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Abstract
Information generating functions (IGFs) have been of great interest to researchers due to their ability to generate
various information measures. The IGF of an absolutely continuous random variable (see Golomb, S. (1966). The
information generating function of a probability distribution. IEEE Transactions in Information Theory, 12(1),
75–77) depends on its density function. But, there are several models with intractable cumulative distribution
functions, but do have explicit quantile functions. For this reason, in this work, we propose quantile version of the
IGF, and then explore some of its properties. Effect of increasing transformations on it is then studied. Bounds
are also obtained. The proposed generating function is studied especially for escort and generalized escort distri-
butions. Some connections between the quantile-based IGF (Q-IGF) order and well-known stochastic orders are
established. Finally, the proposed Q-IGF is extended for residual and past lifetimes as well. Several examples are
presented through out to illustrate the theoretical results established here. An inferential application of the proposed
methodology is also discussed

1. Introduction

The notion of entropy, especially the Shannon entropy due to [24], has seen a great importance in
many fields. Shannon entropy quantifies the amount of information needed to accurately send and
receive messages in a communication channel. We refer to [24] and [21] for several important prop-
erties and applications of Shannon entropy, and its generalizations. For a random variable (RV) X
with mass function {pi ≥ 0, i = 1, . . . , n}, such that

∑n
i=1 pi = 1, the Shannon entropy is given

by H (X) = −∑n
i=1 pi log pi. For a nonnegative absolutely continuous RV X with probability density

function (PDF) fX, the Shannon entropy (or differential entropy) is analogously given by

S(X) = −
∫ ∞

0
fX (x) log fX (x)dx, (1.1)

which may take values in (−∞,∞). For uniform RV in (0, \), S(X) is negative when \ < 1. In (1.1),
we have considered nonnegative RVs, but for an RV with support (−∞,∞), Shannon entropy can be
defined by changing the limits of integration.

Motivated by the concepts of moment and probability generating functions, Golomb [4] proposed
the information generating function (IGF) of an RV X. For a nonnegative continuous RV X, the IGF is

IV (X) =
∫ ∞

0
f VX (x)dx, V ≥ 1. (1.2)
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The derivative of IGF in (1.2), evaluated at 1, yields the negative Shannon entropy or negentropy.
Further, IV=1(X) = 1, and when V = 2, we get informational energy, which has been widely used
in Physics. Golomb [4] explained the reason for considering V ≥ 1 in (1.2) instead of V ≥ 0. Along the
same lines, throughout this work, we also consider V ≥ 1. Recently, many authors have studied IGFs
due to their importance in information theory; one may refer to [10], [12], [11], [13], [29], [14], and
[15] for some IGFs and their diverse properties and applications.

We observe that the IGF in (1.2) depends on the PDF of the distribution. However, there are cases for
which the quantile function (QF) is available in an explicit form, but not the density function as such.
For example, lambda distributions [23], power-Pareto distributions [5], and Govindarajulu distribution
[19] do not have exact distribution functions. For these cases, it is impossible to generate information
measures using (1.2). To overcome this difficulty, the IGF in (1.2) needs to be re-defined. In this regard,
we consider here IGF based on QF and then explore its properties. We also study the proposed quantile-
based IGF (Q-IGF) for residual and past lifetimes, which are important characteristics in reliability
theory. For some early developments regarding quantile-based information measures, one may refer
to [25], [26], [1], [6], [7], [8], [17], [9], [30], and the references therein. The QF of an RV X, with
cumulative distribution function (CDF) FX , is given by

QX (p) = F−1
X (p) = inf{x |FX (x) ≥ p}, 0 ≤ p ≤ 1. (1.3)

Note that the QF does not share all of its properties with the distribution function. For example, the sum
of two QFs is a QF and the product of two positive QFs is also a QF. Interested readers may refer to
[20] for some more features and properties of QF.

The key contributions of this work are as follows:

(a) There are distributions for which the QF is available in an explicit form, but not the distribution or
density function. In order to study the IGF for such distributions, in this work, we propose Q-IGF of
a nonnegative absolutely continuous RV. We then show that the Q-IGF can be represented in terms
of hazard and reversed hazard QFs;

(b) The effect of monotone increasing transformations on Q-IGF is examined. An order based on Q-
IGF is then introduced, and its connection to some existing stochastic orders is established. We have
also studied the proposed Q-IGF for quantile-based escort and generalized escort distributions;

(c) Residual lifetime is an important mathematical concept, usually applied in the study of predicting
future performance of a working system. The past lifetime is also a useful concept while dealing
with the past performance of a failed system. In this work, we finally study Q-IGF for both residual
and past lifetimes, and then establish various properties of them. Several examples are presented
throughout this work for illustrating the theoretical results established here.

The rest of this paper is as follows. In Section 2, we introduce the IGF based on QF. We show that the
Q-IGF can be represented in terms of quantile-based fractional Shannon entropy. Further, the effect of
monotone increasing transformations on Q-IGF is studied. Quantile-based escort and generalized escort
distributions are also considered. Based on the newly proposed IGF, an ordering is introduced and its
connection to hazard and reversed hazard quantile orders is shown. The Q-IGF for residual lifetime
is discussed in Section 3, while Section 4 deals with past lifetime. Some of their properties are also
established in these sections. Further, an inferential application of the proposed methodology has been
illustrated in Section 5. Finally, Section 6 presents some concluding remarks.

We assume throughout the paper that the nonnegative RVs are absolutely continuous. All the involved
integration and differentiation are assumed to exist. Moreover, the words increasing and decreasing are
used in a wider sense.
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2. Quantile-based IGF

This section discusses briefly the IGF due to [4] based on the QF. Denote the PDF of X by fX and the CDF
by FX . We recall that the quantile density function (QDF) of X, denoted by qX , can be obtained from
QF QX as d

dpQX (p) = qX (p). It is then easy to see that FX (QX (p)) = p, implying fX (QX (p))qX (p) = 1.
We then present the following definition.

Definition 2.1. Suppose X is an RV with QF QX and QDF qX . Then, for V ≥ 1, the Q-IGF of X is
given by

IQ
V
(X) =

∫ 1

0
f VX (QX (p))dQX (p) =

∫ 1

0
f V−1
X (QX (p))dp =

∫ 1

0
q1−V

X (p)dp. (2.1)

Note that IQ
V
(X) in (2.1) provides a quantile version of the IGF, which measures information

contained in a distribution through QDF. From (2.1), the following facts are evident:

(i) IQ
V
(X) |V=1 = 1; IQ

V
(X) |V=2 =

∫ 1
0 (qX (p))−1dp = −2JQ(X),

(ii) m
mV

IQ
V
(X) |V=1 = −

∫ 1
0 log qX (p)dp = −SQ(X),

where JQ(X) and SQ(X) are, respectively, the quantile-based extropy (see (6) of [16]) and quantile-
based Shannon entropy (see (7) of [25]). Using the hazard QF given by HX (p) = ((1− p)qX (p))−1, and
the reversed hazard QF given by H̃X (p) = (pqX (p))−1, the Q-IGF in (2.1) can be rewritten as

IQ
V
(X) =

∫ 1

0

{
(1 − p)HX (p)

}V−1dp and IQ
V
(X) =

∫ 1

0

{
pH̃X (p)

}V−1dp, V ≥ 1. (2.2)

The following example gives closed-form expressions for the Q-IGF for different distributions. Some
plots of Q-IGF exponential density functions, for example, are presented in Figure 1.

Example 2.2.

• For an RV X following Exponential(\) distribution, QX (p) = − log(1−p)
\

, and so qX (p) = 1
\ (1−p) .

Thus, from (2.1), we obtain IQ
V
(X) = \V−1

V
. The plots of the Q-IGF of exponential distribution are

presented in Figure 1 for different choices of \.
• For an RV X following Uniform(a, b) distribution, QX (p) = a + (b − a)p, and so qX (p) = b − a.

From (2.1), we get IQ
V
(X) = (b − a)1−V;

• For an RV X having Pareto-I(a, b) distribution, QX (p) = b
(1−p) 1

a
, and so qX (p) = b

a(1−p) 1
a +1

.

From (2.1), we obtain IQ
V
(X) = (a/b)V−1

( 1
a+1) (V−1)+1

;

• Let X follow inverted exponential distribution with QX (p) = − _
log x , and so qX (p) = _

p(log p)2 .

From (2.1), we find the Q-IGF as IQ
V
(X) = Γ (2V−1)

_V−1V2V−1 .

Next, we consider some distributions which do not have closed-form distribution functions, and then
discuss their Q-IGFs.

Example 2.3.

• Consider Davies distribution with QX (p) = cp_1 (1 − p)−_2 , c > 0, _1, _2 > 0. Here,

qX (p) = c_1
p_1−1

(1 − p)_2
+ c_2

p_1

(1 − p)_2+1 . (2.3)
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Figure 1. Plots of Q-IGF for exponential distribution considered in Example 2.2, for (a) \ =

0.1, 0.6, 0.8, 1 (presented from below) and (b) \ = 2.7, 3.5, 4, 4.5 (presented from below). Along the
x-axis, we have taken the values of V.

Thus, the Q-IGF is given by

IQ
V
(X) = c1−V

∫ 1

0

[
_1

p_1−1

(1 − p)_2
+ _2

p_1

(1 − p)_2+1

]1−V
dp, (2.4)

which is difficult to obtain in closed-form. Suppose _1 = 1 and _2 = 1. Then, from (2.4), we obtain

IQ
V
(X) = c1−V

∫ 1

0
(1 − p)2(V−1)dp =

c1−V

2V − 1
, V > 1. (2.5)

• Next, consider Govindarajulu’s distribution with QF QX (p) = a{(b + 1)pb − bpb+1}, 0 ≤ p ≤ 1,
a, b > 0. The QDF is given by

qX (p) = ab(b + 1) (1 − p)pb−1. (2.6)

Thus, the Q-IGF is obtained as

IQ
V
(X) =

∫ 1

0

[
ab(b + 1) (1 − p)pb−1]1−V dp

= {ab(b + 1)}1−V
∫ 1

0
(1 − p)1−Vp(b−1) (1−V)dp

= {ab(b + 1)}1−VB(2 − V, (b − 1) (1 − V) + 1), (2.7)

provided 2 − V > 0 and (b − 1) (1 − V) + 1 > 0, where B(·, ·) is the complete beta function.
• Consider the QF (see [18]) QX (p) = −(c + `) log(1 − p) − 2cp, where ` > 0 and −` ≤ c < `,

corresponding to the linear mean residual QF. In this case,

qX (p) =
c + `

1 − p
− 2c. (2.8)

Thus, the Q-IGF is obtained as

IQ
V
(X) =

∫ 1

0

[
c + `

1 − p
− 2c

]1−V
dp, V > 1. (2.9)
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Figure 2. Plot of Q-IGF for the QDF given by (2.8) considered in Example 2.3, for c= 1 and ` = 1.5.
Along the x-axis, we have taken the values of V.

Note that it is difficult to evaluate the integral in (2.9) in an explicit form. Thus, to have a rough idea
about the behavior of the Q-IGF in (2.9), we have plotted the function in Figure 2 with respect to V

for c= 1 and ` = 1.5.

The fractional order Shannon entropy (FSE) was introduced by [27], which was subsequently
extended by [28] and [3] to residual lifetime and past lifetime. We now provide a new representation for
the Q-IGF.

Proposition 2.4. Suppose the QDF of X is denoted by qX . Then,

IQ
V
(X) =

∞∑
k=0

(1 − V)k

k!
SQ

k (X), (2.10)

where SQ
k (X) =

∫ 1
0 {log qX (p)}k dp is the quantile-based FSE of order k.

Proof. Using Maclaurin’s theorem, we obtain from (2.1) that

IQ
V
(X) =

∫ 1

0
e(1−V) log qX (p)dp =

∫ 1

0

∞∑
k=0

(1 − V)k

k!
{log qX (p)}kdp

=

∞∑
k=0

(1 − V)k

k!

∫ 1

0
{log qX (p)}kdp =

∞∑
k=0

(1 − V)k

k!
SQ

k (X),

as required. �

In the following, we present lower and upper bounds for Q-IGF in terms of the quantile-based
Shannon entropy and the hazard QF.

Proposition 2.5. For an RV X with QDF qX, we have

L(V) ≤ IQ
V
(X) ≤ U (V), (2.11)

where L(V) = max{0, (1 − V)SQ(X)} and U (V) =
∫ 1
0 {HX (p)}V−1dp.
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Proof. Making use of the inequality x1−V ≥ (1 − V) log x + 1, the lower bound is easily obtained.
The upper bound can be obtained from (2.2) by using the fact that 1 − p ≤ 1. �

Next, we consider monotone transformations of RVs to see their effect on Q-IGF. Suppose k is an
increasing function and Y = k(X), where X is an RV with PDF fX and QF QX . Then, it is known that the
PDF of Y is fY (y) = fX (k−1 (y) )

k′ (k−1 (y) ) . Moreover, FY (y) = FX (k−1(y) ⇒ FY (QY (p)) = FX (k−1(QY (p))) ⇒
k−1(QY (p)) = F−1

X (p) = QX (p). Upon using this, the PDF of Y can be expressed as

fY (QY (p)) =
fX (k−1(QY (p)))
k′ (k−1 (QY (p)))

=
fX (QX (p))
k′ (QX (p))

=
1

qX (p)k′ (QX (p))
=

1
qY (p)

. (2.12)

Theorem 2.6. Suppose X is an RV with QF QX and QDF qX. Further, suppose k is a positive-valued
increasing function. Then,

IQ
V
(k(X)) =

∫ 1

0

q1−V
X (p)

{k′ (QX (p))}V−1 dp. (2.13)

Proof. The proof follows readily from (2.1) upon using (2.12). �

The following example provides an illustration for the result in Theorem 2.6.

Example 2.7. Consider exponentially distributed RV X, as in Example 2.2. Further, consider an increas-
ing transformation k(X) = XU, U > 0. Then, it is known that Y = k(X) follows a Weibull distribution
with QF Qk (X ) (p) = \−U{− log(1 − p)}U . Now, by using (2.13), we obtain the Q-IGF for the Weibull
distribution as

IQ
V
(k(X)) =

∫ 1

0

(\ (1 − p))V−1

(−U log(1 − p)/\)V−1 dp =
\2V−2

UV−1

∫ 1

0

(1 − p)V−1

(− log(1 − p))V−1 dp =
\2V−2Γ(2 − V)
V2−VUV−1 ,

(2.14)
provided 1 ≤ V < 2.

Weighted distributions are useful in many areas, such as renewal theory, reliability theory, and ecol-
ogy. For an RV X with PDF fX, the PDF of the weighted RV Xl is fl (x) =

l (x)fX (x)
E (l (X ) ) , where l(x) is

a positive-valued weight function having finite expectation. We now consider a particular case of the
weighted RV, known as an escort RV. Associated with X, the PDF of the escort distribution is given by

fXe,c (x) =
f c
X (x)∫ ∞

0 f c
X (x)dx

, c > 0, (2.15)

provided the involve integral exists. Observe that the escort distribution can be obtained as a weighted
distribution with a suitable weight function. We now study the Q-IGF for the escort distribution in
(2.15). Using the QF QX in (2.15), we obtain the density QF of Xe,c as

fXe,c (QX (p)) =
f c
X (QX (p))∫ 1

0 f c
X (QX (p))dQX (p)

=
f c
X (QX (p))∫ 1

0 f c−1
X (QX (p))dp

=
1

qc
X (p)

∫ 1
0 q1−c

X (p)dp
=

1
qXe,c (p)

,

(2.16)
where qXe,c (p) is the QDF of Xe,c.
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Proposition 2.8. Suppose Xe,c is an escort RV with QDF qe,c corresponding to an RV X with QDF qX
and PDF fX . Then,

IQ
cV (X) = IQ

V
(Xe,c) (IQ

c (X))V . (2.17)

Proof. From (2.1), the Q-IGF of Xe,c is given by

IQ
V
(Xe,c) =

∫ 1

0
f VXe,c

(QX (p))dQX (p). (2.18)

Now, using fXe,c (QX (p)) =
f c
X (QX (p) )∫ 1

0 f c
X (QX (p) )dQX (p)

from (2.16) into (2.18) we obtain

IQ
V
(Xe,c) =

∫ 1
0 f cV

X (QX (p))dQX (p)

{
∫ 1
0 f c

X (QX (p))dQX (p)}V
=

IQ
cV (X)

{IQ
c (X)}V

,

as required. �

For two RVs X and Y, with respective PDFs fX and fY, the PDF of a generalized escort distribution
is given by

fZge,c (x) =
f c
X (x)f

1−c
Y (x)∫ ∞

0 f c
X (x)f

1−c
Y (x)dx

, c > 0, (2.19)

provided the involve integral exists. Like escort distributions, the generalized escort distributions can
also be derived as a weighted distribution with a suitable weight function. The quantile version of the
generalized escort distribution is given by

fZge,c (QX (p)) =
f c
X (QX (p))f 1−c

Y (QX (p))∫ 1
0 f c

X (QX (p))f 1−c
Y (QX (p))dQX (p)

=
f c
X (QX (p))f 1−c

Y (QX (p))∫ 1
0 f c−1

X (QX (p))f 1−c
Y (QX (p))dp

. (2.20)

Theorem 2.9. Let Xe,V and Ye,V be two escort RVs associated with X and Y, respectively. Further, let
Zge,c be the generalized escort RV. Then,

IQ
V
(Zge,c) =

(IQ
V
(X))c (IQ

V
(Y))1−c

{RQ
c (X, Y)}V

RQ
c (Xe,V , Ye,V).

Proof. From (2.1), the Q-IGF of Zge,c is given by

IQ
V
(Zge,c) =

∫ 1

0
f VZge,c

(QX (p))dQX (p). (2.21)

Further, using (2.20) in (2.21), we obtain
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IQ
V
(Zge,c) =

∫ 1
0 {f c

X (QX (p))f 1−c
Y (QX (p))}VdQX (p)

{
∫ 1
0 f c−1

X (QX (p))f 1−c
Y (QX (p))dp}V

=
1

{RQ
c (X, Y)}V

∫ 1

0

©«
f VX (QX (p))∫ 1

0 f VX (QX (p))dQX (p)
ª®¬

c ©«
f VY (QX (p))∫ 1

0 f VY (QX (p))dQX (p)
ª®¬

1−c

dQX (p)

×
(∫ 1

0
f VX (QX (p))dQX (p)

)c (∫ 1

0
f VY (QX (p))dQX (p)

)1−c

=
(IQ

V
(X))c (IQ

V
(Y))1−c

{RQ
c (X, Y)}V

∫ 1

0
f c
Xe,V

(QX (p))f 1−c
Ye,V

(QX (p))dQX (p)

=
(IQ

V
(X))c (IQ

V
(Y))1−c

{RQ
c (X, Y)}V

RQ
c (Xe,V , Ye,V),

as required. �

We now introduce Q-IGF order between two RVs X and Y .

Definition 2.10. A RV X is said to be smaller than Y in the sense of Q-IGF order, denoted by X ≤qgf Y ,
if IQ

V
(X) ≤ IQ

V
(Y), for all V ≥ 1.

Example 2.11. Let X and Y have QFs QX (p) = − log(1−p)
\1

and QY (p) = − log(1−p)
\2

, with \1 ≤ \2. Now,

for V ≥ 1, it can be easily shown that IQ
V
(X) = \

V−1
1
V

≤ \
V−1
2
V

= IQ
V
(Y). Hence, X ≤qgf Y , thus providing

an example for Q-IGF order.

We now establish a relation between the hazard QF order, denoted by ≤hq, and the Q-IGF order.
For hazard QF order, one may refer to Definition 2.1(v) of [16]. The following example is presented to
illustrate the hazard QF order.

Example 2.12. Consider two inverted exponential RVs X and Y with QDFs qX (p) =
_1

p(log p)2 and
qY (p) = _2

p(log p)2 , respectively, with _1 ≤ _2. Then,

HX (p) =
1

(1 − p)qX (p)
=

p(log p)2

(1 − p)qX (p)
≥ p(log p)2

(1 − p)qY (p)
= HY (p), (2.22)

implying that X ≤hq Y .

Theorem 2.13. We have X ≤hq Y ⇒ X ≥qgf Y .

Proof. From Definition 2.1(v) of [16], we obtain

X ≤hq Y ⇒ 1
(1 − p)qX (p)

≥ 1
(1 − p)qY (p)

⇒
(

1
qX (p)

)V−1
≥

(
1

qY (p)

)V−1

⇒
∫ 1

0

(
1

qX (p)

)V−1
dp ≥

∫ 1

0

(
1

qY (p)

)V−1
dp ⇒ IQ

V
(X) ≥ IQ

V
(Y) ⇒ X ≥qgf Y ,

as required. �
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It can be easily proved that the hazard QF order and reversed hazard QF order are equivalent, that is
X ≤hq Y ⇔ X ≥rhq Y . One may refer to Definition 2.1(vi) of [16] for the definition of reversed hazard
QF order. Hence, the condition “X ≤hq Y” in Theorem 2.13 can be replaced by “X ≥rhq Y” in order to
get X ≥qgf Y .

Definition 2.14. A RV X is said to be smaller than Y in the sense of dispersive ordering, denoted by
X ≤disp Y , if QY (p) − QX (p) is increasing in p ∈ (0, 1).

Theorem 2.15. Let X and Y be two RVs with QFs QX and QY, respectively.

(i) Let X ≤rhq Y and k be increasing and concave. Then, X ≤disp Y ⇒ k(X) ≤qgf k(Y);
(ii) Let X ≤hq Y and k be increasing and convex. Then, X ≤disp Y ⇒ k(X) ≥qgf k(Y).

Proof. We prove the first part of the theorem, while the second part can be proved in an analogous
manner. First, we have X ≤disp Y implying QX (p) ≤ QY (p). Then, as k is increasing and concave, we
have

k′ (QX (p)) ≥ k′ (QY (p)) ⇒ 0 ≤ 1
k′ (QX (p))

≤ 1
k′ (QY (p))

. (2.23)

Further,

X ≤rhq Y ⇒ 1
qX (p)

≤ 1
qY (p)

. (2.24)

Upon combining (2.23) and (2.24), we obtain

1
qX (p)k′ (QX (p))

≤ 1
qY (p)k′ (QY (p))

⇒
∫ 1

0

dp
{qX (p)k′ (QX (p))}V−1 ≤

∫ 1

0

dp
{qX (p)k′ (QX (p))}V−1 .

(2.25)
Hence, the required result follows from (2.25) and (2.13). �

3. Quantile-based residual IGF

The residual lifetime of a system with lifetime X, given that the system is working at time t > 0, is
defined as Xt = [X − t |X > t] . The IGF has been studied for residual lifetimes by [12]. We now consider
here the residual IGF based on QF. We first give the definition of quantile-based residual IGF (Q-RIGF).

Definition 3.1. Let QX and qX be the QF and QDF of an RV X. Then, the Q-RIGF of X is defined as

IQ
V
(X; QX (u)) =

1
(1 − u)V

∫ 1

u
f VX (QX (p))dQX (p) =

1
(1 − u)V

∫ 1

u
q1−V

X (p)dp, V ≥ 1. (3.1)

The Q-RIGF in (3.1) can be expressed in terms of hazard and reversed hazard QFs as

IQ
V
(X; QX (u)) =

1
(1 − u)V

∫ 1

u
{(1 − p)HX (p)}V−1dp =

1
(1 − u)V

∫ 1

u
(pH̃X (p))V−1dp. (3.2)

Upon taking the derivative of (3.1) with respect to V, we get
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(a) (b)

Figure 3. (a) Plot of Q-RIGF for power distribution considered in Example 3.2, for U = 0.1, V = 2.2,
and X = 2.3; (b) Plot of Q-RIGF for Davies distribution considered in Example 3.2 for V =

1.2, 1.25, 1.5, 1.75, 2. Here, along the x-axis, we take the values of u ∈ (0, 1).

m

mV
IQ
V
(X; QX (u)) = −

[
1

(1 − u)V

∫ 1

u
q1−V

X (p) log qX (p)dp + log(1 − u)IQ
V
(X; QX (u))

]
, (3.3)

from which the following observations can be readily made:

(i) IQ
V
(X; QX (u)) |V=1 = 1; IQ

V
(X; QX (u)) |V=2 = −2JQ(X; QX (u)),

(ii) IQ
V
(X; QX (u)) |u=0 = IQ

V
(X); m

mV
IQ
V
(X; QX (u)) |V=1 = −SQ(X; QX (u)),

where JQ(X; QX (u)) = − 1
2(1−u)2

∫ 1
u

dp
qX (p) is the quantile-based residual extropy (see Eq. (4.1) of [16])

and SQ(X; QX (u)) = log(1 − u) + 1
1−u

∫ 1
u log qX (p)dp is the quantile-based residual Shannon entropy

(see Eq. (8) of [25]). The following example presents closed-form expressions for the Q-RIGF for some
distributions.

Example 3.2.

• Consider exponential distribution with hazard rate \. Then, from (3.1), we obtain IQ
V
(X; QX (u)) =

\V−1

V
;

• For the power distribution with QF QX (p) = UpX , U, X > 0, we obtain from (3.1) that
IQ
V
(X; QX (u)) = (UX )1−V

{ (X−1) (1−V)+1} (1−u)V [1 − u(X−1) (1−V)+1];
• For Davies distribution with QF QX (p) =

cp
1−p , c > 0, from (3.1), we obtain IQ

V
(X; QX (u)) =

c1−V (1−u)V−1

2(V−1)+1 ;
• For the re-scaled beta distribution with QX (p) = r [1 − (1 − p) 1

c ], c, r > 0, from (3.1), we obtain

IQ
V
(X; QX (u)) = ( r

c )
1−V (1−u)

1−V
c

( 1
c −1) (1−V)+1

, provided ( 1
c − 1) (1 − V) + 1 > 0.

In Figure 3, we have plotted the Q-RIGF of power distribution and Davies distribution to show that
it is not monotone in general with respect to u.

In the following example, we consider linear mean residual QF family of distributions, having no
tractable distribution function (see [18]), and it includes exponential and uniform distributions as special
cases.
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Figure 4. Plot of Q-RIGF for the distribution with QF in Example 3.3 with c= 1 and ` = 2. Here, along
the x-axis, we take the values of u ∈ (0, 1). Three values of V have been considered, viz., V = 1.2, 1.4,
and 1.7 (presented from above).

Example 3.3. Let QX (p) = −(c + `) log(1 − p) − 2cp, ` > 0, −` ≤ c < `, 0 < p < 1. Then, the
Q-RIGF is given by

IQ
V
(X; QX (u)) =

1
(1 − u)V

∫ 1

u

{
c + `

1 − p
− 2c

}1−V
dp. (3.4)

Note that it is not possible to obtain a closed-form expression for the integral in (3.4). However, in order
to get an idea regarding its behavior, the graph of IQ

V
(X; QX (u)) in (3.4) has been plotted in Figure 4 for

some specific values of V, c, and `.

Further, by differentiating (3.1) with respect to u, we get

qX (u) =
[
V(1 − u)V−1IQ

V
(X; QX (u)) − (1 − u)V m

mu
IQ
V
(X; QX (u))

] 1
1−V

. (3.5)

The expression in (3.5) can be utilized in two directions. First, it shows that the distribution of X is
indeed characterized based on IQ

V
(X; QX (u)). Second, it shows that a new QF can be generated based

on the assumed functional form of IQ
V
(X; QX (u)). From the expression in the first equality in (3.2), we

obtain

HX (u) =
[
(u − 1) m

mu
IQ
V
(X; QX (u)) + VIQ

V
(X; QX (u))

] 1
V−1

, (3.6)

which is useful in determining HX (u) based on IQ
V
(X; Q(u)). Further, from the expression in the second

equality in (3.2), we obtain

H̃X (u) =
1 − u

u

[
(u − 1) m

mu
IQ
V
(X; QX (u)) + VIQ

V
(X; QX (u))

] 1
V−1

. (3.7)

Analogous to (3.6), the expression in (3.7) can be utilized for determining the reversed hazard QF H̃X (u)
of X . We now introduce two nonparametric classes of life distributions based on Q-RIGF.
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Definition 3.4. A RV X is said to have increasing (decreasing) Q-RIGF, that is, IQ-RIGF (DQ-RIGF)
if IQ

V
(X; QX (u)) is increasing (decreasing) with respect to u.

Based on the proposed nonparametric classes, the following bounds can be provided in terms of the
hazard and reversed hazard QFs:

IQ
V
(X; QX (p))


≥ (≤)

( u
1−u )

V−1

V
H̃V−1

X (u) if X is IQ-RIGF (DQ-RIGF),

≤ (≥) 1
V

HV−1
X (u) if X is IQ-RIGF (DQ-RIGF).

(3.8)

Further, from (3.5), we obtain bounds for Q-IGF as

IQ
V
(X; QX (p))


≥ ((1 − u)qX (u))1−V

V
if X is IQ-RIGF,

≤ ((1 − u)qX (u))1−V

V
if X is DQ-RIGF.

(3.9)

For exponential distribution, Q-RIGF is independent of u (see Example 3.2), implying that this dis-
tribution is the boundary of IQ-RIGF and DQ-RIGF classes. Similar to Theorem 2.6, the following
result can be established, which provides the effect of increasing transformations on Q-RIGF.

Theorem 3.5. Suppose X is an RV with QF QX and QDF qX. Further, suppose k is a positive-valued
increasing function. Then,

IQ
V
(k(X); QX (u)) =

1
(1 − u)V

∫ 1

u

q1−V
X (p)

{k′ (QX (p))}V−1 dp. (3.10)

Proof. The proof is similar to that of Theorem 2.6, and is therefore omitted. �

Similar to Definition 2.10, we now present the definition of Q-RIGF order for two RVs X and Y.

Definition 3.6. A RV X is said to be smaller than Y in the sense of Q-RIGF order, denoted by X ≤q−ri Y ,
if IQ

V
(X; QX (u)) ≤ IQ

V
(Y ; QY (u)), for all V ≥ 1.

Next, we obtain a relation between dispersive and Q-RIGF orders.

Theorem 3.7. We have X ≤disp Y ⇒ X ≥q−ri Y .

Proof. Note that X ≤disp Y implies QY (p) − QX (p) is increasing with respect to p ∈ (0, 1). So,
d
dp (QY (p) − QX (p)) ≥ 0, implying qY (p) ≥ qX (p). Hence, we have

1
(1 − u)p

∫ 1

u
q1−V

Y (p)dp ≤ 1
(1 − u)p

∫ 1

u
q1−V

X (p)dp ⇒ X ≥q−ri Y , (3.11)

as required. �

Next, we discuss stochastic orders connecting two random lifetimes X and Y with Q-RIGFs
IQ
V
(X; QX (u)) and IQ

V
(Y ; QY (u)), respectively.
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Theorem 3.8. For two RVs X and Y with QFs QX (.) and QY (.) and QDFs qX (.) and qY (.), respectively,
we have X ≤hq Y ⇒ X ≥q−ri Y .

Proof. Under the assumptions made, we have

X ≤hq Y ⇒ 1
(1 − p)qX (p)

≥ 1
(1 − p)qY (p)

⇒ 1
(1 − u)VqX (p)V−1 ≥ 1

(1 − u)VqY (p)V−1

⇒ 1
(1 − u)V

∫ 1

u
(qX (p))1−Vdp ≥ 1

(1 − u)V

∫ 1

u
(qY (p))1−Vdp

⇒ IQ
V
(X; QX (u)) ≥ IQ

V
(Y ; QY (u)),

as required. �

Moreover, since the hazard QF order and reversed hazard QF order are equivalent, in Theorem 3.8,
we can also consider ≤rhq instead of ≤hq. Note that the reverse implication in Theorem 3.8 may not hold.

Theorem 3.9. Let
IQ
V
(X;QX (u) )

IQ
V
(Y ;QY (u) )

be increasing with respect to u ∈ (0, 1). Then, X ≤q−ri Y ⇒ X ≤hq Y .

Proof. Under the assumptions made, we have

q1−V
X (u)

q1−V
Y (u)

≤
∫ 1
u q1−V

X (p)dp∫ 1
u q1−V

Y (p)dp
≤ 1. (3.12)

Thus,

1
qX (u)

≤ 1
qY (u)

⇒ 1
(1 − u)qX (u)

≤ 1
(1 − u)qY (u)

⇒ X ≤hq Y , (3.13)

as required. �

We end this section with a characterization result of the exponential distribution in connection with
the Q-RIGF.

Theorem 3.10. The Q-RIGF of a nonnegative RV is constant (independent of time) if and only if it is
exponentially distributed.

Proof. The “if” part is clear from Example 3.2. To establish the “only if” part, we consider the Q-
RIGF to be constant, that is, IQ

V
(X; QX (u)) = k, where k is a constant (here, independent of u). Further,

differentiating (3.1) with respect to u, and then substituting IQ
V
(X; QX (u)) = k, we obtain after some

simplification

qX (u) =
(kV)1−V

1 − u
=

k∗

1 − u
, (3.14)

which is indeed the QF of the exponential distribution. This completes the proof of the theorem. �
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4. Quantile-based past IGF

Just as the concept of residual lifetimes in reliability, the past lifetime of a system also plays an important
role in studying the past history of a failed system. The past lifetime of a system with lifetime X is given
by X̃t = [t − X |X < t], where t is the prefixed inspection time. We now define the quantile-based past
IGF (Q-PIGF).

Definition 4.1. Let QX and qX be the QF and QDF of X. Then, the Q-PIGF of X is defined as

ĨQ
V
(X; QX (u)) =

1
uV

∫ u

0
f VX (QX (p))dQX (p) =

1
uV

∫ u

0
q1−V

X (p)dp, V ≥ 1. (4.1)

Similar to (3.2), the Q-PIGF can be expressed in terms of hazard and reversed hazard QFs as follows:

ĨQ
V
(X; QX (u)) =

1
uV

∫ u

0
{(1 − p)HX (p)}V−1 dp =

1
uV

∫ u

0

{
pH̃X (p)

}V−1
dp. (4.2)

By differentiating (4.1) with respect to V, we obtain

m

mV
ĨQ
V
(X; QX (u)) = −

[
1
uV

∫ u

0
q1−V

X (p) log qX (p)dp + ĨQ
V
(X; QX (u)) log u

]
, (4.3)

from which the following observations can be easily made:

(i) ĨQ
V
(X; QX (u)) |V=1 = 1; ĨQ

V
(X; QX (u)) |V=2 = −2̃JQ(X; QX (u)),

(ii) ĨQ
V
(X; QX (u)) |u=1 = IQ

V
(X); m

mV
ĨQ
V
(X; QX (u)) |V=1 = −S̃Q(X; QX (u)),

where J̃Q(X; QX (u)) = − 1
2u2

∫ u
0

dp
qX (p) is the quantile-based past extropy (see Eq. (5.5) of [16]) and

S̃Q(X; QX (u)) = log u + 1
u

∫ u
0 log qX (p)dp is the quantile-based residual Shannon entropy (see Eq.

(8) of [26]). In the following example, we present closed-form expressions for the Q-PIGF for some
distributions.

Example 4.2.

• Consider power distribution with QF QX (p) = UpX , U, X > 0. Then, the Q-PIGF can be obtained as
ĨQ
V
(X; QX (u)) = (UX )1−V

uV
u(X−1) (1−V)+1

(X−1) (1−V)+1 , provided (X − 1) (1 − V) + 1 > 0;
• For exponential distribution with hazard rate \, the Q-PIGF is obtained from (4.1) as ĨQ

V
(X; QX (u)) =

\V−1

VuV
{
1 − (1 − u)V

}
.

• For the uniform distribution with QF QX (p) = a + (b − a)p, 0 < a < b, the Q-PIGF can be obtained
as ĨQ

V
(X; QX (u)) = {u(b − a)}1−V ;

• For the half-logistic distribution with QF QX (p) = f log( 1+p
1−p ), f > 0, the Q-IGF can be obtained

as ĨQ
V
(X; QX (u)) = 1

uV
∫ u
0 ( 2f

1−p2 )1−Vdp.

Further, differentiating (4.1) with respect to u, we obtain

qX (u) =
[
VuV−1̃IQ

V
(X; QX (u)) + uV m

m
ĨQ
V
(X; QX (u))

] 1
1−V

, (4.4)
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which is useful in obtaining a characterization of a distribution based on the Q-PIGF. Similar to Q-
RIGF, (4.4) can be used to produce a new QF. The following two relations that have been derived from
(4.2) are useful in determining hazard QF and reversed hazard QF, respectively:

HX (u) =
1

1 − u

[
VuV−1̃IQ

V
(X; QX (u)) + uV m

mu
ĨQ
V
(X; QX (u))

] 1
V−1

, (4.5)

H̃X (u) =
1
u

[
VuV−1̃IQ

V
(X; QX (u)) + uV m

mu
ĨQ
V
(X; QX (u))

] 1
V−1

. (4.6)

Now, two nonparametric classes of distributions based on the Q-PIGF can be constructed, analogous
to Definition 4.1.

Definition 4.3. A RV X is said to have increasing (decreasing) Q-PIGF, that is, IQ-PIGF (DQ-PIGF)
if ĨQ

V
(X; QX (u)) is increasing (decreasing) with respect to u.

Similar to (3.8) and (3.9), we can provide bounds for Q-PIGF as follows:

ĨQ
V
(X; QX (u))


≤ (≥)

( 1−u
u )V−1

V
HV−1

X (u) if X is IQ-PIGF (DQ-PIGF),

≤ (≥) 1
V

H̃V−1
X (u) if Xis IQ-PIGF (DQ-PIGF),

(4.7)

and

ĨQ
V
(X; QX (u))


≥ (uqX (u))1−V

V
if X is IQ-PIGF,

≤ (uqX (u))1−V

V
if X is DQ-PIGF.

(4.8)

Definition 4.4. A RV X is said to be smaller than Y in the sense of Q-PIGF order, denoted by X ≤q−pi Y ,
if ĨQ

V
(X; QX (u)) ≤ ĨQ

V
(Y ; QY (u)), for all V ≥ 1.

Theorem 4.5. We have X ≤disp Y ⇒ X ≥q−pi Y .

Proof. The proof is analogous to that of Theorem 3.7, and is therefore omitted. �

Theorem 4.6. For two RVs X and Y with QFs QX (.) and QY (.) and QDFs qX (.) and qY (.), respectively,
we have X ≤rq Y ⇒ X ≥q−ri Y .

Proof. The proof is similar to that of Theorem 3.8, and is therefore omitted. �

Theorem 4.7. Let
ĨQ
V
(X;QX (u) )

ĨQ
V
(Y ;QY (u) )

be increasing with respect to u ∈ (0, 1). Then, X ≤q−pi Y ⇒ X ≤rq Y .

Proof. The proof follows along the lines of Theorem 3.9, and is therefore omitted. �
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We finish this subsection with a result which shows that Q-RIGF and Q-PIGF can be related to each
other. The advantage of the following theorem is that one of these concepts is sufficient to study the
other.

Theorem 4.8. We have

IQ
V
(X; QX (u)) = (1 − u)−V

[̃
IQ
V
(X; QX (1)) − uV ĨQ

V
(X; QX (u))

]
, (4.9)

ĨQ
V
(X; QX (u)) = u−V

[
IQ
V
(X; QX (0)) − (1 − u)VIQ

V
(X; QX (u))

]
, (4.10)

where ĨQ
V
(X; QX (1)) = IQ

V
(X; QX (0)) = IQ

V
(X).

Proof. From (3.1) and (4.1), we obtain

q1−V
X (u) = − d

du
[(1 − u)VIQ

V
(X; QX (u))] and q1−V

X (u) = d
du

[uV ĨQ
V
(X; QX (u))] .

Now, equating these two and then integrating, we obtain

(1 − u)VIQ
V
(X; QX (u)) = −uV ĨQ

V
(X; QX (u)) + l, (4.11)

where l is a constant. Further, when u tends to 0, we have l = IQ
V
(X; QX (0)), and when u tends to 1,

l = ĨQ
V
(X; QX (1)). Upon using these facts, the desired identities follow. �

5. Application of the Q-IGF

This section focuses on the construction of an empirical estimator of Q-IGF and examines its usefulness
using a real-life data set. In this regard, consider a random sample of size n as X1, . . . , Xn. Further, let
X(1) ≤ · · · ≤ X(n) be the order statistics of this random sample. Then, the empirical QF is given by (see
[22])

Q̂X (v) = n
(

j
n
− v

)
X(j−1) + n

(
v − j − 1

n

)
X( j) , (5.1)

where j−1
n ≤ v ≤ j

n , for j = 1, . . . , n. Thus, the corresponding empirical estimator of the QDF is

q̂X (v) = n(X(j) − X(j−1) ), (5.2)

for j−1
n ≤ v ≤ j

n , for j = 1, . . . , n. Using (5.2), the empirical Q-IGF estimator is obtained as

ÎQ
V
(X) =

∫ 1

0
q̂1−V

X (p)dp, (5.3)

where q̂X (p) = n(X(j) − X(j−1) ). Thus, we have the empirical Q-IGF estimator as

ÎQ
V
(X) = 1

n

n∑
j=1

[
n
(
X(j) − X(j−1)

) ]1−V , V ≥ 1. (5.4)
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Figure 5. Plot of the parametric estimate of the Q-IGF (given by (5.5)) for Davies distribution with
respect to V. Here, we have considered V from 1 to 4.

Table 1. The estimated values of Q-IGF for different values of V.

V 1.2 1.5 1.8 2 2.5 3 5

ÎQ
V
(X) 0.4879 0.1748 0.0651 0.0343 0.0072 0.0017 0.0001

Further, in order to see the usefulness of the proposed estimator in (5.4), we compute its value based
on a real data set (see [31]), which represents the time (in months) to first failure of twenty electric carts:

0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 24.8, 31.8, 38.1, 53.0.

Using chi-square goodness of fit test and Q-Q plot, Krishnan [16] showed that the data set is well fitted
by Davies distribution with QF QX (p) = cpa

(1−p)b , a, b, c > 0. We recall that Davies distribution does not
have tractable CDF, but has a closed-form QF. Further, equating sample L-moments with population
L-moments, Krishnan [16] obtained the estimated values of the parameters of Davies distribution to be

â = 1.1255, b̂ = 0.2911, ĉ = 18.6139.

We note that for Davies distribution, the parametric estimate of Q-IGF is obtained as

ÎQ
V
(X) = c1−V

∫ 1

0

[
âpâ−1

(1 − p)b̂
+ b̂pâ

(1 − p)b̂+1

]1−V

dp, V ≥ 1. (5.5)

Using Mathematica software, the parametric estimates of the Q-IGF for the Davies family of distribu-
tions, with â = 1.1255, b̂ = 0.2911, and ĉ = 18.6139, for different values of V ≥ 1 are plotted in
Figure 5. In addition to it, we have also computed the empirical estimate of the Q-IGF given in (5.5) for
some values of V, which are presented in Table 1.

6. Concluding remarks with discussion on a future problem

The concept of IGF gained much attention recently even though it was introduced by [4] more than five
decades ago. The importance of this function is that it helps to produce various information measures
for models having closed-form probability density functions. However, there are many distributions
which do not have closed-form density functions. In this paper, we have proposed Q-IGF and studied
various properties of it. Some bounds, its connection to reliability theory, and effects under monotone
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transformations have also been discussed. The proposed IGFs have been studied in particular for escort
and generalized escort distributions. Orders based on the newly proposed measure have also been intro-
duced. Finally, we have extended the proposed concept to residual and past lifetimes, and discussed
them under different contexts.

Very recently, Capaldo [2] introduced cumulative IGF of an RV X with CDF FX and survival function
F̄X as

GU,V (X) =
∫ r

l
{FX (x)}U{1 − FX (x)}Vdx, U, V ∈ R, (6.1)

where l = inf{x ∈ R|FX (x) > 0} and r = sup{x ∈ R|F̄X (x) > 0}. The quantile-based cumulative IGF
of X is obtained as

GQ
U,V (X) =

∫ 1

0
pU (1 − p)VqX (p)dp, (6.2)

where U and V are real numbers. We propose to explore the properties of this quantile-based measure
in (6.2) in our future work.
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