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Abstract

While speakers are theorized to ideally not include unnecessary information (redundancy)
in their utterances, in reality, they often do so. One potential reason is that linguistic
redundancy facilitates language communication, especially when the addressee (interloc-
utor) is linguistically less competent (e.g., an artificial system). In three experiments, we
examined whether linguistic redundancy may arise as a result of people’s tendency to use
similar linguistic features as their interlocutor does during communication (i.e., linguistic
alignment) and whether redundancy alignment (if any) differs with a human interlocutor
versus a computer interlocutor. We also examined whether redundancy alignment is
affected by the perceived competency of the interlocutor, participants’ abilities in theory of
mind (ToM), and if redundancy alignment varied across time during the experiment.
Participants carried out a picture matching and naming task with a human or computer
interlocutor who either always or never included redundancies in their utterances.
Redundancy alignment was found across all experiments, in that speakers produced more
redundancies with a redundant interlocutor compared to a non-redundant one. This
alignment was also modulated by the perceived competency of the interlocutor, the time
course of the interaction, and ToM abilities, suggesting that redundancy usage is affected
by both automatic and strategic mechanisms of linguistic alignment.

Keywords: Human-computer interaction; language production; linguistic alignment; redundancy

Introduction

Speakers are theorized to communicate efficiently, avoiding unnecessary redundant
linguistic information whenever possible (Grice, 1975). However, in actual language
use, speakers sometimes include redundant information in their utterances, for
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example, referring to a green apple as the green apple instead of the apple when
there is only one apple in the scene (e.g., Engelhardt et al., 2006). This redundancy
may occur because such expressions provide additional cues (e.g., color) that
facilitate language communication (Deutsch & Pechmann, 1982; Rubio-Fernandez,
2021; Saryazdi et al., 2022) or because speakers adopt similar expressions used
by their conversation partner (ie., their interlocutor), such as using color in
naming (Branigan et al.,, 2004). These linguistic redundancies can be particularly
important when interacting with someone perceived to have limited language
competence, such as a child or a computer. Our study explores whether speakers
align with their interlocutor’s redundancy patterns and whether such alignment is
influenced by beliefs about the interlocutor when interacting with a human or a
computer.

Linguistic redundancy

When using language, even simple descriptions of objects or events can be
formulated in many different ways. For example, to refer to an apple, a speaker
could use phrases such as the apple, the green apple, the apple on the towel, etc. It is
typically assumed that speakers follow the Maxim of Quantity (Grice, 1975),
ensuring that their utterances provide sufficient information for successful
communication without including redundant information. Thus, in a scene
containing a green apple laid upon a towel and some other non-apple objects, if a
speaker is trying to draw attention to the apple, stating the apple is sufficient, as
mentioning other properties of the apple (such as its color or location) is not needed
(and therefore redundant) in terms of the communicative goal.

However, speakers frequently violate the Maxim of Quantity, introducing
redundant information into a sizable portion of their utterances (e.g., Deutsch &
Pechmann, 1982; Engelhardt et al., 2006), including when interacting with artificial
entities such as robots (Saryazdi et al., 2021). While redundancy is common, it
remains unclear whether redundancy usage in language benefits or detracts from
comprehension. There is evidence that redundancy may confuse comprehenders,
who may interpret the extra information as relevant (Levinson, 2000). For example,
the green apple could suggest the presence of multiple apples of different colors in the
scene, leading to confusion when there is only one apple in the scene (e.g., Sedivy et al.,
1999). Indeed, Engelhardt et al. (2011) demonstrated that comprehenders experienced
confusion (as reflected in behavioral and electrophysiological measures) when hearing
redundant utterances. However, other studies have found evidence that certain
attributes, such as color, do not cause confusion or slow down comprehension (Sedivy,
2003; Fukumura & Carminati, 2022; Fukumura & van Gompel, 2017).

In fact, redundancy usage has also been found to aid in language comprehension.
Deutsch and Pechmann (1982) argue that redundancy aids search efficiency (and
thus comprehension) when the communicative goal is object identification. Indeed,
speakers often use redundant color adjectives in object naming when the scene
contains variously colored objects, indicating that redundancy helps comprehenders
identify the relevant object (Rubio-Fernandez, 2016). In addition, redundancy is
more likely to be used when the redundantly mentioned attribute is sufficient on its
own to correctly specify a referent (i.e., when the color of the referent is different
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than the rest of the other objects; van Gompel et al., 2019) and in tasks where accuracy
in comprehension is important (Arts et al., 2011), suggesting that speakers can use
redundancies to facilitate communication. Likewise, using color redundantly has been
found to facilitate visual referent search, with comprehenders finding a referent more
quickly when its color was also given (e.g., blue star vs. the star when there was only
one star in the scene; Rubio-Fernandez, 2021). Similarly, listeners fixated on the
referred objects to a greater extent (suggesting facilitated comprehension) in response
to descriptions with redundant color information produced by a robot (especially
when color can be used to rule out all other possibilities, with state modifiers being
found to impair comprehension; Saryazdi et al, 2022). Finally, listeners deem
utterances with redundancy as no less effective than those without (Engelhardt et al.,
2006). Therefore, redundancy usage may facilitate communication by providing
additional information to ensure that a listener has sufficient information to achieve
the communicative goal, as information can be missed or misinterpreted in
communication due to various reasons such as lack of attention, environmental
distractors, and many other factors. In such scenarios, redundant information may be
interpreted by the listener not as unnecessary information but as useful additional
information and thus may not lead to confusion.

Thus, the usage or avoidance of redundancies might both be a goal-oriented
choice by the speaker to aid comprehension for the comprehender. Indeed, speakers
have been found to utilize redundancies in this manner, in that they modify the rates
of their redundancy usage based on the extent to which a redundant word can help
further identify a referent (Rubio-Fernandez, 2021). In addition, because
redundancy may or may not be typically expected, when a speaker opts for
redundant or non-redundant utterances, it may indicate to their conversation
partner that they prefer this style of communication, prompting the partner to
employ redundancy as a strategy to facilitate understanding and ease of
communication with their interlocutor.

Linguistic alignment

Linguistic redundancy may also emerge due to linguistic alignment, which refers to
the tendency for interlocutors in a dialogue to imitate each other’s linguistic
behaviors at various levels (Pickering & Garrod, 2004). People have been found to
mimic their interlocutor’s speech rate and accent (e.g., Giles et al., 1991), phonetics
(Pardo, 2006), lexical choices (e.g., Brennan, 1996), sentence structures (Branigan
et al, 2000), conceptualizations of objects and scenarios (Garrod & Anderson,
1987), and even extra-linguistic aspects such as facial expressions (Bavelas et al.,
1986; Dimberg et al., 2000), body posture (Tia et al., 2011), and speech gestures
(Goldin-Meadow & Alibali, 2013).

According to the interactive alignment account (Pickering & Garrod, 2004),
various linguistic representations used in dialogue tend to align automatically. This
process results in a broad alignment ranging from low-level phonetics to high-level
situational representations of the conversation. Under this theory, the encounter of
a specific linguistic feature (e.g., phonetic realization, lexical choice) activates the
corresponding representation. This residual activation increases the probability that
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the same linguistic feature will be produced in subsequent interactions (Pickering &
Branigan, 1998).

Linguistic alignment might also be driven by goal-oriented processes. Recent
evidence suggests that the degree of alignment can vary depending on the perceived
linguistic competence of the interlocutor. For example, speakers tend to more often
align with the interlocutor and reuse their previous expressions when conversing with
a non-native interlocutor than with a native interlocutor (Cai et al., 2021; Suffill et al.,
2021). This pattern suggests that speakers consider certain characteristics (like
linguistic competency and age) when crafting their utterances, a process referred to as
interlocutor modeling (Cai et al., 2021; for a review, see Wu & Cai, 2024); in particular,
when speakers perceive their interlocutor to be limited in linguistic competence, they
are more likely to reuse their interlocutor’s prior lexical choices to maximize
communicative success. In further support of interlocutor modeling, speakers tend to
perceive computers to have limited linguistic capacity and are also more likely to
lexically align with a computer interlocutor than a human interlocutor (Branigan et al.,
2004). Linguistic alignment as a form of goal-oriented process also concurs with the
tenets of communication accommodation theory (Giles, 1973; see Giles et al., 2023 for
a review), which states that interlocutors tend to converge in their linguistic patterns
due in part to meeting the expectations of the interaction (Giles, 2008), and this
convergence has been found to occur when interacting linguistically with artificial
entities as well (e.g., Cirillo et al.,, 2022; Shen & Wang, 2023). Overall, interlocutor
modeling should be a core part of communication accommodation theory, in that in
order to tailor linguistic productions to a specific interlocutor, a speaker must first take
notice of and create a mental model of the particular characteristics of their
interlocutor, and then from this information, a speaker can then choose what
linguistic aspects of their interlocutor to converge with.

Therefore, linguistic redundancies may arise as a result of alignment with an
interlocutor in both linguistic and extra-linguistic contexts (Loy & Smith, 2021). If
linguistic alignment (additionally) mirrors a goal-oriented process like interlocutor
modeling, redundancy alignment might vary among different interlocutors. This
variability in redundancy alignment may stem from people using more redundancies
towards interlocutors with lesser linguistic capacity (such as computers), and
especially if these interlocutors use redundancies in their own productions, as
redundancies can provide additional linguistic cues to increase comprehensibility and
ultimately communicative success (e.g., Rubio-Fernandez, 2021). In this paper, we
specifically examine whether speakers use (or do not use) redundancies as a result of
alignment with an interlocutor and if the occurrence of such redundancy alignment
differs when interacting with a computer versus a human interlocutor.

Linguistic redundancy alignment in human-computer interaction and human-
human interaction

Naturally, computers and humans are very different entities, and indeed, differences
have been found between human-computer interaction (HCI) and human-human
interaction (HHI). For example, in typed conversations where people are told they
are interacting with either a computer or a human interlocutor (but in real
experiments, interlocutor responses are often scripted), people use fewer words and

https://doi.org/10.1017/S0142716425100118 Published online by Cambridge University Press


https://doi.org/10.1017/S0142716425100118

Applied Psycholinguistics 5

less interpersonal language when addressing computers compared to humans
(Shechtman & Horowitz, 2003). Similarly, speakers use fewer adjectives to describe
a target object to a computer compared to a human; presumably, speakers perceive
computers as being less competent in speech segmentation, thus being more likely
to use shorter utterances to aid the computer in comprehension (Bannon et al.,
2020). Furthermore, people tend to speak in a simpler and clearer way towards
computers compared to humans by way of slower speech, hyper-articulation, fewer
disfluencies, and more mimicry of words a computer uses (e.g., Oviatt, 1995; Bell,
Gustafson, & Heldner, 2003; Stent, Huffman, & Brennan, 2008; Shen & Wang,
2023). Likewise, at the neural level, people are less surprised when LLMs make
mistakes related to meaning, as shown by reduced brain activity upon encountering
an anomalous word (but are more surprised when LLMs make grammatical
mistakes; Rao et al., 2024).

However, HCI and HCI show striking similarities in certain areas. When
engaging with virtual agents, people cooperate and communicate in ways akin to
HHI (Parise et al., 1999; Krdmer, 2005). These virtual agents are regarded by people
as social entities (Krdmer, 2005), can readily attract attention (Dehn & Van Mulken,
2000), induce socially desirable behavior (Sproull et al., 1996), and are treated with
the same spatial usage rules and politeness norms (Kopp et al., 2005). People also
use language in similar ways with virtual agents as humans (e.g., Saryazdi et al., 2021
van Lierop, Goudbeek, & Krahmer, 2012; Bergmann, Branigan, & Kopp, 2015) and
interact with artificial intelligence assistants (i.e., Amazon’s Alexa) in similar ways as
compared with interacting with another human (Cohn & Zellou, 2021; Mengesha
etal.,, 2021). In addition, people perceive artificial intelligence systems and robots as
social actors and not merely mechanical tools (Bartneck et al., 2009; Groom et al.,
2011), and people consistently view these systems as having high competency when
acting independently from humans (McKee et al. 2023) and, in some circumstances,
even moral standing (Malle et al., 2015, 2019). These findings suggest that, due to
humans’ inherent sociality, the social rules applied in HHI are also used
unconsciously in HCI (Nass et al., 1997) and that people view these agents as
having human-like perceptual and linguistic abilities (Saryazdi et al., 2021). Thus,
due to the rapid development of computers and artificial intelligence capabilities,
people may not perceive computers to be as different from humans as in the past, as
computers now possess much more advanced linguistic capabilities in more
humanistic realms such as pragmatic abilities (Barattieri di San Pietro et al., 2023).

Overall, technological advances entail that HCI will continue to more closely
approximate HHI. However, even in an era whereby artificial intelligence possesses
high linguistic competencies, people still seem to behave differently in subtle ways in
HCI. One intriguing behavior that might share broad similarities but reveal key
differences between HCI and HHI is linguistic alignment. This phenomenon is
observed in HCI at various levels, including in phonetics (Gessinger et al., 2019), the
lexicon (Brennan, 1996), and syntax (Branigan et al., 2003). The automatic
mechanism of linguistic alignment should also function in HCI, as it is triggered by
merely processing a linguistic element, regardless of the interlocutor’s identity.
Therefore, interacting with a computer should induce similar alignment as with a
human. However, differences may arise from interlocutor modeling due to the
significant contrast in linguistic competence between computer and human
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interlocutors (see Shen & Wang 2023, for recent evidence for lexical alignment
differences in HCI compared to HHI). People may perceive computers as linguistically
less competent, leading to more alignment in HCI to facilitate the interaction
(Branigan et al, 2004; Branigan et al, 2011; Branigan et al., 2003). Moreover,
differences among types of computers can modulate alignment. Pearson et al. (2006)
found that participants aligned more with the lexical choices of a basic computer than
an advanced one, even though they interacted with identical pre-scripted responses.

In this paper, we explore whether speakers align in linguistic redundancy with
their interlocutor and whether such alignment, if any, differs between computer and
human interlocutors. This form of linguistic alignment is expected to occur with
both computer and human interlocutors (i.e., is interlocutor-independent)
according to the interactive alignment model, whereby alignment is predicted to
happen across a broad range of linguistic levels, including higher-order levels such
as the pragmatic alignment of redundancy usage. In addition, redundancy
alignment may result from goal-oriented language use. That is, speakers may
anticipate that their counterparts understand redundancy in the same way they
themselves employ it. Consequently, speakers may replicate this redundancy to
enhance communication effectiveness, particularly when dealing with less skilled
conversational partners such as computers. Speakers may also view redundancy usage
as a strategy that aids a comprehender in picking out a referent (Rubio-Fernadndez,
2021). Thus, speakers may use more redundancies (and more redundancy alignment)
towards computers via interlocutor modeling as a goal-directed strategy to help this
less competent interlocutor in comprehension, especially if the computer also uses
redundancies.

Furthermore, an important factor that may influence linguistic alignment via
interlocutor modeling is theory of mind (ToM) abilities, that being the capacity to
understand others’ mental states such as beliefs, knowledge, feelings, etc. (Premack
& Woodruff, 1978). ToM is thought to be crucial for successful social interaction to
occur (e.g., Tooby & Cosmides, 1995), as making inferences about others provides
useful information on how best to interact with others. Thus, superior ToM abilities
may enable speakers to make more accurate inferences about their interlocutors,
such as inferences on the linguistic competency of their interlocutor, thereby
allowing more effective alignment with the interlocutor’s linguistic tendencies.
Besides making inferences about humans, people have been found to use ToM skills
when interacting with artificial entities, such as inferring the perspectives of robots
(Wahn et al, 2023; Zhao & Malle, 2022). However, taking notice of and
understanding the supposed mental state and abilities (or lack thereof) of artificial
entities such as a computer interlocutor may require greater ToM abilities than
when inferring these qualities about humans, as people in general have more
knowledge about humans compared to artificial entities such as computers (Epley
et al., 2007). Therefore, we predict that higher ToM abilities may increase the
difference in alignment rates towards computers compared to humans due to
increased realization and attention given towards specific properties of computer
interlocutors (i.e., reduced competency and how this contrasts with humans’ greater
competency) that necessitate more goal-directed language production.

Finally, we examine the time course of redundancy usage and alignment (if any).
If redundancy usage is effortful, then we should expect redundancies to decrease as
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the interaction progresses due to speaker fatigue. The Maxim of Quantity (Grice,
1975) also predicts that redundancy usage should decrease over time due to the
inclination of speakers to make their utterances more efficient. In contrast, the
interactive alignment account (Pickering & Garrod, 2004) predicts that redundancy
usage may increase over time towards interlocutors who use redundancies, as this
account theorizes that alignment in general increases over time. Thus, if alignment
increases with redundant interlocutors over time, then redundancy usage will
increase as well. We test these predictions using separate analyses with trial number
as a predictor of redundancy usage.

The current study

To investigate redundancy alignment between an interlocutor perceived as
linguistically more competent (human) versus less competent (computer), we
employed a joint picture matching and naming task across three experiments. Both
the “human” and “computer” interlocutors were, in reality, pre-scripted utterances
to ensure identical behavior. In the task, participants and their interlocutors
alternated in matching and naming pictures. In a matching trial, participants were
presented with four shapes in a scene and then received a description from their
interlocutor. Their task was to select the corresponding shape based on the
description. In a naming trial, they were tasked with describing one shape in the
scene for their interlocutor to identify.

Importantly, the interlocutor either consistently used redundancies or avoided
them completely. Three attributes of shapes were included across the interlocutor
responses in the experiments (color, size, and shading, where shading refers to light
and dark variants of a color, e.g., light and dark green) in order to provide a range of
information to the participants that was either redundant or non-redundant. Some
attributes, such as color, tend to be used redundantly to a greater extent than other
attributes, such as size (e.g., Engelhardt & Ferreira, 2014; Pechmann, 1989); thus,
this increased prevalence may cause attributes such as color to be seen as less
redundant; hence, the need for a range of attributes across our experiments. Overall,
this study examines the following research questions: 1) Do speakers align with the
redundancy usage patterns of their interlocutor? 2) If so, does this alignment come
about from an interlocutor-independent automatic mechanism and/or a goal-
directed mechanism due to interlocutor modeling and perceptions of interlocutor
competency? 3) Does ToM modulate rates of redundancy alignment via effects on
interlocutor modeling? 4) What is the nature of the time course of redundancy
alignment? With regard to these questions, we hypothesized that participants would
mirror their interlocutor’s redundancy usage, leading to an increase in redundant
responses when interacting with a redundant interlocutor as compared to a non-
redundant interlocutor. Furthermore, we expected this redundancy alignment to be
more prominent with a linguistically less competent interlocutor (i.e., the computer
interlocutor). To further delve into the relationship between linguistic alignment of
redundancy usage and other variables, we also evaluated participants’ ToM abilities,
their perceptions of the interlocutor’s competency, and the time course of this
alignment (if any). For assessing ToM abilities, we used the “Reading the Mind in
the Eyes” Test (Baron-Cohen et al., 2001) as a measure of ToM, as this measures the
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ability to perceive the thoughts and feelings of others based on little information,
which relates to making inferences in general about the traits of one’s interlocutor.
Overall, the results of these assessments will provide us with more insights into how
redundancy alignment functions in different interaction contexts and how it might
be influenced by cognitive abilities, interlocutor perceptions, and time.

A few previous studies (Loy & Smith, 2021; Goudbeek & Krahmer, 2012) have
found evidence of redundancy alignment. However, participants in these studies
had the opportunity to produce or not produce redundancies in various filler trials,
but the utterances in these trials were not examined, making the extent of
redundancy alignment unclear. The filler trials also may have influenced the
redundancy usage behavior of the target trial by priming redundancy usage with
descriptions that may be considered to include redundancy by the participants
(e.g., the description the woman who looks angry and the angry-looking woman to
describe a picture of an angry woman), further obfuscating the exact nature of how
redundancy alignment operated in these studies. Thus, the current study expands on
this research by removing these potentially confounding filler trials to examine
whether redundancy alignment occurs directly after comprehending a redundant
utterance.

Experiment 1
Methods

Participants

To determine an appropriate sample size for Experiment 1 (as well as the other
experiments in this study), a power analysis was conducted with GPower 3.1.9.6
(Faul et al., 2007). This power analysis found that for a 2-by-2 repeated measures
design with medium effect sizes, 80% power at an alpha of 0.05 is achieved at 64
participants. Thus, for Experiment 1 (and all other experiments), we set out to
obtain sample sizes exceeding this.

A total of 114 native English speakers who were British nationals residing in the
United Kingdom (mean age = 36.03; 46 male, 68 female; 101 white, 4 black, 7
Asian, 2 mixed) were recruited using the online participant recruitment platform
Prolific (https://www.prolific.co/), with 21 participants removed from the analyses
due to the screening criteria (see results section below for more details). All
participants in this experiment (as well as all other experiments in this study) gave
their informed consent to participate, and this study was given ethical approval by
the Survey and Behavioural Research Ethics Committee at the Chinese University of
Hong Kong (ethics code SBRE-22-0464).

Materials

The materials for the main experimental trials consisted of 64 scenes of four shapes
arranged in a 2x2 grid (see Figure 1). Each scene consisted of a target shape (the
shape to be matched or named) and three filler shapes. The position of the target
shape was balanced across the scenes, such that the target shape was found equally
in the top/bottom and left/right grid positions. The shapes varied and were balanced
in size (large, small), color (blue, red), and shape (circle, triangle, square, ellipse,
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\ small red heart . ‘

Matching Trial

o =/

Naming Trial

Figure 1. Example of a matching and naming trial. For the matching trial, the interlocutor gave a typed
description of a shape, with participants needing to click on the described shape. For the naming trials,
the target shape was outlined by a green border and participants described the shape via typing to their
interlocutor. Note that the matching trial shows the redundant interlocutor condition, with small being
redundant. The corresponding non-redundant interlocutor condition consists of the utterance red heart.

diamond, heart, trapezoid, pentagon). Two lists of 32 scenes were used, with each
list consisting of 16 scenes where one of the filler shapes was the same as the target
shape (e.g., the target being a big blue square and one filler being a small blue
square) and 16 scenes without any fillers being the same shape as the target. Thus, if
a target shape was presented together with a same-shape filler (i.e., an adjective was
needed to single out the target) in one list, it was presented with fillers of different
shapes (i.e., no adjective was needed to single out the target) in the other. The scenes
from each list were used either in the matching or naming trials (counterbalanced
between participants; i.e., in a Latin square design, that being if a scene with a small
blue triangle as the target shape is used in a matching trial in one list, then this scene
would be used in a naming trial in the other list).

The ToM task consisted of an online adaptation of the “Reading the Mind in the
Eyes Test” (36 items; Baron-Cohen et al., 2001). This online version was designed to
be as similar as possible to the original in-person version, whereby participants saw
pictures of human eyes along with four emotion words (these word choices did not
vary within each item, entailing that our items were the exact same as the original).
One of the words correctly described the emotion of the person depicted, while the
other three were incorrect choices. Participants were instructed to choose the word
they thought best described the emotion of the person depicted. While online
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adaptations may differ in reliability from the in-person equivalent, our results on
this test when pooling data across all of the experiments (mean items
correct = 25.5, SD = 4.30) are quite similar to the findings of the in-person test
(mean items correct = 26.2, SD = 3.6; from Baron-Cohen et al.), suggesting that
this online implementation is comparable to the in-person test. As Baron-Cohen
et al. did not report any reliability metrics, we used the Cronbach’s alpha to test for
internal consistency in our data. This metric was found to be 0.616, suggesting that
this measure has questionable reliability.

Procedure

The experiment was run online using the experiment-building platform Gorilla
(https://www.app.gorilla.sc/). Participants gave their consent and then were told
that they would be playing a picture matching and naming game with either a
computer or human partner. Afterwards, a screen appeared informing participants
that the study was waiting for another participant to conduct the experiment as their
partner (the human condition, with this screen lasting for around 40 seconds to
simulate another human partner being found and joining the study) or that the
computer program was being loaded to conduct the experiment as their partner (the
computer condition, with this screen lasting for around 7 seconds to simulate
loading a computer program). The main trials then commenced, in which
participants took turns matching and naming shapes with their supposed partner.
In matching trials, participants received a typed description from their partner and
then needed to click on the corresponding picture. In naming trials, participants
typed a description into a text box under the scene. After the main trials,
participants completed the “Reading the Mind in the Eyes Test” and then filled out a
post-experiment questionnaire. The post-experiment questionnaire asked partic-
ipants to give information regarding 1) if they thought their partner was a computer
or a human, 2) how competent they thought their partner was in the experimental
task on a 7-point Likert scale, and 3) if they had any other comments about the
experiment. Participants were paid 1.5 British pounds after finishing the
experiment, which took around 15 minutes to complete.

Data coding

The typed responses for the naming trials were coded as either redundant or non-
redundant. A redundant coding was given to a response if it included at least one
redundancy (e.g., the response blue square would be redundant if only one square
was present in the scene, as in this case, the descriptor blue would not be needed).
A non-redundant coding was given to a response if it included no redundancies
(e.g., the response square for the previous example). Responses that were under-
informative were excluded from further analyses (e.g., the response square in a scene
with two squares).

Statistical analyses
In Experiment 1 (as well as in Experiments 2 and 3), binomial logit mixed effects
(LME) models were used as the primary analyses to examine the role of interlocutor
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(human vs. computer) and usage (redundant vs. non-redundant) on whether
participants used redundancies or not in their responses. In order to establish the
random effects structure for these models, a data-driven approach via forward
model comparisons was used (e.g., Matuschek et al., 2017; Bates et al., 2015). This
process starts by creating an intercept-only LME model (i.e., containing only subject
and item random intercepts but no random slopes). Then, this random intercept-
only model is compared to a model with the inclusion of an additional random slope
(using the anova function in R). A significant p-value from the model comparison
(with alpha set to 0.2 instead of the typical 0.05 to achieve a balance between an
overly basic and overly maximal random effects structure; Matuschek et al., 2017)
suggests that the inclusion of the additional random slope improves the model fit
over the intercept-only model and entails the inclusion of this random slope. This
model comparison process is repeated, with a new random slope added to the
current best model, and then this new augmented model is compared to the current
best model until no additional random slopes improve model fit. Thus, this model
selection process is designed to find an optimal balance of random effects to include
in a statistical model. The steps of each model comparison process, as well as the
data and analytical scripts for all experiments in this study, can be found at https://
osf.io/2kzn9/.

Results

Among the 114 participants, 19 participants did not believe that their interlocutor was
a computer/human when told that they would be conducting the experiment with a
computer/human, respectively, and their responses were removed from further
analyses. Two further participants incorrectly named the target shape more than one-
third of the time and were excluded from further analyses. Of the remaining 3041
responses, 182 were incorrect (under-informative or incorrect descriptions of the
target shape) and were removed from further analyses, leaving a total of 2859 usable
trials (52 and 41 participants in the computer/human conditions with 1598 and 1261
trials, respectively). Participants on average produced redundant and non-redundant
descriptions in 35.4% and 64.6% of their responses, respectively.

We first applied a binomial LME model on trial-level responses (i.e., redundant
and non-redundant, with the latter being the baseline level), using usage (redundant
= -1 vs. non-redundant = 1 interlocutor; same coding in all following models
with usage) and interlocutor (human = -1 vs. computer = 1; same coding in all
following models with interlocutor) as interacting predictors.

As detailed in Table 1, the significant intercept indicated that there were fewer
redundant than non-redundant responses (35.4% vs. 64.6%). The significant effect
of usage suggested that participants were more likely to produce redundant
descriptions when addressing a redundant interlocutor (55.7%) than a non-
redundant interlocutor (16.3%; see Figure 2). The main effect of interlocutor was
also significant, suggesting that participants increased their redundancy usage when
interacting with a computer (39.6%) compared to a human (30.1%). The interaction
between usage and interlocutor was not significant, indicating that the effect of
usage does not differ between the human and computer interlocutors.
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Table 1. LME results with usage and interlocutor (conditional R> = .430, marginal R> = .217)

Fixed Effects B SE z p
Intercept -0.91 0.14 -6.31 <.001
Usage -1.09 0.10 -10.78 <.001
Interlocutor 0.24 0.11 2.13 .033
Usage: Interlocutor 0.11 0.10 1.13 259
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 0.75/0.87

Subjects: Usage 0.21/0.46/0.27

Items: (intercept) 0.26/0.51

Note: This model including participants who did not believe the interlocutor manipulation produced the same results
except for the main effect of interlocutor, with a significant intercept and main effect of usage, and non-significant
interlocutor and interaction effects.
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Figure 2. Proportion of redundant responses for usage and interlocutor (error bars show the 95% Cls).

In order to explore how redundancy usage progressed across the trials, a further
LME model (Table 2) was built with usage and trial (logged trial number; this
variable was logged in order to aid in model convergence) as interacting predictors.
Usage was found again to have a significant main effect, and more crucially, there
was a significant main effect of trial, suggesting that participants produced fewer
redundant descriptions as time progressed. The interaction between usage and trial
was also significant (see the appendix for all of the figures related to the trial
analyses), with separate analyses indicating that the effect of trial was stronger in the
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Table 2. LME results with usage and trial (conditional R*? = .455, marginal R? = .220)

Fixed Effects B SE z p
Intercept 0.48 0.21 231 .021
Usage -0.48 0.16 -3.00 .003
Trial -0.55 0.06 -9.40 <.001
Usage: Trial -0.21 0.06 -3.69 <.001
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 1.15/1.07

Items: (intercept) 0.27/0.52

Note: This model including participants who did not believe the interlocutor manipulation produced the same results.
This model with trial as a non-logged predictor (and all the models in this study including trial) produced the same
results.

Table 3. LME results with interlocutor, ToM, and competency (conditional R? = .337, marginal R? = .020)

Fixed Effects B SE z p
Intercept 2.28 1.24 1.83 .067
Interlocutor -1.16 0.74 -1.57 116
ToM 0.23 1.08 0.21 .830
Competency -0.20 178 -1.13 .258
Interlocutor: ToM 133 1.05 1.27 .203
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 1.41/1.19

Items: (intercept) 0.16/0.40

Note: This model including participants who did not believe the interlocutor manipulation produced the same results.

non-redundant condition (f = -0.74, SE = 0.09, z = -8.36, p < .001) compared
to the redundant condition (§ = -0.33, SE = 0.08, z = -4.22, p < .001).

Another LME model (Table 3) was built to explore if ToM abilities and the
perceived competence of the interlocutor affect redundancy alignment (i.e., aligned
and non-aligned, with the latter being the baseline level; this coding was used for all
subsequent analyses that use redundancy alignment as the dependent variable), with
interlocutor and ToM as interacting predictors and competency as a non-
interacting predictor (in order to aid in model convergence). None of the effects
involving these predictors were significant. These results suggest that increased ToM
abilities do not aid in establishing a more definite interlocutor model of a human
compared to a computer, or if so, that these differentiations do not affect
redundancy alignment in language production. Likewise, perceived interlocutor
competency (as well as whether the interlocutor is a human or computer) does not
seem to affect redundancy alignment.

A Wilcoxon rank-sum test using the means of the perceived competency data for
human and computer interlocutors was done to explore if participants viewed
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humans or computers as more competent in the experimental task. This test was
used over other similar tests, as perceived competency is not normally distributed
for both the human and computer conditions (W = 0.47 and 0.59, respectively, and
ps <.001), while homogeneity of variances between these conditions was met
(F(1) = 0.844, p = .361). No significant difference was found for this test
(W = 949.5, p = 0.227), suggesting that humans (6.71) and computers (6.56) were
not perceived as having different competency levels.

Discussion

Experiment 1 had participants play a picture matching and naming game with an
interlocutor who either always or never included redundancies in their responses, with
the interlocutor being either a computer or a human. People used more redundancies
when interacting with a redundant interlocutor compared to a non-redundant
interlocutor, indicating that speakers align to the redundancy usage patterns of their
interlocutor. More redundancies in general were also used towards computers than
humans. Redundancy usage also decreased over time, suggesting that redundancy
usage is effortful and that utterances become more efficient with increased exposure to
the linguistic task at hand. Redundancy usage decreased at a faster rate with non-
redundant interlocutors compared with redundant interlocutors, entailing that people
align to their interlocutor’s redundancy usage behavior at the initial stages of
interaction and that this alignment strengthens over time with non-redundant
interlocutors but weakens with redundant interlocutors. The type of interlocutor, ToM,
and the perceived competency of the interlocutor do not seem to affect redundancy
alignment. We did not observe a difference in perceived linguistic competence between
computer and human interlocutors, though as expected computer interlocutors were
numerically rated as linguistically less competent than human interlocutors.

Experiment 2

While the results of Experiment 1 suggest that people align to the redundancy usage
of their interlocutor, this alignment could also be merely due to lexical priming.
That is, as the same shape properties were used between the matching and naming
trials (i.e., red/blue and big/small), people interacting with redundant interlocutors
may have been primed to produce the redundant adjectives they heard from the
matching trials in the naming trials. For instance, participants might produce big
triangle after hearing big square, not because they were primed to be redundant but
because they tended to reuse the adjective big as a result of lexical priming.
Experiment 2 addresses this issue by implementing the same tasks as in Experiment
1 but using different shape properties between the matching and naming trials so
that there is no lexical overlap in the shape properties between the matching and
naming trials, and hence no opportunity for lexical priming to occur.

Methods

A total of 114 participants from the same population as Experiment 1 (mean
age = 34.73; 31 male, 83 female; 103 white, 3 black, 6 Asian, 2 mixed) were
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Figure 3. Example of a matching and naming scene for Experiment 2. The matching trials consist of
different color and shading features compared to the naming trials.

recruited (none of these participants took part in Experiment 1), with 23
participants removed from the analyses due to the screening criteria. The materials
for the main experimental trials were the same as in Experiment 1, except that the
shape features were changed as follows for the matching trials: the colors blue/red
from Experiment 1 were replaced with the colors orange/green, respectively, and the
features big/small were replaced with the features light/dark colors, respectively
(with all shapes being the same size; see Figure 3). These changes meant that no
adjectives that appeared in the matching trials would be reused in the naming
(e.g., the color orange may depict some shape attributes in the matching trials but
would never be relevant for any shape attribute in the naming trials). The procedure
and statistical analyses (as well as the specific rationale for the statistical analyses as
detailed in section 2.1) were the same as those in Experiment 1.

Results

Of the 114 participants, 20 participants did not believe that their interlocutor was a
computer/human when told that they would be conducting the experiment with a
computer/human, respectively, and their responses were removed from further
analyses. Three further participants incorrectly named the target shape more than
one-third of the time and were excluded from further analyses, leaving a total of
2744 usable trials after removing 236 incorrect trials (55 and 36 participants in the
computer/human conditions with 1658 and 1086 trials, respectively). Participants
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Table 4. LME results with usage and interlocutor (conditional R* = .548, marginal R? = .245)

Fixed Effects B SE z p
Intercept -0.85 0.18 -4.59 <.001
Usage -1.35 0.17 -7.88 <.001
Interlocutor 0.31 0.16 1.92 .055
Usage: Interlocutor 0.27 0.16 l1.67 .096
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 1.85/1.36

Items: (intercept) 0.25/0.50

Items: Usage 0.10/0.32/-0.74

Note: This model including participants who did not believe the interlocutor manipulation produced broadly the same
results, with a significant intercept and main effect of usage and interlocutor, and a non-significant usage/interlocutor
interaction.

on average produced redundant and non-redundant descriptions in 38.8% and
61.2% of their responses, respectively.

As in Experiment 1, a first analysis was done by building a binomial LME model
with the redundant and non-redundant responses (using non-redundant responses
as the baseline level) and including usage (redundant vs. non-redundant
interlocutor) and interlocutor (human vs. computer interlocutor) as interacting
predictors. As detailed in Table 4, there were fewer redundant (38.8%) than non-
redundant (61.2%) responses, as indicated by the significant intercept (see Figure 4).
Participants were more likely to produce redundant descriptions when addressing a
redundant interlocutor (59.0%) than a non-redundant interlocutor (18.4%), as
indicated by the significant main effect of usage. There was a marginally significant
main effect of interlocutor, tentatively suggesting that participants increased their
redundancy usage when interacting with computers (39.5%) compared with
humans (37.8%). The interaction between usage and interlocutor was not
significant, indicating that the effect of usage does not differ between the human
and computer interlocutors.

In order to explore how redundancy usage progressed across the trials, a further
LME model (Table 5) was built with usage and trial (logged trial number) as
interacting predictors. Usage was found again to have a significant main effect, and
more crucially, there was a significant main effect of trial, suggesting that
participants produced fewer redundant descriptions as the experiment progressed.
The interaction between usage and trial was also significant (see appendix for the
figure), with separate analyses indicating that the effect of trial was stronger in the
non-redundant condition ( = -1.21, SE = 0.22, z = -5.61, p < .001) compared
to the redundant condition (§ = -0.40, SE = 0.17, z = -2.37, p = .018).

Another LME model (Table 6; see appendix for figure) was built to explore if
ToM abilities and the perceived competence of the interlocutor affect redundancy
alignment, with interlocutor and ToM as interacting predictors and competency as a
non-interacting predictor. There was a significant main effect of ToM, suggesting
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Table 5. LME results with usage and trial (conditional R? = .600, marginal R? = .280)

Fixed Effects B SE z p
Intercept 0.88 0.25 3.57 <.001
Usage -0.65 0.23 -2.82 .005
Trial -0.68 0.06 -10.72 <.001
Usage: Trial -0.29 0.06 -4.59 <.001
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 2.25/1.50

Items: (intercept) 0.30/0.55

Items: Usage 0.08/0.27/ -0.84

Note: This model including participants who did not believe the interlocutor manipulation produced the same results.
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Figure 4. Proportion of redundant responses for usage and interlocutor (error bars show the 95% Cls).

that higher ToM scores were associated with less redundancy usage. However, the
interaction between interlocutor and ToM was not significant, indicating that ToM
does not aid in establishing an interlocutor model that affects alignment rates
between human and computer interlocutors. There was a marginally significant
effect of competency, indicating that interlocutors who were perceived as having
higher competency were aligned to a greater extent. The main effect of interlocutor
as well as the interaction between interlocutor and ToM were not significant,
indicating that alignment rates do not differ between the human and computer
interlocutors when taking into account ToM and competency, with ToM having
similar effects across the human and computer interlocutors as well.
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Table 6. LME results with interlocutor, ToM, and competency (conditional R? = .435, marginal R*> = .056)

Fixed Effects B SE z p
Intercept -3.32 1.40 -2.36 .018
Interlocutor 0.16 0.95 0.17 .863
ToM 3.47 131 2.66 .008
Competency 0.33 0.17 1.93 .054
Interlocutor: ToM -0.47 1.30 -0.36 717
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 2.05/1.43

Items: (intercept) 0.16/0.40

Note: This model including participants who did not believe the interlocutor manipulation did not find any significant
effects.

Table 7. LME results with usage and trial (conditional R? = .413, marginal R> = .358)

Fixed Effects B SE z p
Intercept 0.52 0.17 3.04 <.001
Usage -0.77 0.15 -5.25 <.001
Trial -0.41 0.06 -7.30 <.001
Usage: Trial -0.23 0.06 -4.17 <.001
Random Effects Estimate (explained variance/standard deviation/correlation)
Subjects: (intercept) 0.07/0.27

Items: (intercept) 0.23/0.48

Note: This model including participants who did not believe the interlocutor manipulation produced the same results.

A Wilcoxon rank-sum test using the means of the perceived competency data for
human and computer interlocutors was done to explore if participants viewed
humans or computers as more competent in the experimental task. This test was
used over other similar tests, as perceived competency is not normally distributed
for both the human and computer conditions (W = 0.62/ 0.76, respectively, and ps
<.001), while homogeneity of variances between these conditions was met
(F(1) = 0.836, p = .357). No significant difference was found for this test
(W = 837.0, p = 0.164), suggesting that humans (6.44) and computers (6.25) were
not perceived as having different competency levels.

Discussion

Experiment 2 differed from Experiment 1 in having no overlap in the target shape
properties (e.g., size or color) between the matching and naming trials. As in
Experiment 1, we found that participants used more redundancies when interacting
with a redundant interlocutor compared to a non-redundant interlocutor, indicating
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that speakers align to the redundancy usage patterns of their interlocutor. Crucially,
this alignment could not have been due to lexical priming, as there was no lexical
overlap between words that people heard to describe the shapes and words used in
their productions. Redundancy usage also decreased over time (as in Experiment 1),
suggesting again that redundancy usage is effortful and/or that utterances become
more efficient with increased exposure to the linguistic task at hand. Redundancy
usage decreased at a faster rate with non-redundant interlocutors compared with
redundant interlocutors, entailing that people align to their interlocutor’s (non-)
redundancy usage at the initial stages of interaction and that this alignment
strengthens over time with non-redundant interlocutors but weakens with redundant
interlocutors. In contrast to Experiment 1, the type of interlocutor and ToM affected
redundancy usage and alignment. Participants on average produced more redundant
descriptions towards computers than humans, and higher ToM individuals also were
found to align to a greater degree with the redundancy usage behavior of their
interlocutor, which could be due to higher ToM allowing for one to take more notice
of the specific linguistic behavior of their interlocutor and in turn copy this behavior in
subsequent interaction. However, this effect of higher ToM and increased alignment
was the same with human and computer interlocutors, suggesting that ToM does not
affect the differentiating of interlocutor characteristics enough to impact any form of
goal-directed redundancy alignment.

Experiment 3

In Experiments 1 and 2, the participants were merely told that they would be
interacting with a computer or human interlocutor, and these interlocutors
interacted with the participants via typed responses. Experiment 3 went a step
further in distinguishing these two different types of interlocutors by having the
computer and human interlocutors verbally produce their responses in a
computerized and human voice, respectively. This was done to create a more
apparent difference between these two interlocutors in order to further test if
redundancy alignment is modulated by the type of interlocutor.

Methods

A total of 117 participants from the same population as Experiments 1 and 2 (mean
age = 35.52; 39 male, 78 female; 105 white, 4 black, 4 Asian, 4 mixed) were
recruited (none of these participants took part in Experiment 1 or 2), with 26
participants removed from the analyses due to the screening criteria. The materials
for the main experimental trials were the same as in Experiment 1, except that the
interlocutors’ responses in the matching trials consisted of speech rather than typed
script (with the interlocutor content being the same, and the participants in the
matching trial still producing typed responses). The human speech stimuli were
generated via the Google Text-to-Speech platform (https://cloud.google.com/text-
to-speech), which produces naturalistic and consistent speech from text. This
method of speech generation was chosen as it creates speech that is more consistent
in terms of speech rate, volume, and vocal quality than layperson recordings. The
computer speech stimuli were generated by applying a vocoder to the human speech
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Figure 5. Proportion of redundant responses for usage and interlocutor (error bars show the 95% Cls).

stimuli, which transforms the speech to make it sound artificial and robotic. The
procedure and statistical analyses (as well as the specific rational for the statistical
analyses as detailed in section 2.1) were the same as in Experiment 1.

Results

Of the 117 participants, 26 participants did not believe that their interlocutor was a
computer/human when told that they would be conducting the experiment with a
computer/human, respectively, and their responses were removed from further
analyses. Of the remaining 2981 responses, 204 were incorrect and were removed
from further analyses, leaving a total of 2777 usable trials (58 and 33 participants in
the computer and human interlocutor conditions, with 1779 and 998 trials,
respectively). Participants on average produced redundant and non-redundant
descriptions in 41.4% and 58.6% of their responses, respectively.

As in Experiments 1 and 2, a first analysis was done by building a binomial LME
model with the redundant and non-redundant responses (using non-redundant
responses as the baseline level) and including usage (redundant vs. non-redundant
interlocutor) and interlocutor (human vs. computer interlocutor) as interacting
predictors. As detailed in Table 6, there were fewer redundant (41.4%) than non-
redundant (58.6%) responses, as indicated by the significant intercept (see Figure 5).
Participants were more likely to produce redundant descriptions when addressing a
redundant interlocutor (68.1%) than a non-redundant interlocutor (15.4%), as
indicated by the significant main effect of usage. The main effect of interlocutor as
well as the interaction between usage and interlocutor was not significant, indicating
that redundancy rates do not differ between the human and computer interlocutors
and that the effect of usage does not differ between these interlocutors.
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Table 8. LME results with interlocutor, ToM, and competency (conditional R? = .039, marginal R? = .003)

Fixed Effects B SE z p
Intercept 0.58 0.40 1.45 147
Interlocutor -0.08 0.34 -0.23 .821
ToM 0.00 0.48 -0.01 .993
Competency 0.10 0.04 2.37 .018
Interlocutor: ToM 0.13 0.47 0.27 791
Random Effects Estimate (explained variance/standard deviation/correlation)
Items: (intercept) 0.12/0.35

Note: This model including participants who did not believe the interlocutor manipulation produced the same results.

Table 9. Summary of results across all experiments

Analysis Experiment 1 Experiment 2 Experiment 3
Usage <.001 <.001 <.001
Interlocutor .033 .055 .267
Usage: Interlocutor .259 .096 .627
ToM .830 .008 993
Interlocutor: ToM .203 717 791
Competency .258 .054 .018
Interlocutor competency 0.35 .360 .020
Trial <.001 <.001 <.001
Usage: Trial <.001 <.001 <.001

In order to explore how redundancy usage progressed across the trials, a further
LME model (Table 7) was built with usage and trial (logged trial number) as interacting
predictors. Usage was found again to have a significant main effect, and more crucially,
there was a significant main effect of trial, suggesting that participants produced fewer
redundant descriptions as time progressed. The interaction between usage and trial was
also significant (see appendix for figure), with separate analyses indicating that the
effect of trial was stronger in the non-redundant condition (B = -0.62, SE = 0.08,
z = -7.68, p < .001) compared to the redundant condition (f = -0.18, SE = 0.08,
z = -234,p = .019).

Another LME model (Table 8) was built to explore if ToM abilities and the
perceived competence of the interlocutor affect redundancy alignment, with
interlocutor and ToM as interacting predictors and competency as a non-
interacting predictor. The main effect of competency was found to be significant,
suggesting that participants aligned to a greater extent with interlocutors who were
perceived higher in competency, with separate analyses indicating this result is driven
by less redundancy usage towards non-redundant interlocutors who were perceived as
more competent (f = 0.21, SE = 0.06, z = 3.54, p < .001; see Figure 6), with no
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Figure 6. Proportion of aligned responses for competency, redundancy, and usage (shading shows the
95% Cls).

effect of competency towards redundant interlocutors (f = 0.02, SE = 0.06,
z =031, p = .759). The main effects of interlocutor and ToM, as well as the
interaction between these factors, were not significant, indicating that redundancy
alignment rates do not differ between the human and computer interlocutors and do
not depend on ToM abilities.

A Kruskal-Wallis test using the means of the perceived competency data for
human and computer interlocutors was done to explore if participants viewed
humans or computers as more competent in the experimental task. This test was
used over other similar tests, as perceived competency is not normally distributed
for both the human and computer conditions (W = 0.47/ 0.59, respectively, and
ps <.001), and homogeneity of variances between these conditions was not met
(F(1) = 4281, p = .041). A significant difference was found for this test
(¥*(1) = 5.197, p = 0.023), suggesting that humans (6.64) were perceived to be
more competent compared to computers (6.16).

Discussion

Experiment 3 was the same as Experiment 1, except that participants received
spoken (instead of typed) descriptions produced by their interlocutor in the
matching trials. Similar to Experiments 1 and 2, people used more redundancies
when interacting with a redundant interlocutor compared to a non-redundant
interlocutor, indicating that speakers align to the redundancy usage patterns of their
interlocutor. Redundancy usage also decreased over time (as in Experiments 1 and 2),
suggesting again that redundancy usage is effortful and that utterances become more
efficient with increased exposure to the linguistic task at hand. Redundancy usage
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Figure 7. Proportion of aligned responses for usage and experiment (i.e., redundancy usage comparisons
between Experiments 1, 2, and 3) (error bars shows the 95% Cls).

decreased at a faster rate with non-redundant interlocutors compared with redundant
interlocutors, entailing that people align to their interlocutor’s redundancy usage
behavior at the initial stages of interaction and that this alignment strengthens over
time with non-redundant interlocutors but weakens with redundant interlocutors.
Competency also had an effect on redundancy alignment, with participants aligning
more when they perceived a non-redundant interlocutor to be linguistically more
competent. We also observed a significant difference in perceived linguistic
competency, with lower competency ratings given to computer interlocutors than
to human interlocutors.

Comparison across experiments

In order to compare redundancy alignment between the experiments, an LME
model was built with experiment (experiments were dummy-coded with
Experiment 1 as the baseline level) and usage as interacting predictors, with the
dependent variable being redundancy alignment. The main effect of usage
(p = 0.76, SE = 0.07, z = 11.14, p < .001) was found to be significant, indicating
greater rates of redundancy alignment when interacting with a non-redundant
interlocutor (83.3%) than a redundant interlocutor (60.9%). The significant
interaction between usage and Experiment 3 suggests that alignment differences
with redundant and non-redundant interlocutors differ in magnitude between
Experiment 3 and Experiment 1 (B = -0.26, SE = 0.08, z = -3.14, p = .002; see
Figure 7), with separate analyses revealing that there was more alignment in
Experiment 3 compared to Experiment 1 with redundant interlocutors (p = 0.65,
SE = 0.14,

https://doi.org/10.1017/50142716425100118 Published online by Cambridge University Press


https://doi.org/10.1017/S0142716425100118

24 Max S. Dunn and Zhenguang G. Cai

z = 4.69, p < .001) but the same with non-redundant interlocutors (p = 0.01,
SE = 0.16, z = 0.05, p = 0.96). Table 9 gives a summary of the results across the
three experiments.

In addition, chi-squared tests were used in order to explore if under-
informative response rates differed between computer and human interlocutors
for each experiment. These tests all were non-significant (p = .544, 913, 897 for
Experiments 1, 2, 3, respectively), indicating that people produce under-
informative responses at similar rates towards computers and humans.

General discussion

The three experiments, along with the combined experimental analyses,
demonstrate that speakers do produce redundancies and align with the higher-
order linguistic behavior of redundancy usage (all experiments). This alignment is
influenced by the perceived competency of the interlocutor (Experiments 2 and 3),
ToM (Experiment 2), and the time course of the interaction (all experiments). These
redundancy usage patterns were quite similar, regardless of whether the matching
trials and naming trials shared the same shape descriptors (Experiment 1 vs. 2),
while redundancy alignment was greater when people heard spoken descriptors
compared to reading typed descriptors (Experiment 1 vs. 3). People in general used
more redundancies with computers than humans as well (Experiments 1 and 2). In
the following discussion, we further examine the role these factors play in
redundancy usage.

Linguistic redundancy

Theoretical accounts of communication typically assert that speakers should eschew
redundancies in their speech (Grice, 1975). Nevertheless, this investigation, in
addition to preceding studies (Deutsch & Pechmann, 1982; Engelhardt et al., 2006),
indicates that speakers frequently incorporate redundancies in their utterances.
Although the bulk of responses were characterized by non-redundant descriptions,
across the three experiments, redundancies featured in approximately one-third of
responses, constituting a sizable minority (see Engelhardt et al., 2006, for a similar
redundancy usage rate). Furthermore, redundancy usage was present even when
speakers never heard redundant utterances from their interlocutor, suggesting that
redundancy usage does not require prior encounters with redundant utterances.
Therefore, while speakers typically adhere to the Maxim of Quantity, this principle
can often be violated (in HCI as well, concurring with Saryazdi et al., 2021).
Why would speakers choose to produce redundancies, though? Redundancies, by
their very nature, comprise superfluous information that may not be needed for
achieving a communicative objective, such as referencing a particular object. Hence,
producing redundancies should demand more effort than refraining from doing so,
given that generating redundancies lengthens a speech utterance, thereby
necessitating greater cognitive and physical exertion on both the speaker and the
audience. It is plausible that speakers opt to include redundancies under the belief
that they assist the comprehender in seeking out and identifying the referenced
object by ensuring that the comprehender has additional information in case some
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information is missed in comprehension (Deutsch & Pechmann, 1982; Rubio-
Fernandez, 2016, Rubio-Fernandez, 2021; Saryazdi et al, 2022). In some scenes
across the three experiments, redundantly mentioning the color or size of the target
shape could reduce the number of possibly referred-to shapes by half, which could
potentially aid the interlocutor in successfully identifying the target shape
(e.g., Rubio-Fernandez, 2016, 2021; Deutsch & Pechmann, 1982). Consequently,
the use of redundancies appears to be a calculated strategy (alongside being driven
by linguistic alignment) to enhance communication success, albeit at the expense of
increased effort on the speaker’s part.

Redundancy alignment in HCI and HHI

The increase in redundancy usage when interacting with a redundant interlocutor
(both in HCI and HHI) is consistent with the interactive alignment model
(Pickering & Garrod, 2004), which suggests that speakers align with their
interlocutor’s redundancy usage, leading to convergence towards the interlocutor’s
linguistic behavior. Primarily, this redundancy alignment appears to stem from an
automatic and interlocutor-independent mechanism. This mechanism asserts that
processing redundant utterances triggers residual activation of a redundant
linguistic element, thereby amplifying the probability of future redundancy usage.
The extent of this alignment was considerable; redundancies were employed in
about 61% of responses when conversing with a redundant interlocutor, in contrast
to only about 17% of responses when interacting with a non-redundant interlocutor.
These findings indicate that people align with higher-order linguistic patterns in
addition to lower-order patterns, such as in phonetic (Pardo, 2006), lexical
(Brennan, 1996), and syntactic (Branigan et al., 2000) alignment. This is also
consistent with the finding that people align with their interlocutor’s usage of basic
and superordinate terms (Cirillo et al., 2022), which can be considered another form
of higher-order linguistic behavior. Note that this redundancy alignment seems to
be independent of lexical alignment, as suggested by the comparison between
Experiments 1 and 2 (and in agreement with Loy & Smith, 2021). This further
supports the notion of the existence of a higher-order redundancy element, which
differs from the mere activation of a lexical item. However, this contrasts with
previous findings of lexical boost effects in syntactic alignment (e.g., Pickering &
Branigan, 1998). This lack of lexical boost in redundancy alignment may be
explained due to the lexical overlap in Experiment 1 consisting of non-head lexical
items (i.e., the adjectives). Syntactic alignment has been found to not be affected by
the repetition of non-head lexical items (Carminati et al., 2019; Cleland & Pickering,
2003), and redundancy alignment may operate in a similar fashion. Note though
that all three experiments in the study included lexical overlap of the head lexical
items (i.e., the nouns). Therefore, if a lexical boost effect involving non-head
adjectives does exist, then this effect may have been overridden by a lexical boost
effect involving head nouns (as lexical boost effects involving heads are likely
stronger than non-head lexical boost effects). Future research should compare
redundancy alignment with and without overlapping head nouns and non-head
adjectives to further examine if lexical boost effects play a role in this type of
alignment.
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Redundancy alignment could also be the outcome of a goal-oriented process, in
which an individual imitates their interlocutor’s linguistic (redundancy) usage in
order to boost communicative success. This is consistent with communication
accommodation theory, whereby speakers converge on the redundancy usage
patterns of their interlocutor in order to meet the expectation of an interaction
(Giles, 2008). In scenarios where the interlocutor uses redundancies (e.g., in color or
size), the individual might deduce that the interlocutor prefers to use size/color
(despite being redundant) to single out a target object and therefore tend to use
redundancies in subsequent interactions in order for the interlocutor to better
identify the target object. However, this goal-oriented alignment does not appear to
depend on the interlocutor’s identity (at least in our setup), as redundancy
alignment towards computers was not greater than towards humans (with this
patterning of results being present with participants who believed that their partner
was a human/computer when told they would be conducting the task with a human/
computer, respectively). This concurs with earlier research demonstrating that
people tend to align syntactically at the same rate with computers and humans
(Brennan, 1991; Cowan et al., 2015; Heyselaar et al., 2017), while contrasting with
research showing that people tend to lexically align more with computers than
humans (Branigan et al., 2004; Branigan et al., 2011; Bergmann, Branigan, & Kopp,
2015; Shen & Wang, 2023). Overall, this suggests that lexical alignment occurs both
from an automatic mechanism such as priming and from a goal-directed
mechanism such as interlocutor modeling, but alignment in syntax and redundancy
usage seems to mainly come from an automatic mechanism.

Nonetheless, there was a tendency (albeit rather small) for people to use more
redundancies (i.e., an overall increase in redundancy usage) with computers
compared to humans. These results may arise from a goal-oriented effect of
interlocutor modeling on general redundancy production rather than on
redundancy alignment specifically. Here, people may use more redundancies
towards computers as a strategy for increasing comprehension with a linguistically
less competent interlocutor (i.e., the computer). This is consistent with the notion of
people altering their utterances to a greater extent towards computers as a result of a
goal-oriented process (e.g., Branigan et al., 2004). In addition, higher perceived
competency of the interlocutor was associated with less redundancy usage, further
supporting the notion that people may use more redundancies with interlocutors
they perceive as less competent in order to aid them in comprehension
(e.g., Deutsch & Pechmann, 1982; Rubio-Fernandez, 2016; Arts et al, 2011).
Furthermore, there was a difference in the perceived competency between humans
and computers (Experiment 3), suggesting that the increased redundancy usage
towards computer interlocutors was due to people trying to aid a linguistically less
competent interlocutor.

Overall, these results of redundancy alignment not being modulated by
interlocutor identity (i.e., computer vs. human) and general redundancy usage
increasing slightly for computer interlocutors concur with past research showing
both similarities and differences between HCI and HHI. In general, people seem to
apply similar behavioral schemas in HCI as in HHI due to people viewing artificial
entities as social actors (Krdmer, 2005; Bartneck et al., 2009; Groom et al., 2011),
approximating human-like competencies (McKee et al. 2023), having moral
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standing (Malle et al., 2015, 2019), and having highly competent perceptual and
linguistic abilities (Saryazdi et al., 2021), leading to people treating computers as
humans (e.g., Nass et al, 1997). This is especially the case with advanced
technologies such as large language models that approximate human competencies
in areas such as language to a much larger extent than in the past (e.g., Barattieri di
San Pietro et al., 2023). Likewise, our results generally show remarkable similarities
between HCI and HHI, pointing to this general trend of these two interaction
modalities converging.

However, small differences in redundancy usage between HCI and HHI also
suggest that people still perceive differences between these interlocutors, with these
perceptions affecting linguistic production. These perception differences were found
in the post-experiment ratings, as well as in the experimental picture naming and
matching task that is relatively easy to complete. Therefore, we propose that
artificial intelligence artefacts (such as, large language models, robots) are treated as
quasi-humans, due to the tendency for people to perceive and treat artificial entities
as qualitatively human in the broad majority of circumstances but, in some cases,
with subtle differences (i.e., small quantitative differences in a certain behavior),
indicating that these entities are viewed as quasi-human but not fully human. Of
course, linguistic alignment is only one small area in the broad realm of interactional
possibilities, and future research should set out to examine the extent to which
people interact with artificial entities as quasi-human. Nonetheless, these results
concur with past findings showing that people mindlessly apply social norms onto
a-social entities such as computers and hence treat computers as human (Nass &
Moon, 2000, Lee, 2010) and that people treat artificial entities as humans when these
entities perform a task as expected (Lee, 2024).

Additional modulators of redundancy usage and alignment

Upon comparing alignment rates towards interlocutors who either gave written or
spoken responses, alignment towards spoken redundant interlocutors was stronger
compared to written redundant interlocutors. This effect might be attributed to
redundancies being more noticeable in spoken form. When redundancies are heard
in speech, people may be more aware of this linguistic behavior and thus are more
likely to include redundancies in their subsequent utterances (even when using a
different response medium than their interlocutor, in this case typing). This
stronger alignment may also be a consequence of increased attention directed
towards the identity of the interlocutor. Hearing computer or human speech may
draw more attention to the fact that the interlocutor is a computer or a human,
respectively, and could therefore accentuate the alignment differences between these
two types of interlocutors. However, past research has found that alignment rates do
not change when hearing human-like versus more artificial-sounding voices
(Cowan & Branigan, 2015), suggesting that hearing a voice might not necessarily
lead to more attention being paid to interlocutor-specific characteristics.
Redundancy alignment may also be modulated by individual differences in
addition to the identity of one’s interlocutor. Higher ToM was associated with
increased redundancy alignment, which suggests that ToM may play a role in
redundancy alignment whereby superior ToM abilities aid the understanding of the
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mental states of others (Premack & Woodruff, 1978) and therefore facilitate a better
discernment of an interlocutor’s redundancy usage, creating an opportunity to align
with this linguistic behavior. However, as ToM was not experimentally manipulated,
the direction of causation between ToM and redundancy alignment cannot be
established, and another likely possibility is that these are linked via a third causative
factor such as attention. In addition, ToM does not seem to play a role in
establishing a more definite interlocutor model, as ToM did not modulate the rates
in which speakers aligned to the redundancy usage patterns of computers compared
to humans. This may be due to the fact that, even though people are more
knowledgeable in general about humans compared to computers (Epley et al., 2007),
discerning the differences between humans and computers probably is relatively
easy, thereby making any increase in ToM skills not beneficial in creating adequate
mental models of these two types of interlocutors. The measure of ToM as well was
found to not have high internal reliability, further suggesting that the results
involving ToM should be interpreted with caution.

The varying competency perceptions that speakers had of their interlocutors
also affect alignment, whereby speakers aligned more towards non-redundant
interlocutors who they perceived as more competent, with this trend absent
towards redundant interlocutors. This effect is driven by speakers using fewer
redundancies overall with non-redundant interlocutors who were perceived as
more competent, suggesting that redundancy usage is being used as a strategy to
increase communicative success with less competent interlocutors. These
linguistic behaviors are consistent with the tentative finding in this study that
speakers in general use more redundancies with computers than humans, possibly
as a strategy to aid computers (i.e., the perceived less competent interlocutor) in
comprehension compared to humans (i.e., the perceived more competent
interlocutor). However, this finding of increased redundancy usage towards
computers was only significant in Experiment 1, marginally significant in
Experiment 2, and non-significant in Experiment 3, suggesting that while in some
cases people may use more redundancies towards computers, redundancy usage is
broadly similar towards these interlocutors. Therefore, it seems that redundancy
usage is driven to a larger extent by competency perceptions that individuals have
of the comprehender and to a lesser extent by competency perception differences
across humans and computers.

While throughout this study we have differentiated computer and human
interlocutors mainly through competence, it should be noted that these interlocutors
differ on a myriad of traits. Competency was examined primarily in this study, as
much past research comparing HCI and HHI has looked at competency differences to
explain perceptual and behavioral differences between these interaction modalities
(e.g., Branigan et al., 2004; Branigan et al., 2011; Pearson et al., 2006) and found that
competency is an influential predictor when comparing HCI to HHI. However, other
differences (e.g., agency, sociability, etc.) may modulate differences between HCI and
HHI, including in redundancy usage and alignment. While looking at traits beyond
competency is beyond the scope of this study, future research should examine how a
broader range of traits cause divergences between HCI and HHIL

In addition, as the interactions progressed, people tended to decrease their use of
redundancies with both redundant and non-redundant interlocutors (all
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experiments), which suggests that redundancy usage is effortful (at least in typing,
which was the response medium across all experiments). This intuitively seems
plausible, as the usage of redundancies involves noticing additional properties of a
referent and producing a larger volume of linguistic output. Note that the current
study did not have participants verbally respond; however, verbal responses are still
predicted to show the same time course pattern as written responses. While verbal
responses may be somewhat less effortful to produce than written responses,
producing verbal redundancies still involves increased attentional and motor effort
in formulating and producing longer utterances and therefore is likely to show a
similar (but perhaps slower) decrease in redundancy usage over time. However, this
finding contrasts with the observation that redundancy alignment intensifies as the
interaction continues (Loy & Smith, 2021). Nonetheless, the Loy and Smith study
did not measure redundancy in the intervening filler trials where individuals had the
opportunity to produce redundancies, making the true rate of redundancy
alignment across all utterances during the interactions unclear.

While it is plausible that the effort required to produce redundancies causes
redundancy usage to decrease over time, this study did not explicitly test this
prediction, and other factors may have caused this decrease. As the interaction
progressed in the experimental trials, participants may have developed the belief
that redundancy usage may no longer be helpful for their interlocutor, as the trials
were programmed to go smoothly and without concerns or signs of comprehension
difficulty from the interlocutor. Therefore, this belief in task competence of the
interlocutor over time may have driven the reduction in redundancy usage over
time and not from redundancies being effortful. Likewise, it is possible that both of
these factors are at play in reducing redundancy usage over time, and future
research should conduct experiments to test these predictions.

The rate of redundancy usage reduced more slowly with redundant interlocutors,
suggesting that people make an attempt to align with redundant interlocutors, but
this alignment still decreases over time. In contrast, the reduction in redundancies
over time when interacting with non-redundant interlocutors may merely reflect a
process where people produce more efficient (i.e., less effortful) utterances as the
interaction progresses, or due to people believing that redundancies are no longer
helpful for the interlocutor, rather than a result of redundancy alignment. This
aligns with the inverse frequency effect, where people align more strongly with less
frequent than with more frequent constructions (e.g., Hartsuiker & Westenberg,
2000; Scheepers, 2003). Various studies (Deutsch & Pechmann, 1982; Engelhardt
et al., 2006), along with the present one, have found redundant utterances to be less
frequent than non-redundant utterances. Therefore, alignment towards redundant
utterances may be stronger than towards non-redundant ones. The slower reduction
of redundant utterances when interacting with redundant interlocutors than non-
redundant ones might thus reflect stronger alignment towards redundancies. In
such cases, this increased alignment could mitigate some of the effects of a general
decrease in redundancy usage over time.

The overall reduction in redundancies and the absence of increased alignment
over time are in line with the concept of rapid decay of residual activation (Pickering
& Branigan, 1998; Branigan, Pickering, & Cleland, 1999). Given this rapid decay,
redundancy alignment does not appear to accumulate in strength even as the
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interaction progresses. Instead, the alignment is primarily driven by the direct
recent exposure to redundant or non-redundant utterances in the matching
trials.

Applications

As well as informing linguistic theory, the study findings also can inform designers
of computer natural language systems on the nature of linguistic interactions
(e.g., Stoyanchev & Stent, 2009). As rates of redundancy usage seem to be dropping
across time, these systems can be engineered to expect this linguistic behavior,
which can therefore aid in system comprehension and task performance by
informing on the linguistic units that are likely to be produced by the user. More
generally, the finding of linguistic alignment in redundancy usage creates the
possibility for systems to subtly direct users to produce or not produce redundancy,
which can constrain the potential linguistic space and aid in comprehension for
speech recognition systems (Cowan et al., 2015). Thus, having users use or avoid
redundancy due to linguistic alignment, and concurrently systems with expectations
that these redundancy patterns will be used, can greatly aid speech recognition and
increase communicative success. In addition, when a system detects increased
redundancy usage directed towards it from a user, this may be an indication that the
user does not think that the system has comprehended correctly or that the system is
not achieving the communicative goal. This can be inferred from the finding that
greater redundancy usage was found when people perceived their interlocutor as
having lower competence. Therefore, in these situations systems can choose a
different (but also likely) comprehension of the linguistic input received and/or
provide a different response to increase the likelihood of communicative success.

Conclusion

In sum, this study shows that speakers frequently produce redundancies, and they
align their redundancy usage with that of their conversation partner. The degree of
redundancy alignment is modulated by several factors, including the perceived
competence of the conversation partner, the modality of the utterances produced by
the interlocutor (spoken versus written), individual differences in ToM, and the
time course of the interaction. The alignment of redundancies (and redundancy
usage in general) seems to originate from both an automatic, interlocutor-
independent process and a more goal-oriented process, in which individuals adjust
their language use based on the perceived linguistic competence of their
interlocutor. In doing so, they may use redundancies as a strategy to facilitate
successful communication. Overall, people broadly treat computers the same as
humans, suggesting that people view computers and similar technologies as quasi-
human. (i.e., almost but not quite human). Future research should investigate these
various factors in more depth, as well as exploring the potential interplay between
different levels of linguistic behavior, such as lexical and syntactic alignment, in
order to gain a comprehensive understanding of how speakers adjust their language
in real-time conversation.

https://doi.org/10.1017/S0142716425100118 Published online by Cambridge University Press


https://doi.org/10.1017/S0142716425100118

Applied Psycholinguistics 31

Replication package. The data and analytical scripts can be found on Open Science Framework (https://
osf.io/2kzn9/).
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Appendix
Figures
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Figure A. Proportion of redundant responses for usage and trial for Experiment 1 (shading shows the 95%
Cl).
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Figure B. Proportion of redundant responses for usage and trial for Experiment 2 (shading shows the 95%
Cls).
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Figure C. Proportion of aligned responses for ToM for Experiment 2 (shading shows the 95% Cls).
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Figure D. Proportion of redundant responses for usage and trial for Experiment 3 (shading shows the 95%
Cls).
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