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1. Introduction

For each finite group G, let JfG denote the set of all normal subgroups of the
modular group F = PSL2(Z) with quotient group isomorphic to G; since F is finitely
generated, the number NC = | ^ G | of such subgroups is finite. We shall be mainly
concerned with the case where G is the linear fractional group PSL2(q) over the Galois
field GF(q), in which case we shall write Jf(q) and N(q) for JfG and NG; for q>3,
PSL2(q) is simple, so the elements of -^(q) will be maximal normal subgroups of F.

When q is a prime p, there is one obvious element of ^V(p): for each neN, the
principal congruence subgroup

of level n, is the kernel of the reduction modn from F to PSL2(Zn); this is an
epimorphism, so if we take » to be a prime p we find that T(p)eJrr(p). A natural
question is whether there are any other elements of ^V(q) for any q; it follows from the
normal subgroup structure of PSL2(Zn) (see [6] for instance) that apart from the single
exception F(5)e^i/"(4), arising from the isomorphism PSL2(5) s PSL2(4), any such
element would be a non-congruence subgroup of F, that is, would contain no F(n).

In 1936, Philip Hall [2] published an extension of the Mobius inversion formula
which allows one to calculate NG provided one knows the subgroup structure and the
number of automorphisms of G (indeed, his method also applies to other finitely
generated groups besides F). Hall concentrated mainly on the groups G = PSL2(p),
where p is prime, and showed that N{p)=^p—c) where c is a constant (which he
computed) depending on the congruence class of p mod 120; this result was rediscovered
by Sinkov [9], using a different method, in 1969. In particular, for each prime p ^ 13 we
have Af(p)^2, so that ^V{p) contains a non-congruence subgroup (Newman [7] also
demonstrated the existence of such subgroups in -yT(p) for primes p^37 in 1968).

The techniques used by Newman and Sinkov are specific to quotient groups of type
PSL2, as are those of Macbeath [5] who proved in 1967 that ^(q) is non-empty for
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each prime-power q =£ 9, thus giving further examples of maximal normal subgroups of F
which are non-congruence subgroups. The aim of this note is to show how one can use
Hall's method to strengthen Macbeath's result by explicitly calculating N(q). For
simplicity, we will restrict our attention to the case where q = 2e\ however, the method is
quite general, and indeed Martin Downs (private communication) has calculated N(q)
for odd q.

Theorem. The number N(2e) of normal subgroups of the modular group with quotient
group isomorphic to PSL2(2

e) is

thus N(2)= 1, and N(2e) = (l/e)Yjfn(e/f)2f for all e> 1.

(Here ft is the Mobius function, and Y^s denotes summation over all positive divisors
foU.)

For small e we have the following values:

e

N(2 e)

1

1

2

1

3

2

4

3

5

6

6

9

7

18

8

30

9

56

10

99

11

186

12 ...

335 ...

The theorem implies that N(2e) ^ 1 for all e, so we have:

Corollary. If e^ 1 there is a normal subgroup N^. F with F/JVs PSL2(2
e); if e=\ or

e = 2 then iV = F(2) or N — T(5), but if e^3 each such N is a non-congruence subgroup ofT.

2. Hall's method

We will briefly outline Hall's method [2], restricting attention to the case of quotients
of F; the extension to other finitely generated groups is obvious.

Let G be any finite group; then each epimorphism $:F->G determines an element
N = ker <p e JfG, and every element of JfQ arises in this way. Two epimorphisms <p,
i//:r->G have the same kernel if and only if i]/ = <p°a. for some aeAutG, so NG is the
number of orbits in this action of Aut G on the set of epimorphisms <j>:T-*G.

Now F has a presentation

F=<X,

(see [8]), so if |G|>3 then epimorphisms <j>-.r->G are in one-to-one correspondence with
pairs of elements x = X<f> and y = Y<j> of G such that

(i) x and y have orders 2 and 3 respectively,

(ii) x and y generate G.

https://doi.org/10.1017/S0013091500018010 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018010


THE MODULAR GROUP 99

Let us call {x, y) e G x G a modular pair if it satisfies (i), and a modular generating pair
(for G) if it satisfies (i) and (ii). Then NG is the number of orbits of Aut G in its natural
action on the set ^G of all modular generating pairs for G. Only the identity
automorphism can fix such a pair, so Aut G acts semi-regularly on ^G; hence

Nr=i ^ ,, (2.1)
G |AutG| V

where nG = \^G\ is the number of modular generating pairs for G.

3. Proof of the theorem

We now take G to be the group Ge = PSL2{q), where q = 2e. We write Ne for N(a) = N-
etc. Now Aut Ge = PTL2{q) has order ecoe where (oe = q(q2 — 1) is the order of Ge.

To calculate ne = \Se\, let me be the number of modular pairs in Ge; clearly me = xe8e,
where Te and 6e are the numbers of elements of orders 2 and 3 in Ge. Suppose first that
e is odd. Then xe = q2 — \ and 9e = q2 — q, so

(3.1)

Each modular pair generates a unique subgroup /f of G, and each subgroup H is
generated by «H such pairs, so

Dickson ([1], Chapter XII) lists the subgroups H of Ge, and by inspection the only ones
which can be generated by a modular pair are the subgroups H^GS = PSL2(2

f), where
/ divides e. There are \Ge:Gf\ = atJoif such subgroups for each /, and each of them is
generated by nf = nG modular pairs, so (3.2) becomes

me = E ^ - n r . (3.3)

Combining (3.1) and (3.3), and cancelling iae, we get

;i-2--i. .3.4,

Applying the Mobius inversion formula to this, we deduce that
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In (2.1), we now put nG — ne and |AutG| = ea>e, so that (3.5) gives

If e > 1 then £ r n(e/f) = 0, so

/

When e is even, the only changes are that 0e is now q2 + q, and that Ge has coj\2
subgroups H s A4, each of which can be generated by 24 modular pairs. Thus we must
add 2coe to the right-hand sides of (3.1) and (3.3). However, these extra terms cancel in
(3.4), so the final result is the same as for odd e.

4. Proof of the corollary

If Y,f Ke/f)2f = 0 then by taking the negative terms across to the right-hand side we
obtain two different binary representations of the same integer, which is absurd. Thus
N(2e)j=0 so there exists NeJr(2e). If e=\ or e = 2 then by inspection N = T{2) or N =
F(5), so let e^3 . If N^T(n) for some n, then PSL2(2

e) is a homomorphic image of
PSL2(Zn); however, the only non-abelian composition factors of PSL2(Zn) are the groups
PSL2(p) for primes p ̂  5 dividing n (see [6], [8]), and PSL2(2

e) is not isomorphic to one
of these, as can be seen by comparing orders. Thus N is a non-congruence subgroup.

5. Remarks

1. Hall's method can be applied to quotient groups G of F for which the subgroup
structure is more complicated than that of PSL2(2

e). Let Sf be the set of subgroups
H%.G which have modular generating pairs (that is, nH>0). One defines fiy(H), for each
He?1, by

(5.1)
= 0 if H<G

(the summation being over all K e 91 containing H). If mH and nH are the numbers of
modular pairs and of modular generating pairs in H, then the analogues of (3.2) and
(3.5) are

mG= £ nH (5.2)

and
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(again, both summations are restricted to He£f); this last equation can be verified by
applying (5.1) and (5.2) to the right-hand side. Knowing the subgroup structure of G,
one can calculate Hy(H) and mH for each He^f, and hence determine nG from (5.3);
then (2.1) gives NG. For the general form of Hall's theory, the reader is strongly urged
to read [2].

2. The formula for Af(2e) in the theorem also gives the number of irreducible
polynomials of degree e over GF(2), or equivalently the number of orbits of length e in
the action of the cyclic group Ce on its power-set. It would be interesting to find a
natural parametrization of the elements of JfQe) using these polynomials or orbits.

3. As shown in [3, 4], there is a bijection between triangular maps Ji on orientable
surfaces and conjugacy classes of subgroups M^F; the map Jt is regular if and only if
M is normal, in which case the orientation-preserving automorphism group Aut+ Jt is
isomorphic to F/M. Thus for any finite group G, NG is the number of regular orientable
triangular maps Jt with Aut+Jt^G. For instance, the fact that N(4) = l shows that
there is just one such map with Aut+ Jt ^ FSL2(4); it is, of course, the icosahedron.

Acknowledgement. The author is grateful to the referee for some very helpful
comments.
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