetimes of two different coherent systems with the same structure
and respective identically distributed component lifetimes X1, · · · , Xn and Y1, · · · , Yn with the same
copula. The common CDFs and PDFs for X1, · · · , Xn and Y1, · · · , Yn are FX (·), fX (·) and FY (·), fY (·),
respectively, and kU (u) = f UT (F−1

T (u)), 0 ≤ u ≤ 1. If X ≤disp Y, then

(A) RU
V
(T1) ≤ RU

V
(T2), for {U > 1, V ≤ 1} or {0 < U < 1, V ≥ 1},

(B) RU
V
(T1) ≥ RU

V
(T2), for {U > 1, V ≥ 1} or {0 < U < 1, V ≤ 1}.

Proof. (A) Note that both systems with lifetimes T1 and T2 have a common distortion function q(·),
since the systems have the same structure and the same copula. Under the assumption, we have X ≤disp
Y , which implies fX (F−1

X (u)) ≥ fY (F−1
Y (u)), ∀ 0 ≤ u ≤ 1. Thus,

kU (q(u))
fX (F−1

X (u))
≤ kU (q(u))

fY (F−1
Y (u))

. (6.4)

Hence, the result follows directly from (6.4). Hence the required result.
(B) The proof is quite similar to that of Part (A) and is therefore not presented here. �

Next, we obtain bounds of the RIGF RU
V
(T) in terms of RU

V
(X) when a coherent system has identically

distributed components.

Proposition 6.4. Suppose that T and X are, respectively, the lifetimes of a coherent system and the
component of this coherent system. Further, assume that the coherent system has identically distributed
components with CDF F (·) and PDF f (·), and its distortion function is q(·). Take kU (u) = f UT (F−1

T (u))
and qU (u) = f U (F−1(u)), for 0 ≤ u ≤ 1. Then, we have

(A) b1,URU
V
(X) ≤ RU

V
(T) ≤ b2,URU

V
(X), for {U > 1, V ≤ 1} or {0 < U < 1, V ≥ 1},

(B) b1,URU
V
(X) ≥ RU

V
(T) ≥ b2,URU

V
(X), for {U > 1, V ≥ 1} or {0 < U < 1, V ≤ 1}.

where b1,U =
(
infu∈ (0,1)

kU (q(u) )
qU (u)

)V−1 and b2,U =
(
supu∈ (0,1)

kU (q(u) )
qU (u)

)V−1.
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Proof. (A) From (6.2), we obtain

RU
V (T) = X(U)

( ∫ 1

0

kU

(
q(u)

)
f (F−1 (u))

du
)V−1

= X(U)
( ∫ 1

0

kU (q(u))
qU (u)

× qU (u)
f (F−1(u))

du
)V−1

≤
(

sup
u∈ (0,1)

kU (q(u))
qU (u)

)V−1
× X(U)

( ∫ 1

0

qU (u)
f (F−1(u))

du
)V−1

= b2,URU
V (X).

Hence, the proof of the right-side inequality is completed. The proof of the left-side inequality is similar
and is therefore omitted.

(B) The proof is quite similar to that of Part (A) and is therefore omitted. �

The following proposition shows that the preceding result can be extended to compare two systems
based on the RIGF.

Proposition 6.5. Let T1 and T2 be the lifetimes of two coherent systems with identically distributed
components with distortion functions q1 and q2, respectively. Assume that kU (u) = f UT (F−1

T (u)), for
0 ≤ u ≤ 1. Then,

(A) W1,URU
V
(T1) ≤ RU

V
(T2) ≤ W2,URU

V
(T1), for {U > 1, V ≤ 1} or {0 < U < 1, V ≥ 1},

(B) W1,URU
V
(T1) ≥ RU

V
(T2) ≥ W2,URU

V
(T1), for {U > 1, V ≥ 1} or {0 < U < 1, V ≤ 1},

where W1,U =
(
infu∈ (0,1)

kU (q2 (u) )
kU (q1 (u) )

)V−1 and W2,U =
(
supu∈ (0,1)

kU (q2 (u) )
kU (q1 (u) )

)V−1.

Proof. The proof is similar to that of Proposition 6.4 and is therefore omitted for brevity. �

The following result provides additional bounds of the RIGF of the lifetime of a coherent system
when the PDF is bounded. The proof is simple, and thus it is omitted.

Proposition 6.6. Consider a coherent system as in Proposition 6.4. Let the CDF and PDF of the com-
ponents be F (·) and f (·),respectively, and kU (u) = f UT (F−1

T (u)), for 0 ≤ u ≤ 1, 0 < U < ∞, U ≠ 1
and V > 0.

(A) If f (x) ≤ M, ∀x ∈ S, then RU
V
(T) ≥ (≤) 1

MV−1

( ∫ 1
0 kU (q(u))du

)V−1, for U < (>)1;

(B) If f (x) ≥ L > 0, ∀x ∈ S, then RU
V
(T) ≤ (≥) 1

LV−1

( ∫ 1
0 kU (q(u))du

)V−1, for U < (>)1.

Next, a comparative study is carried out between the proposed RIGF and IGF (according to [11]),
Rényi entropy (according to [33]), and varentropy (according to [10]) for three different coherent sys-
tems with three components. Suppose T and X denote the system’s lifetime and component’s lifetime
with PDFs fT (·) and f (·) and CDFs FT (·) and F (·), respectively. The IGF and Rényi entropy of T are

I (T) =
∫ ∞

0
f UT (x)dx =

∫ 1

0

kU

(
q(u)

)
f (F−1(u))

du, U > 0, (6.5)

and

HU (T) = X(U) log
∫ ∞

0
f UT (x)dx = X(U) log

∫ 1

0

kU

(
q(u)

)
f (F−1(u))

du, U > 0 (≠ 1), (6.6)
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Table 11. The values of the RIGF, IGF, Rényi entropy, and varentropy for the series, 2-out-of-3, and
parallel systems.
System RIGF IGF Rényi entropy Varentropy

Series (X1:3) −4.144032 1.455774 0.7510748 2.940702
2-out-of-3 (X2:3) −4.852534 1.061702 0.1197473 0.194906
Parallel (X3:3) −4.958784 1.016692 0.03310925 0.1111111

where kU (q(u)) = f UT (F−1
T (q(u))), respectively. Further, the varentropy of T is

VE(T) =
∫ ∞

0
fT (x)

(
log fT (x)

)2
dx −

{ ∫ ∞

0
fT (x) log fT (x)dx

}2

=

∫ ∞

0

k1
(
q(u)

)
f (F−1(u))

(
log

k1
(
q(u)

)
f (F−1(u))

)2
dx −

{ ∫ ∞

0

k1
(
q(u)

)
f (F−1(u))

log
k1

(
q(u)

)
f (F−1(u))

dx
}2

, (6.7)

where k1(q(u)) = fT (F−1
T (q(u))). Here, we consider the power distribution with CDF F (x) =

√
x, x >

0, as a baseline distribution (component lifetime) for illustrative purposes. We take three coherent sys-
tems: series system (X1:3), 2-out-of-3 system (X2:3), and parallel system (X3:3) for evaluating the values
of RU

V
(T) in (6.2), I(T) in (6.5), HU (T) in (6.6), and VE(T) in (6.7). The numerical values of the RIGF,

IGF, Rényi entropy, and varentropy for the series, 2-out-of-3, and parallel systems with U = 1.2 and
V = 0.5 are reported in Table 11. As expected, from Table 11, we observe that the uncertainty val-
ues of the series system are maximum; and minimum for parallel systems considering all information
measures, validating the proposed IGF.

RDIGF and RIGF as model selection criteria

Here, we show that the proposed IGFs, RDIGF and RIGF, can be used as model selection criteria. First,
we focus on RDIGF. In this regard, we consider the real dataset, dealing with the failure times (in min-
utes) of electronic components in an accelerated life test, given in Table 5. We conduct a goodness-of-fit
test here. The four statistical models: EXP, Weibull, IEHL, and LL distributions are considered for the
test. The values of the test statistics: -ln L, AIC, AICc, BIC, and MLEs of the unknown model param-
eters are computed and are given in Table 9. From Table 9, we notice that the exponential distribution
fits better than other distributions. The sequence of fitness of the statistical models is EXP, Weibull,
IEHL, and LL distributions according to the values of −ln L, AIC, AICc, and BIC. Now, we obtain the
values of RDIGF between EXP and Weibull (denoted as RDIGF(E, W)), EXP and IEHL (denoted as
RDIGF(E, I)), and EXP and LL (denoted as RDIGF(E, L)). The values of RDIGF are given for different
choices of U and V in Table 12. The sequence of the values of RDIGF observed is

RDIGF(E, W) < RDIGF(E, I) < RDIGF(E, L),

for different choices of U and V, as expected.
Next, we conduct a Monte Carlo simulation study to demonstrate the importance of the RIGF for the

purpose of model selection. First, using R software, we generate 500 exponentially distributed random
variates with _ = 0.5. Then, we compute the RIGF of this dataset under the assumption that the same
set of data comes from

• exponential distribution;
• Weibull distribution;
• Pareto distribution.
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Table 12. The values of RDIGF(E, W), RDIGF(E, I), and RDIGF(E, L), for different choices of U and
V.
U V RDIGF(E,W) RDIGF(E,I) RDIGF(E,L)

0.5 1.5 0.21880 0.95542 0.97536
0.8 1.5 0.06195 0.25422 0.27304
1.5 1.5 0.00419 0.01506 0.01684
2.0 1.5 0.00067 0.00225 0.00250
2.5 1.5 0.00011 0.00035 0.00038
0.7 0.9 0.34505 6.20304 6.28627
0.7 1.2 0.83185 1.52512 1.52816
0.7 1.8 0.01202 0.10296 0.12006
0.7 2.5 0.00016 0.00492 0.00771
0.7 3.5 0.00001 0.00058 0.00116

Table 13. The proportion of the values of the RIGF for exponential, Weibull, and Pareto distributions.

" #
Proportion

(exponential)
Proportion
(Weibull)

Proportion
(Pareto)

0.8 0.7 0.381 0.363 0.256
1.5 0.7 0.513 0.487 0.000
2.0 0.7 0.515 0.485 0.000
0.9 0.9 0.405 0.391 0.204
1.8 0.9 0.514 0.486 0.000
0.7 1.1 0.497 0.494 0.009

For this purpose, the maximum likelihood estimates have been used to calculate the estimated value
of RIGF. This process is repeated 1000 times, and then the favorable proportions in each case have
been counted. The results so obtained are presented in Table 13, from which we observe that proportion
of the RIGF for the exponential model is larger than other proportional values, as expected. From the
tabulated values, we also observe that the Weibull distribution will be the better fitting choice than the
Pareto distribution.

Validation using three chaotic maps

Chaotic maps are mathematical functions that exhibit chaotic behavior, meaning that they are highly
sensitive to initial conditions and can generate complex, seemingly random patterns over time, even
though they are deterministic in nature. There are various chaotic maps such as logistic maps, Chebyshev
maps, and Hénnon maps. These maps are used to model complex, real-world systems that exhibit chaotic
behavior, such as weather systems, financial markets, population dynamics in ecology, and even certain
physiological processes in biology. In signal processing, chaotic maps can be used for tasks such as
compression, encryption, and secure communication. The unpredictability of chaotic signals can help
in masking information and making it harder to intercept or decode. These maps are also used in image
processing, machine learning, and control theory. Here, we have studied the chaotic behavior of the
proposed RIGF for Chebyshev, Hénnon, and logistic maps. Very recently, Kharazmi and Contreras-
Reyes [22] have studied fractional cumulative residual inaccuracy measures in terms of the Chebyshev
and logistic maps.
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Figure 5. (a) The bifurcation diagram of the Chebyshev map in (6.8) and (b) the plots of the RIGF for
the Chebyshev map when s= 0.8 (black) and s= 2.0 (red) with respect to beta (B).

Chebyshev map

The Chebyshev map is defined as

xr+1 = cos(s2 arccos(xr)), r = 1, 2, · · · , n − 1, (6.8)

where xr ∈ [−1, 1] and s> 0. We have considered the initial value x1 = 0.1 and sample size n= 10000.
For 0 < s ≤ 1, we get xr ∈ [0, 1] and xr ∈ [−1, 1] for s> 1.

The bifurcation diagram of the Chebyshev map in (6.8) is presented in Figure 5(a). Using the dataset
with size n= 10000, we have estimated the proposed measure RIGF in (4.2). Based on the data extracted
from the Chebyshev map, two graphs of the RIGF with respect to V are provided in Figure 5(b) for s= 0.8
and 2.0 when U = 0.01. From Figure 5(a), we notice that the chaos for s> 1 is greater than that for s< 1.
From Figure 5(b), we observe that the uncertainty computing via the proposed RIGF for s= 2 (red line)
is greater than that when s= 0.8 (black line) for all V, as we would expect; also, they are equal when
V = 1.

Hénon map

The Hénon map is a discrete-time dynamical system that exhibits chaotic behavior. Note that Michel
Hénon first introduced the map as a simplified version of the Poincaré section of the Lorenz model. The
Hénon map is defined as

xi+1 = yi + 1 − ax2
i ;

yi+1 = bxi, (6.9)

where i = 1, 2, . . . , n − 1, and a, b > 0. For details, one may refer to [14]. Two factors that determine
the map’s dependability are a and b, which for the conventional Hénon map have values of a= 1.4 and
b= 0.3. The Hénon map is chaotic for the classical values. For the other values, the Hénon map may be
chaotic, intermittent, or converge to a periodic orbit.

Here, we take the initial values x1 = 0.1 and y1 = 0.1, sample size n = 10, 000 with b= 0.3 and
U = 0.8. The bifurcation diagram of the Hénnon map is presented in Figure 6(a). The plots of the RIGF
in (4.2) based on the Hénon map have been drawn for a= 1.0 (black line), a= 1.2 (blue line), and a= 1.4
(red line) with fixed parameter value b= 0.3 in Figure 6(b). From Figure 6(a), we observe that the chaos
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Figure 6. (a) Bifurcation diagram of the Hénon map in (6.9) and (b) the plots of the RIGF of Hénon
map for a= 1.4 (red line), a= 1.2 (blue line), and a= 1.0 (black line).

is maximum for a= 1.4. From Figure 6(b), as expected, we get the plots of the RIGF, matching with the
bifurcation diagram in Figure 6(a). We also notice that the chaos for V ∈ [0, 1) is larger than that for
V > 1.

Logistic map

The logistic map used to study the chaotic behavior of a system is defined by

xi+1 = rxi (1 − xi), (6.10)

where i = 1, 2, . . . , n − 1, and 0 ≤ r ≤ 4. For details about this map, see [8]. Here, we consider the
initial value x1 = 0.1 and sample size n = 10, 000 for the study of the chaotic behavior of the proposed
measure RIGF in (4.2). The bifurcation diagram of the logistic map in (6.10) is shown in Figure 7(a).
The plots of the RIGF of the logistic map with respect to V for r = 3.4 (black line), 3.8 (blue line), and
4.0 (red line) are presented in Figure 7(b) for U = 0.01. From 7(b), we observe that the uncertainty for
r = 4 is greater than that for r = 3.4 and 3.8 when V > 1 and they are equal for V = 1, as expected. We
also observe that the RIGF of logistic map decreases when V increases.

7. Concluding comments

In this paper, we have proposed some new IGFs, which produce some well-known information measures,
such as Rényi entropy, Rényi divergence, and Jensen-Rényi divergence measures. We have illustrated
the generating functions with various examples. We have shown that the RIGF is shift-independent.
Various bounds have been obtained as well. Further, the RIGF has been expressed in terms of the
Shannon entropy of order q> 0. We have obtained the RIGF for the escort distribution. It has been
observed that the RDIGF reduces to the RIGF when the random variable Y is uniformly distributed in
the interval (0, 1). The RDIGF has been studied for generalized escort distribution. Further, the effect
of this IGF on monotone transformations has been discussed. A kernel-based nonparametric estimator
and a parametric estimator of the RIGF have been proposed. A Monte Carlo simulation study has been
conducted for both nonparametric and parametric estimators. The performance of the nonparametric as
well as parametric estimators of the proposed RIGF and IGF has been studied based on the SD, AB, and
MSE. Superior performance has been observed for the newly proposed estimator of RIGF. In addition,
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Figure 7. (a) Bifurcation diagram of the logistic map in (6.10) and (b) the plots of the RIGF of logistic
map for r= 4 (red line), r= 3.8 (blue line), and r= 3.4 (black line).

it has been shown that the parametric estimator performs better than the nonparametric estimator of the
RIGF for the case of Weibull distribution, as one would expect. Further, a real dataset on the failure
times (in minutes) of 15 electronic components has been used for illustrative purposes. Few possible
applications of the proposed RIGF and RDIGF have been explored. For three coherent systems, we have
computed the values of the proposed RIGF, IGF, Renyi entropy, and varentropy. It has been observed
that the RIGF has similar behavior with other well-known measures. Further, a study regarding the use-
fulness of the RDIGF and RIGF as model selection criteria has been conducted. Finally, three chaotic
maps have been considered and analyzed to validate the use of the IGFs introduced here.
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