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On the smallest poles of topological zeta functions

Dirk Segers and Willem Veys

Abstract

We study the local topological zeta function associated to a complex function that is
holomorphic at the origin of C2 (respectively C3). We determine all possible poles less
than −1/2 (respectively −1). On C2 our result is a generalization of the fact that the log
canonical threshold is never in ]5/6, 1[. Similar statements are true for the motivic zeta
function.

1. Introduction

1.1

Let f be the germ of a holomorphic function on a neighbourhood of the origin 0 in Cn which satisfies
f(0) = 0 and which is not identically zero. Let g : V → U ⊂ Cn be an embedded resolution of a
representative of f−1{0}. We denote by Ei, i ∈ T , the irreducible components of g−1(f−1{0}), and
by Ni and νi − 1 the multiplicities of f ◦ g and g∗(dx1 ∧ · · · ∧ dxn) along Ei. The (Ni, νi), i ∈ T ,
are called the numerical data of the resolution (V, g). For I ⊂ T denote also EI :=

⋂
i∈I Ei and

◦
EI := EI \ (

⋃
j /∈I Ej).

The set of germs of holomorphic functions on a neighbourhood of 0 ∈ Cn will be denoted by On.

1.2

To f one associates the local topological zeta function

Zf (s) = Ztop,0,f (s) :=
∑
I⊂T

χ(
◦

EI ∩g−1{0})
∏
i∈I

1
νi + sNi

.

Here s is a complex variable and χ(·) denotes the topological Euler–Poincaré characteristic.
The remarkable fact that Zf (s) does not depend on the chosen resolution was first proved in [DL92]
by expressing it as a limit of Igusa’s p-adic zeta functions.

1.3

The log canonical threshold c0(f) of f at 0 ∈ Cn is by definition

sup{c ∈ Q | the pair (Cn, c div f) is log canonical in a neighbourhood of 0}.

We can describe it (see [Kol97, Proposition 8.5]) in terms of the embedded resolution (V, g) as
c0(f) = min{νi/Ni | i ∈ T}. In particular, this minimum is independent of the chosen resolution.
Consequently, −c0(f) is the largest candidate pole of Zf (s). The log canonical threshold has already
been studied in various papers of Alexeev, Ein, Kollár, Kuwata, Mustaţă, Prokhorov, Reid, Shokurov
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and others; in particular, the sets

Tn := {c0(f) | f ∈ On},

with n ∈ Z>0, have been the subject of interesting conjectures.

It is natural to investigate whether more quotients −νi/Ni, i ∈ T , yield invariants of the germ
of f at 0. Of course, the whole set {−νi/Ni | i ∈ T} depends on the chosen resolution (for n = 2,
however, one could consider such a set associated to the minimal resolution), but its subset consisting
of the poles of Zf (s) is an invariant of f . Philosophically, these poles are induced by ‘important’
components Ei, which occur in every resolution. For n ∈ Z>0, we define the set Pn by

Pn := {s0 | ∃f ∈ On : Zf (s) has a pole in s0}.

The case n = 1 is trivial: T1 = {1/i | i ∈ Z>0} and P1 = {−1/i | i ∈ Z>0}.

1.4

When n = 2, it is known that T2 ∩ ]5/6, 1[ = ∅ (see [Rei80]). Because it follows from [Vey95] that
−c0(f) is a pole (and thus the largest pole) of Zf (s), the statement P2 ∩ ]−1,−5/6[ = ∅ would be
a remarkable generalization; it is in fact not hard to prove. In this article, we will prove more:

P2 ∩ ]−∞,−1/2[ = {−1/2 − 1/i | i ∈ Z>1}
= {−1,−5/6,−3/4,−7/10, . . . }. (1)

1.5

Kollár proved in [Kol94] that T3 ∩ ]41/42, 1[ = ∅. It turns out that there is no analogous result for
P3. In fact, we will give examples of zeta functions with poles in ]−1,−41/42[ which are, moreover,
arbitrarily near to −1. On the other hand, we prove the analogue of (1), which appears to be

P3 ∩ ]−∞,−1[ = {−1− 1/i | i ∈ Z>1}. (2)

In general, we expect that Pn ∩ ]−∞,−(n− 1)/2[ = {−(n − 1)/2 − 1/i | i ∈ Z>1}.

Remark. One can easily show that Pn ∩ ]−∞,−n + 1[ = ∅ if n � 2.

2. Curves

2.1

We will determine P2 ∩ ]−∞,−1/2[. Let f be the germ of a holomorphic function on a neighbourhood
of the origin 0 in C2 which satisfies f(0) = 0 and which is not identically zero. Let (V, g) be the
minimal embedded resolution of f−1{0}. Write g = g1 ◦ · · · ◦ gt as a composition of blowing-ups
gi, i ∈ Te := {1, . . . , t}. The exceptional curve of gi and also the strict transforms of this curve are
denoted by Ei. The irreducible components of f−1{0} and their strict transforms are denoted by
Ej , j ∈ Ts.

2.2

The dual (minimal) embedded resolution graph of f−1{0} is obtained as follows. One associates a
vertex to each exceptional curve in the minimal embedded resolution (represented by a dot), and
to each branch of the strict transform of f−1{0} (represented by a circle). One also associates to
each intersection an edge, connecting the corresponding vertices. The fact that Ei has numerical
data (Ni, νi) is denoted by Ei(Ni, νi).
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2.3
Let Ei be an exceptional curve and let Ej , j ∈ J , be the components that intersect Ei in V . Set
αj = νj − (νi/Ni)Nj for j ∈ J . Then we have the relation∑

j∈J

(αj − 1) + 2 = 0, (3)

which was first proved by Loeser in [Loe98], and later more conceptually by the second author in
[Vey91a].

Suppose that αj 
= 0, which is equivalent to −νi/Ni 
= −νj/Nj , for all j ∈ J . Then one computes
easily that the contribution R of Ei to the residue of Zf (s) at the candidate pole −νi/Ni is

1
Ni

(
χ(

◦
E{i}) +

∑
j∈J

α−1
j

)
(4)

(see [Vey95, § 2.3]). From (3) and (4) it follows that R = 0 if J contains one or two elements. This
is the easy part of the following theorem. The other part is more difficult and is proved in [Vey95].

Theorem 2.4. We have that s0 is a pole of Zf (s) if and only if s0 = −νi/Ni for some exceptional
curve Ei intersecting at least three times other components, or s0 = −1/Nj for some irreducible
component Ej of the strict transform of f−1{0}.

The following lemma is obtained by elementary calculations.

Lemma 2.5. Suppose that we have blown up k times but we do not yet have an embedded resolution.
Let P be a point of the strict transform of f−1{0} with multiplicity µ in which we do not yet have
normal crossings. Let gk+1 be the blowing-up at P .

a) Suppose that two exceptional curves Ei and Ej contain P . Then the new candidate pole
−νk+1/Nk+1 = −(νi + νj)/(Ni + Nj + µ) is larger than min{−νi/Ni,−νj/Nj}.

b) Suppose that exactly one exceptional curve Ei contains P and that µ � 2. Then Ek+1 has
numerical data (Ni + µ, νi + 1) and −(νi + 1)/(Ni + µ) is between −1/µ and −νi/Ni.

c) Suppose that exactly one exceptional curve Ei contains P and that µ = 1. Note that the
two curves are tangent at P because we do not have normal crossings at P . Let gk+2 be the
blowing-up at Ei ∩Ek+1. Because the strict transform of f−1{0} does not intersect Ek+1 after
this blowing-up, we no longer have to blow up at a point of Ek+1. Because Ek+1 is intersected
once, it follows from § 2.3 that the contribution of Ek+1 to the residue at the candidate pole
−νk+1/Nk+1 is zero. The numerical data of Ek+2 are (2Ni+2, 2νi+1), and −(2νi+1)/(2Ni+2)
is between −1/2 and −νi/Ni.

2.6
Suppose that after some blowing-ups we do not have normal crossings at a point P . Suppose also
that the candidate poles associated to the exceptional curves through P are all larger than or equal
to −1/2. Then it follows from the above lemma that the components above P in the final resolution
do not give a contribution to a pole less than −1/2.

Corollary. Zeta functions of singularities of multiplicity at least four do not have a pole in
]−∞,−1/2[\{−1}.

Indeed, every exceptional curve in the minimal embedded resolution of f−1{0} lies above a point
of E1 (considered in the stage when it is created), which has a candidate pole larger than or equal
to −1/2.
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2.7

If f ∈ O2 has multiplicity two or three, we will use the Weierstrass preparation theorem and
coordinate transformations to obtain an ‘easier’ element of O2 with the same zeta function.

We illustrate this in the case that f ∈ O2 has multiplicity three and the homogeneous part of
degree three of f is f3 = y3 + xy2 = y2(y + x). According to the Weierstrass preparation theorem,
we have that f = (y3 + a1(x)y2 + a2(x)y + a3(x))h(x, y), with mult(a1(x)) = 1, mult(a2(x)) � 3,
mult(a3(x)) � 4 and h(0, 0) 
= 0. Because h(0, 0) 
= 0, the resolutions and the local topological
zeta functions of f and y3 + a1(x)y2 + a2(x)y + a3(x) are the same. One can check that there
exists a coordinate transformation (x, y) �→ (x, y − k(x)) such that the last function becomes of
the form y3 + b1(x)y2 + b3(x), with mult(b1(x)) = 1 and mult(b3(x)) � 4. After another coordinate
transformation, we get the form y3 + xy2 + g(x), with mult(g(x)) � 4.

Theorem 2.8. We have

P2 ∩
]
−∞,−1

2

[
=

{
−1

2
− 1

i

∣∣∣∣ i ∈ Z>1

}

and every local topological zeta function has at most one pole in ]− 1,−1/2].

Proof. a) Suppose that mult(f), the multiplicity of f at the origin of C2, is equal to two. Then f is
holomorphically equivalent to y2 or y2 + xk for some k ∈ Z>1. If it is y2, the only pole of Zf (s) is
−1/2. If k = 2, the only pole of Zf (s) is −1. If k is odd, write k = 2r + 1. After r blowing-ups, the
strict transform of f−1{0} is non-singular and tangent to Er. The numerical data of Ei, i = 1, . . . , r,
are (2i, i + 1). To get the minimal embedded resolution, we now blow up twice. The dual resolution
graph and the numerical data are given below:

. . .� � � � � �

�

E1 E2 E3 Er Er+2 Er+1 E1(2, 2)

E2(4, 3)

E3(6, 4)

Er(2r, r + 1)

Er+1(2r + 1, r + 2)

Er+2(4r + 2, 2r + 3)

If k is even and larger than 2, write k = 2r. Easy calculations give the following dual resolution
graph:

. . .� � � � ����
���

�

�

E1 E2 E3 Er−1 Er

E1(2, 2)

E2(4, 3)
E3(6, 4)

Er−1(2r − 2, r)
Er(2r, r + 1)

Because −(2r +3)/(4r +2) = −1/2− 1/(2r +1) and −(r +1)/(2r) = −1/2− 1/(2r), it follows from
Theorem 2.4 that

{s0 | ∃f ∈ O2 : mult(f) = 2 and Zf (s) has a pole in s0} =
{
−1

2
− 1

i

∣∣∣∣ i ∈ Z>1

}
∪

{
−1

2

}
.

Note that Newton polyhedra could also be used to deal with item a, see [DL92].

b) Suppose that mult(f) = 3. Up to an affine coordinate transformation, there are three cases
for f3.

b.1) Case f3 = xy(x + y). After one blowing-up we get an embedded resolution. The poles of
Zf (s) are −1 and −2/3 = −1/2 − 1/6.

b.2) Case f3 = y2(y + x). According to § 2.7, we may suppose that f = y3 + xy2 + g(x), where
g(x) is a holomorphic function in the variable x of multiplicity k � 4. If g(x) = 0, the poles of Zf (s)
are −1 and −1/2. Now consider the case when k is odd. Write k = 2r + 1. After r blowing-ups we
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get an embedded resolution with the following dual resolution graph and numerical data:

. . .� � � � ����
���

�

�

E1 E2 Er−1 Er E1(3, 2)

E2(5, 3)

Er−1(2r − 1, r)

Er(2r + 1, r + 1)

If k is even, write k = 2r. After r + 1 blowing-ups we get the following picture:

. . .� � � � � �

� �

E1 E2 E3 Er−1 Er+1 Er E1(3, 2)

E2(5, 3)
E3(7, 4)

Er−1(2r − 1, r)

Er(2r, r + 1)
Er+1(4r, 2r + 1)

The poles appearing in case b.2 are in the desired set because −(r+1)/(2r+1) = −1/2−1/(4r+2)
and −(2r + 1)/(4r) = −1/2− 1/(4r).

b.3) Case f3 = y3. We may suppose that f is of the form

y3 + a4x
4 + b3yx3 + a5x

5 + b4yx4 + a6x
6 + b5yx5 + · · · ,

where ai, bi ∈ C. If f = f3 = y3 then the only pole of Zf (s) is −1/3. Otherwise there is an
integer r � 1 such that after blowing up r times and always taking the charts determined by
gi(x, y) = (x, xy), we get (g1 ◦ · · · ◦ gr)∗dx∧ dy = xrdx∧ dy and f ◦ g1 ◦ · · · ◦ gr = x3r(y3 + a3r+1x +
b2r+1yx+a3r+2x

2 + b2r+2yx2 +a3r+3x
3 + · · · ), with a3r+1, b2r+1, a3r+2, b2r+2 and a3r+3 not all zero.

The equation of Er in this chart is x = 0 and the numerical data of Er are (3r, r + 1). The zero
locus of y3 +a3r+1x+b2r+1yx+a3r+2x

2 +b2r+2yx2 +a3r+3x
3 + · · · is the strict transform of f−1{0}.

Note that it only intersects Er at this stage.
b.3.i) If a3r+1 
= 0, we obtain the following after blowing up three more times:

. . .� � � � �

�

E1 Er Er+3 Er+2 Er+1

Er(3r, r + 1)

Er+1(3r + 1, r + 2)

Er+2(6r + 2, 2r + 3)

Er+3(9r + 3, 3r + 4)

The pole −(3r + 4)/(9r + 3) is in the interval ]−∞,−1/2] if and only if r = 1, and in this case the
pole is equal to −1/2− 1/12.

b.3.ii) If a3r+1 = 0 and b2r+1 
= 0, calculations give us the following data:

. . .� � � �

� �

E1 Er Er+2 Er+1

Er(3r, r + 1)

Er+1(3r + 2, r + 2)
Er+2(6r + 3, 2r + 3)

The pole −(2r + 3)/(6r + 3) is in the interval ]−∞,−1/2] if and only if r = 1, and in this case the
pole is equal to −1/2− 1/18.

b.3.iii) If a3r+1 = b2r+1 = 0 and a3r+2 
= 0, we get the following:

. . .� � � � �

�

E1 Er Er+2 Er+3 Er+1

Er(3r, r + 1)

Er+1(3r + 2, r + 2)

Er+2(6r + 3, 2r + 3)

Er+3(9r + 6, 3r + 5)

The pole −(3r + 5)/(9r + 6) is in the interval ]−∞,−1/2] if and only if r = 1, and in this case the
pole is equal to −1/2− 1/30.

b.3.iv) The last case is a3r+1 = b2r+1 = a3r+2 = 0 and (b2r+2 
= 0 or a3r+3 
= 0). If y3 +
b2r+2yx2 +a3r+3x

3 is a product of three distinct linear factors, we get an embedded resolution after
one blowing-up. The numerical data of Er+1 are (3r +3, r +2) and −(r +2)/(3r +3) /∈ ]−∞,−1/2[.
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If y3 + b2r+2yx2 + a3r+3x
3 is not a product of three distinct linear factors, then it is equal

to y3 + xy2 after an affine coordinate transformation that does not change the equation x = 0
of Er. Let gr+1 be the blowing-up at the origin of the chart we consider. The strict transform of
f−1{0} only intersects the exceptional curve Er+1, which has numerical data (3r+3, r+2). Because
−(r + 2)/(3r + 3) � −1/2 for all r, it follows from Theorem 2.4 and § 2.6 that Zf (s) has no pole in
]−∞,−1/2[ different from −1 .

c) Suppose that mult(f) � 4. We explained in § 2.6 that Zf (s) has no pole in ]−∞,−1/2[
different from −1.

2.9
We now present a similar result for the following generalized zeta functions [DL92]. The case d = 2
is used in the next section. To f ∈ On and d ∈ Z>0 one associates the local topological zeta function

Z
(d)
f (s) = Z

(d)
top,0,f(s) :=

∑
I⊂T

∀i∈I:d|Ni

χ(
◦

EI ∩g−1{0})
∏
i∈I

1
νi + sNi

.

For n, d ∈ Z>0, we set

P(d)
n := {s0 | ∃f ∈ On : Z

(d)
f (s) has a pole in s0}.

Consequently, Zf (s) = Z
(1)
f (s) and Pn = P(1)

n .

2.10
Let Ei be an exceptional curve and let Ej , j ∈ J , be the components that intersect Ei in V . Then∑

j∈J

Nj ≡ 0 (mod Ni), (5)

see, e.g., [Loe98] or [Vey91b]. Fix d ∈ Z>0 and suppose that d|Ni. Let Jd ⊂ J be the subset of
indices j satisfying d|Nj . Suppose that αj := νj − (νi/Ni)Nj is different from 0 for all j ∈ Jd. Then
the contribution R of Ei to the residue of Z

(d)
f (s) at the candidate pole −νi/Ni is

1
Ni

(
χ(

◦
E{i}) +

∑
j∈Jd

α−1
j

)
. (6)

This contribution is zero if J contains one or two indices. Indeed, if J contains one element, relation
(5) implies that J = Jd. Therefore, the contribution R is the same as in the case d = 1 and by
§ 2.3 we get R = 0. If J contains two elements, relation (5) implies that Jd = J or Jd = ∅.
If Jd = J , we obtain R = 0 analogously as in the previous case. If Jd = ∅, we get R = 0 because
the Euler–Poincaré characteristic of a projective line minus two points is zero.

Theorem 2.11. Let d ∈ Z>1. Then

P(d)
2 ∩

]
−∞,−1

2

[
⊂

{
−1

2
− 1

i

∣∣∣∣ i ∈ Z>1

}
.

Proof. This follows from the proof of Theorem 2.8 and from § 2.10.

Remark. If one carries out a lot of calculations, one can check that

P(d)
2 ∩

]
−∞,−1

2

[
=

{
−1

2
− 1

i

∣∣∣∣ i ∈ Z>2 and d|lcm(2, i)
}

if d ∈ Z>1. However, we do not need this in the next section.
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3. Surfaces

In this section, we prove the following theorem.

Theorem 3.0. We have

P3 ∩ ]−∞,−1[ =
{
−1− 1

i

∣∣∣∣ i ∈ Z>1

}
.

Moreover, if f ∈ O3 has multiplicity three or more, then Zf (s) has no pole less than −1.

Remark. i) It is a priori not obvious that the smallest value of P3 is −3/2. This is in contrast to
the fact that it easily follows from Lemma 2.5 that the smallest value of P2 is −1.

ii) In § 3.3.9 we give functions fk ∈ O3 of arbitrary multiplicity such that Zfk
(s) has a pole in sk,

where (sk)k is a sequence of real numbers larger than −1 and converging to −1. In particular,
P3 ∩ ]− 1,−41/42[ 
= ∅, which is in contrast to T3 ∩ ]41/42, 1[ = ∅.

3.1 On candidate poles which are not poles

3.1.1 Let f be the germ of a holomorphic function on a neighbourhood of the origin 0 in
C3 which satisfies f(0) = 0 and which is not identically zero. Let Y be the zero set of f . Fix an
embedded resolution g : Xt → X0 ⊂ C3 for Y which is an isomorphism outside the singular locus of
Y and which is a composition g1◦· · ·◦gt of blowing-ups gi : Xi → Xi−1 with irreducible non-singular
centre Di−1 and exceptional variety E

(0)
i satisfying for i = 0, . . . , t− 1:

a) the codimension of Di in Xi is at least two;

b) Di is a subset of the strict transform of Y under g1 ◦ · · · ◦ gi;

c) the union of the exceptional varieties of g1 ◦ · · · ◦ gi has only normal crossings with Di, i.e., for
all P ∈ Di, there are three surface germs through P which are in normal crossings such that
each exceptional surface germ through P is one of them and such that the germ of Di at P is
the intersection of some of them;

d) the origin 0 of C3 is an element of (g1 ◦ · · · ◦ gi)Di; and

e) Di contains a point in which (g1 ◦ · · · ◦ gi)−1Y has not normal crossings.

Note that such a resolution always exists by Hironaka’s theorem [Hir64].

3.1.2 Fix an exceptional variety E
(0)
i . The strict transform Ei of E

(0)
i in Xt is obtained by a

finite succession of blowing-ups hj , j ∈ Te := {1, . . . ,m},

E
(0)
i

h1←− E
(1)
i

h2←− · · ·E(j−1)
i

hj←− E
(j)
i · · ·

hm−1←− E
(m−1)
i

hm←− E
(m)
i = Ei

with centre Pj−1 ∈ E
(j−1)
i and exceptional curve C

(j)
j . The irreducible components of the inter-

section of E
(0)
i with irreducible components of (g1 ◦ · · · ◦ gi)−1Y different from E

(0)
i are denoted

by C
(0)
j , j ∈ Ts. The strict transform of C

(k)
j in E

(l)
i is denoted (whenever this makes sense) by

C
(l)
j and we set Cj = C

(m)
j . Note that h := h1 ◦ · · · ◦ hm is an embedded resolution of

⋃
j∈Ts

C
(0)
j .

For each j ∈ T := Ts ∪ Te the curve Cj is an irreducible component of the intersection of Ei with
exactly one other component of g−1Y . Let this component have numerical data (Nk, νk) and set
αj = νk − (νi/Ni)Nk.
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3.1.3 Suppose that E
(0)
i ⊂ (g1◦· · ·◦gi)−1{0} and that αj 
= 0 for every j ∈ T . The contribution

R of Ei to the residue of Zf (s) at the candidate pole −νi/Ni is

1
Ni

( ∑
I⊂T

χ(
◦

CI)
∏
j∈I

α−1
j

)
, (7)

where
◦

CI denotes the subset (
⋂

j∈I Cj) \ (
⋃

j �∈I Cj) of Ei. Note that
◦

C∅= Ei \ (
⋃

j∈T Cj). We now
state some relations between the αj , which will allow us to prove that this contribution is identically
zero (i.e. zero for any value of the alphas) for many intersection configurations on E

(0)
i .

3.1.4 To the creation of E
(0)
i ⊂ (g1 ◦ · · · ◦ gi)−1{0} in the resolution process we associate the

relation ∑
j∈Ts

dj(αj − 1) + 3− dimDi−1 = 0, (8)

where dj, j ∈ Ts, is the degree of the intersection cycle C
(0)
j · F on F for a general fibre F of

gi|E(0)
i

: E
(0)
i → Di−1 over a point of Di−1. In particular, when Di−1 is a point, we have that

E
(0)
i
∼= P2 and that dj is just the degree of the curve C

(0)
j . To the blowing-up hj we associate the

relation

αj =
∑

k∈Ts∪{1,...,j−1}
µk(αk − 1) + 2, (9)

where µk, k ∈ Ts∪{1, . . . , j−1}, is the multiplicity of Pj−1 on C
(j−1)
k . See [Vey91a] for more general

statements in arbitrary dimensions and for proofs.

3.1.5 Now we proceed in the same way as in [Vey93] for Igusa’s p-adic zeta function.
One can easily verify that the number (7) does not change when we do an extra blowing-up hm+1

at a point Pm ∈ E
(m)
i and when we associate to the new exceptional curve a number α using (9).

Because of this observation, one can compute R if one has the curves C
(0)
j , j ∈ Ts, on E

(0)
i together

with the associated values αj as follows. Compute the minimal embedded resolution of
⋃

j∈Ts
C

(0)
j

and compute the alpha associated to an exceptional curve using (9). By putting these data in (7),
we get R.

Example 3.1.6. Suppose that E
(0)
i is the exceptional variety of a blowing-up at a point and suppose

that the intersection configuration on E
(0)
i consists of three projective lines C

(0)
j , j ∈ Ts := {a, b, c},

all passing through the same point P . Suppose that αj 
= 0 for all j ∈ T . The minimal embedded
resolution l : W → E

(0)
i is the blowing-up at P . By abuse of notation, we denote the exceptional

curve by C1 and the strict transform of C
(0)
j , j ∈ Ts, by Cj :

�
�

�
�

�
�

�
�

�
�

�
�

�

W E
(0)
i
∼= P2

l

Ca Cb Cc

C1
P�

C
(0)
a

C
(0)
b

C
(0)
c

By relations (8) and (9) we have αa + αb + αc = 0 and α1 = αa + αb + αc − 1 = −1, respectively.
Now we can calculate the contribution R of the strict transform of E

(0)
i in Xt to the residue of
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Zf (s) at the candidate pole −νi/Ni:

R =
1
Ni

( ∑
I⊂T

χ(
◦

CI)
∏
j∈I

α−1
j

)

=
1
Ni

(
−1− 1

α1
+

1
αa

+
1
αb

+
1
αc

+
1

α1αa
+

1
α1αb

+
1

α1αc

)

= 0.

We stress that R is zero for any possible values of αa, αb and αc.

3.2 Multiplicity two

3.2.1 Let f be the germ of a holomorphic function on a neighbourhood of the origin 0 in
Cn which satisfies f(0) = 0, and let F be the germ of the holomorphic function f + x2

n+1 on a
neighbourhood of the origin 0 in Cn+1. Then the following equality is obtained in [ACLM02], see
also the Thom–Sebastiani principle in [DL99]:

ZF (s) =
1

2s + 1
+

s(2s + 3)
2(s + 1)(2s + 1)

Zf

(
s +

1
2

)
− 3s

2(s + 1)
Z

(2)
f

(
s +

1
2

)
.

Proposition 3.2.2. The set

{s0 | ∃f ∈ O3 : mult(f) = 2 and Zf (s) has a pole in s0}∩ ]−∞,−1[

is equal to {
−1− 1

i

∣∣∣∣ i ∈ Z>1

}
.

Proof. Let f be an element of O3 with multiplicity two. Up to an affine coordinate transformation,
the part of degree two in the Taylor series of f is equal to x2, x2 +y2 or x2 +y2 +z2. Using § 2.7, we
may suppose that f is of the form x2+g(y, z) with g(y, z) ∈ O2. The formula in Paragraph 3.2.1 and
the result for curves imply that every pole of Zf (s) less than −1 is of the form −1− 1/i, i ∈ Z>1.
For the other inclusion, we remark that the poles of the local topological zeta function associated
to x2 + y2 + zi, i � 2, are −1− 1/i and −1.

3.2.3 Our next goal is to give a sequence of poles larger than −1 and converging to −1.
Keeping in mind the formula in Paragraph 3.2.1, we try to find functions fk ∈ O2 such that Zfk

(s)
has a pole in sk, where (sk)k is a sequence of real numbers larger than −1/2 and converging to
−1/2. Set fk = x3y2 + xk for k � 5.

We obtain the following equalities after some calculations:

Zf2r+4(s) =
3s2 + 2rs + 8s + 2r + 3

(4rs + 8s + 2r + 3)(3s + 1)(s + 1)
, Z

(2)
f2r+4

(s) =
1

4rs + 8s + 2r + 3
,

Zf2r+3(s) =
3s2 − rs− 2s − r − 1

(2rs + 3s + r + 1)(3s + 1)(s + 1)
, Z

(2)
f2r+3

(s) = 0.

Now we use the formula in Paragraph 3.2.1 to calculate the local topological zeta function of
Fk := fk + z2. We obtain for even and odd k that

ZFk
(s) =

(6k − 6)s2 + (15k − 5)s + 10k − 5
(6s + 5)(s + 1)(2ks + 2k − 1)

.
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Finally, we make the substitution s = −(2k − 1)/(2k) in the numerator in order to check that this
value, which converges to −1 if k goes to infinity, is a pole. We obtain

(k − 1)(k − 3)(2k − 1)
2k2

.

This value never becomes zero because k � 5. Consequently, −(2k − 1)/(2k) is always a pole of
ZFk

(s).

Remark. In particular, we obtain that P3 ∩ ]−1,−41/42[ 
= ∅, which is in contrast to T3 ∩ ]41/42, 1[
= ∅.

3.3 Multiplicity larger than two
3.3.1 Let f be the germ of a holomorphic function on a neighbourhood of the origin 0

in C3 which satisfies f(0) = 0 and which is not identically zero. Let Y be the zero set of f .
Fix an embedded resolution g for Y which is a composition of blowing-ups gij : Xi → Xj

with irreducible non-singular centre Dj and exceptional surface Ei as in Paragraph 3.1.1.
Denote the irreducible components of Y by Ei, i ∈ Ts. The strict transform of a variety Ei by
a succession of blowing-ups will be denoted in the same way. The numerical data of Ei are (Ni, νi).

3.3.2 The following table gives the numerical data of Ei. In the columns, the dimension of Dj

is kept fixed. In the rows, the number of exceptional surfaces through Dj is kept fixed. So Ek, El and
Em represent exceptional surfaces that contain Dj . The multiplicity of Dj on the strict transform
of Y is denoted by µDj .

Dj is a point P Dj is a curve L

/ (µP , 3) (µL, 2)
Ek (Nk + µP , νk + 2) (Nk + µL, νk + 1)

Ek and El (Nk + Nl + µP , νk + νl + 1) (Nk + Nl + µL, νk + νl)
Ek, El and Em (Nk + Nl + Nm + µP , νk + νl + νm) /

Lemma 3.3.3. Suppose that mult(f) � 3. If there is no exceptional surface through Dj, then
−νi/Ni � −1.

Proof. The case that the centre Dj is a point P through which no exceptional surface passes can
only occur in the first blowing-up because of condition d in Paragraph 3.1.1 and because the inverse
image of 0 in Xj is contained in the union of the exceptional surfaces in Xj . Since mult(f) � 3, we
have in this case −νi/Ni = −3/µP = −3/mult(f) � −1.

If the centre Dj is a curve L contained in no exceptional surface, then µL � 2 because our
embedded resolution is an isomorphism outside the singular locus of Y . Consequently, we get in
this case −νi/Ni = −2/µL � −1.

3.3.4 Suppose that Dj is contained in at least one exceptional surface and that the candidate
poles associated to the exceptional surfaces that pass through Dj are larger than or equal to −1.
Then the table in Paragraph 3.3.2 implies that also −νi/Ni � −1, unless Dj is a non-singular
point P of the strict transform of Y through which only one exceptional surface E0 passes and
−ν0/N0 = −1. Suppose that we are in this situation. Denote the unique irreducible component of
the strict transform of Y which passes through P by Ea. Consider now a small enough neighbourhood
Z0 of P on which Ea is non-singular such that, if we restrict the blowing-ups gij to the inverse image
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of Z0, we get an embedded resolution h = h1 ◦ · · · ◦ hs for the germ of Ea ∪ E0 at P which is a
composition of blowing-ups hi : Zi → Zi−1, i ∈ {1, . . . , s}, with irreducible non-singular centre
D′

i−1 := Di−1 ∩ Zi−1 and exceptional surface E′
i := Ei ∩ Zi satisfying for i = 0, . . . , s− 1:

a) the codimension of D′
i in Zi is at least two;

b) D′
i is a subset of E′

a := Ea ∩ Zi;

c)
⋃

l∈{0,1,...,i} E′
l has only normal crossings with D′

i, where E′
0 := E0 ∩ Z0;

d) the image of D′
i under h1 ◦ · · · ◦ hi contains P ; and

e) if Di = D′
i, then Di contains a point where there are not normal crossings.

Note that it can happen that gij is an isomorphism on the inverse image of Z0. Because we did
not specify the indices in Paragraph 3.3.1, we were able to get a nice notation here. Note also that
Di = D′

i if Di is a point. From now on, we study the resolution h : Zs → Z0 for the germ of Ea ∪E0

at P .

Lemma 3.3.5. If Di = D′
i, then Di is a subset of E′

0.

Proof. Note that Di has to lie in an exceptional surface because E′
a is non-singular and because an

embedded resolution is an isomorphism outside the singular locus of Y .
First we consider the case that Di = D′

i is a point contained in exceptional surfaces different
from E′

0 and in the surface E′
a. The union of these surfaces has normal crossings at Di because E′

a,
considered as a subset of Z0, is non-singular. This is in contradiction with condition e. Note that
it can thus not happen that E′

a and three exceptional surfaces different from E′
0 have a point in

common.
The case that Di = D′

i is a curve contained in exactly two exceptional surfaces different from E′
0

and in the surface E′
a cannot occur because E′

a is a non-singular subset of Z0 and therefore these
three surfaces should have normal crossings.

Finally we study the case that Di = D′
i is a curve contained in one exceptional surface E′

j

different from E′
0 and in E′

a. Condition c implies that every point of Di is contained in at most one
exceptional surface different from E′

j. Moreover, such an exceptional surface has to be transversal
to Di. This implies that there are normal crossings at every point of Di, which is in contradiction
with condition e. Therefore, this case cannot occur.

Lemma 3.3.6. Suppose that mult(f) � 3. Then we have νi � Ni + 1 for every exceptional surface
Ei, i ∈ {1, . . . , s}. Moreover, νi = Ni + 1 if and only if Di−1 is a point and the numerical data of
every exceptional surface Ej different from E0 and through Di−1 satisfy νj = Nj + 1.

Proof. The proof is by induction on i. Since ν0 = N0, we have that ν1 = N1 + 1. Suppose now that
νj � Nj + 1 for every exceptional surface Ej through Di−1.

Case 1: Di−1 is a point. We obtain from Lemma 3.3.5 that Di−1 is a subset of E′
0. Because

ν0 = N0 and because every other exceptional surface Ej through Di−1 satisfies νj � Nj + 1, the
table of Paragraph 3.3.2 gives us that νi � Ni + 1.

Case 2: Di−1 is a curve. If Di−1 
= D′
i−1, then D′

i−1 
⊂ (h1 ◦ · · · ◦ hi−1)−1P and therefore we
get as in the beginning of Paragraph 3.3.4 that −νi/Ni � −1. If Di−1 = D′

i−1, one computes from
Paragraph 3.3.2 and the previous lemma that −νi/Ni � −1.

We have now proved the first part of the lemma. Using this first part and the table of
Paragraph 3.3.2, we get the second part.

Lemma 3.3.7. If mult(f) � 3 and if the numerical data of Ei satisfy νi = Ni + 1, then −νi/Ni 
=
−νj/Nj for every exceptional surface Ej that intersects Ei at some stage of the resolution process.
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Proof. Let Ej be an exceptional surface that intersects Ei at some stage of the resolution process.
If Ej is created before Ei, then Ej contains the point Di−1. Otherwise, Ej is created by a blowing-up
at a point of Ei or by a blowing-up along a curve.

If Ej is created by a blowing-up along a curve, then −νj/Nj � −1 and, consequently, −νi/Ni 
=
−νj/Nj . Now we consider the case that Ej contains the point Di−1. There is no problem if νj � Nj .
Consequently, suppose that νj = Nj + 1. From the table in Paragraph 3.3.2, we get Nj < Ni.
Therefore, −νi/Ni = −(Ni + 1)/Ni > −(Nj + 1)/Nj = −νj/Nj . The case that Ej is created by a
blowing-up at a point of Ei is treated analogously.

Proposition 3.3.8. If mult(f) � 3, then no pole of Zf (s) is less than −1.

Proof. Suppose that mult(f) � 3.
We have only to consider exceptional surfaces with a candidate pole less than −1. Recall from

Lemma 3.3.6 that −νi/Ni < −1 if and only if Di−1 is a point and all exceptional surfaces through
the point Di−1 different from E0 have a candidate pole less than −1. We will determine all possible
intersection configurations on such surfaces just after their creation.

If −νi/Ni � −1 and −νi+1/Ni+1 < −1, then the blowing-ups along Di−1 and Di commute with
each other. Therefore, we may assume that there is a k (larger than zero because −ν1/N1 < −1)
such that −νi/Ni < −1 for 1 � i � k and −νi/Ni � −1 for k < i � s.

The intersection configuration on E1 consists of one projective line, which is the intersection
with E0 and Ea. The points of Z1 in which we do not have normal crossings and which lie above P
are those on this projective line. This implies the following statement for i = 2:

If Q is a point of Zi−1, i ∈ {2, . . . , k}, in which we do not have normal crossings and
which lies above P (so consequently Q is a point of E0, of one or two other exceptional
surfaces and of Ea), then there exists an exceptional surface El through Q with the
property E0 ∩El = Ea ∩El.

(∗)

We prove this statement by induction on i. Suppose that it is true for i = j ∈ {2, . . . , k−1}. We give
the proof for i = j + 1. The statement follows from the induction hypothesis for points not on Ej ,
because a blowing-up is an isomorphism outside the exceptional surface. Therefore, we prove it for
points on Ej. By the induction hypothesis applied to the point Dj−1, we obtain that there exists an
exceptional surface El through Dj−1 such that E0∩El = Ea∩El in Zj−1. But then Ea∩El = E0∩El

in Zj, which solves the problem for the point E0 ∩ El ∩ Ej . There are other points on Ej in which
we do not have normal crossings if and only if Ea is tangent to E0 in Dj−1. In this case, the points
in which we do not have normal crossings are the points of E0 ∩ Ej. Because E0 ∩ Ej = Ea ∩ Ej ,
we are done.

Because the centre of a blowing-up satisfies the conditions of the statement, we obtain that
the possible intersection configurations are the following configurations of lines in P2: (i) one line;
(ii) two lines; (iii) three lines through one point; (iv) three lines in general position; and (v) three
lines through one point and a fourth line not through that point.

For all these configurations, we can calculate as in Example 3.1.6 that the contribution to the
residue is zero. The second author has done this already in [Vey93] for Igusa’s p-adic zeta function.
The point is that (∗) excludes the configuration consisting of four lines in a general position, for
which this contribution is not zero. Note also that we need here that the alphas are not zero, a fact
we proved in Lemma 3.3.7.

3.3.9 In Paragraph 3.2.3, we found functions fk ∈ O3 of multiplicity two such that Zfk
(s)

has a pole in sk, where (sk)k is a sequence of real numbers larger than −1 and converging to −1.
Here we construct for every n � 0 functions fk ∈ O3 of multiplicity n + 2 with this property.
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We use the formula obtained by Denef and Loeser in [DL92, Théorème 5.3], which expresses the
local topological zeta function of a non-degenerated polynomial in terms of its Newton polyhedron.
Fix n � 0 and set fk = xnz2 + x3+ny2 + xk for k � n + 4. Then

Zfk
(s) = [(−2n2 − 6n)s3 + (n2 + 3kn− 4n + 6k − 6)s2

+ (−4n2 + 4kn − 7n + 15k − 5)s− 10n + 10k − 5]

× [(6s + 2ns + 5)(s + 1)(2ks + 2k − 2n− 1)(ns + 1)]−1.

Consequently, −(2k − 2n − 1)/(2k) is a pole if and only if it is not a zero of the numerator. So we
make the substitution s = −(2k − 2n − 1)/(2k) in the numerator and obtain

(k − 1− 2n)(k − n− 3)(2k − 2n− 1)(2n2 − 2kn + n + 2k)
4k3

.

Because k � n + 4, this is zero if and only if k = 1 + 2n. Thus we have found for any multiplicity
larger than one a sequence with the desired property.

4. Other zeta functions

4.1

Denef and Loeser in [DL98] associate to a polynomial its motivic zeta function, which is a much
finer invariant than its topological zeta function. Instead of the usual topological Euler–Poincaré
characteristic, it involves the so-called universal Euler characteristic of an algebraic variety, i.e. its
class in the Grothendieck ring.

We recall this notion. The Grothendieck ring K0(VarC) of complex algebraic varieties is the free
abelian group generated by the symbols [V ], where V is a variety, subject to the relations [V ] = [V ′],
if V is isomorphic to V ′, and [V ] = [V \W ] + [W ], if W is closed in V . Its ring structure is given by
[V ] · [W ] := [V ×W ]. We set L := [A1

C
] and denote byM the localization of K0(VarC) with respect

to L.

4.2

In [DL98] the motivic zeta function is more generally defined for a regular function f on a smooth
algebraic variety X, with respect to a subvariety W of X; we refer the reader to [DL98, § 2] for this
definition. One can easily verify that the construction is still valid for a germ f of a holomorphic
function at 0 ∈ Cn when W = {0}; we denote this (local) motivic zeta function by Zmot,0,f (s).
Then, with the notation of § 1.1, the formula of [DL98, Theorem 2.2.1] yields that

Zmot,0,f (s) = L−n
∑
I⊂T

[
◦

EI ∩g−1{0}]
∏
i∈I

L− 1
Lνi+sNi − 1

.

Here L−s should be considered as a variable, and this expression lives in a localization of the
polynomial ring M[L−s].

4.3

The motivic zeta function Zmot,0,f (s) specializes to Ztop,0,f (s) [DL98, § 2.3], but also to various
‘intermediate level’ zeta functions. An important one uses Hodge polynomials. Recall that the
Hodge polynomial of a complex algebraic variety V is

H(V ) = H(V, u, v) :=
∑
p,q

(∑
i�0

(−1)ihp,q(H i
c(V, C))

)
upvq ∈ Z[u, v],
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where hp,q(H i
c(V, C)) is the rank of the (p, q)-Hodge component of the ith cohomology group with

compact support of V . The zeta function of f on this level is

ZHod,0,f (s) = (uv)−n
∑
I⊂T

H(
◦

EI ∩g−1{0})
∏
i∈I

uv − 1
(uv)νi+sNi − 1

;

here (uv)−s is a variable, and this zeta function lives, e.g., in the field of rational functions in (uv)−s

over Q(u, v).

4.4
As in [RV03] we define the poles of ZHod,0,f (s) to be the real numbers s0 such that (uv)−s0 is a pole
of ZHod,0,f (s), considered as rational function in (uv)−s. Then we have the following.

Theorems 2.8 and 3.0 are still valid with Zf (s) = Ztop,0,f (s) replaced by ZHod,0,f (s) and Pn =
{s0 | ∃f ∈ On : ZHod,0,f (s) has a pole in s0}. The proofs are the same as before; they essentially
just use the ‘geometry’ of a resolution.

A good definition of poles of Zmot,0,f (s) is not immediately clear, due to the fact that M could
have zero divisors (at present this is an open question). Using the definition of [RV03] for real poles,
Theorems 2.8 and 3.0 are also valid for Zmot,0,f (s).

4.5
One could and should also wonder whether there are analogous results for Igusa’s p-adic zeta
function. This problem is studied in a following paper [Seg03].
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1–21.
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