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Abstract

Algorithms for checking subtyping between recursive types lie at the core of many program-
ming language implementations. But the fundamental theory of these algorithms and how

they relate to simpler declarative specifications is not widely understood, due in part to the

difficulty of the available introductions to the area. This tutorial paper offers an ‘end-to-
end’ introduction to recursive types and subtyping algorithms, from basic theory to efficient

implementation, set in the unifying mathematical framework of coinduction.

Capsule Review

This paper provides a self-contained introduction to the theory of recursive subtyping, an
area first studied by Amadio and Cardelli and later refined and reformulated by Brandt and

Henglein, among others. The current paper aims at bringing together recent results on the

subject, and presenting them, as well as the foundational work of Amadio and Cardelli, in the
unifying setting of coinduction. As such, the paper does not provide any results of its own:

its value lies in filling a pedagogical gap in an area which so far has lacked a comprehensive

introduction.

However, this paper should not be judged solely on its contribution to the field of recursive
subtyping. It can just as well be seen as an introductory text on coinduction in general, using

the type system aspect as a running example. This dual purpose makes the article especially

interesting as lecture material – the student of recursive subtyping benefits from a thorough
survey of the semantic tools that he or she will need, while the reader primarily interested

in the tools themselves will value the level of detail by which the coinductive framework is

exemplified.

1 Introduction

Recursively defined types in programming languages and lambda-calculi come in

two distinct varieties. Consider, for example, the type X described by the equation

X = Nat→(Nat×X).

An element of X is a function that maps a number to a pair consisting of a number

and a function of the same form. This type is often written more concisely as

ã This article also appears as chapter 21 of Types and Programming Languages by Benjamin C. Pierce
(MIT Press, 2002).
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µX.Nat→(Nat×X). A variety of familiar recursive types such as lists and trees can

be defined analogously.

In the iso-recursive formulation, the type µX.Nat→(Nat×X) is considered isomorphic

to its one-step unfolding, Nat→(Nat×(µX.Nat→(Nat×X))). The language of terms

provides a pair of built-in coercion functions for each recursive type µX.T,

unfold ∈ µX.T→ {X 7→ µX.T}T
fold ∈ {X 7→ µX.T}T→ µX.T

witnessing the isomorphism (as usual, {X 7→ S}T denotes the substitution of S for

free occurrences of X in T).

In the equi-recursive formulation (our focus in this article), a recursive type and its

one-step unfolding are considered equivalent – interchangeable for all purposes. In

effect, the equi-recursive treatment views a type like µX.Nat→(Nat×X) as merely an

abbreviation for the infinite tree obtained by unrolling the recursion ‘out to infinity’:

Nat

Nat

→Nat

Nat

→

×

×

..

.

The equi-recursive view can make terms easier to write, since it saves annotating

programs with fold and unfold coercions, but it raises some tricky problems for

the compiler, which must deal with these infinite structures and operations on

them in terms of appropriate finite representations. Moreover, in the presence of

these infinite types, even the definitions of other features such as subtyping can

become hard to understand. For example, supposing that the type Even is a subtype

of Nat, what should be the relation between the types µX.Nat→(Even×X) and

µX.Even→(Nat×X)?

The simplest way to think through such questions is often to view them ‘in the

limit’. In the present example, the elements inhabiting both types can be thought

of as simple reactive processes: given a number, they return another number plus a

new process that is ready to receive another number, and so on. Processes belonging

to the first type always yield even numbers and are capable of accepting arbitrary

numbers. Those belonging to the second type yield arbitrary numbers, but expect

always to be given even numbers. The constraints both on what arguments the

process must accept and on what results it may return are more demanding for the

first type, so intuitively we expect the first to be a subtype of the second. We can

draw a picture summarizing our calculations as follows:
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Can such arguments be made precise? Indeed they can. The basic ideas can be

found in several places, going back to Amadio & Cardelli’s (1993) comprehensive

study, which remains the standard reference in the area. Unfortunately, the available

literature is not as friendly to newcomers as might be wished. More recent treatments

tend to be rather condensed, assuming that the reader is already familiar with some

of the relevant intuitions. On the other hand, Amadio and Cardelli’s original paper,

while complete, is also quite complex and, in some technical respects, beginning to

be slightly dated. More efficient subtyping algorithms are now known (e.g. Kozen et

al., 1993; Brandt & Henglein, 1997; Jim & Palsberg, 1999). Also, it is now widely

agreed that framing definitions and proofs in terms of coinduction (rather than

limits of sequences of approximations) substantially simplifies both intuitions and

formalities.

Our purpose in this tutorial is not to announce new results, but rather to formulate

known techniques as lucidly as possible, beginning from fundamental definitions and

leading, by simple steps, to efficient algorithms for checking subtyping. We also try

to make clear, at every point, the analogy between the coinductive structures we

define and those found in the familiar, inductive world of finite types and ordinary

subtyping.

We begin by reviewing the basic theory of inductive and coinductive definitions

and their associated proof principles (Section 2). Sections 3 and 4 instantiate this

general theory for the case of subtyping, defining both the familiar inductive subtype

relation on finite types and its coinductive generalization to infinite types. Section 5

makes a brief detour to consider some issues connected with the rule of transitivity

(a notorious troublemaker in subtyping systems). At this point, we pause our

discussion of types and subtyping and return to the general framework of induction

and coinduction. Section 6 derives simple algorithms for checking membership

in inductively and co-inductively defined sets; Section 7 considers more refined

algorithms. In Section 8, we return to types and define a subtype relation for a

special case of ‘regular’ infinite trees. The general algorithms of the previous two

sections are then instantiated to decide regular tree subtyping. Section 9 introduces

µ-types as a finite notation for representing tree types and establishes a theorem that

the more complex (but finitely realizable) subtype relation on µ-types coincides with

the ordinary coinductive definition of subtyping on representable trees. Section 10

brings together all the preceding material to derive a concrete subtyping algorithm
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Fig. 1. Section dependencies.

for µ-types and proves its termination. Finally, Section 11 discusses a well-known

variant of the algorithm and shows that it has exponential behavior. Several sections

are accompanied by exercises for the reader; solutions to these can be found at the

end of the paper.

To help the reader navigate, figure 1 presents a flow chart of section dependencies.

Dashed boxes represent detours that are inessential for the overall flow of the article.

The diagram shows several possible paths through the material. Sections 2, 6 and 7

address general principles of induction and coinduction, derivation of algorithms for

testing membership in (co)inductively defined sets, and proofs of their correctness.

Sections 2, 3, 4, and 9 can serve as an introduction to the coinductive definition

of subtyping on infinite trees, µ-types as their finite representation, coinductive

definition of subtyping on µ-types, and the proof of the correspondence between

these two subtyping relations. To understand the complete picture, all the sections

shown in solid boxes are needed.

No previous understanding of the metatheory of recursive types or background in

the theory of coinduction is required, though the development will assume a certain

degree of mathematical sophistication and some familiarity with type systems and

subtyping.

We deal with a very simple language of types, containing just arrow types,

https://doi.org/10.1017/S0956796802004318 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004318


Recursive subtyping revealed 515

binary products, and a maximal Top type. Additional type constructors such as

records, variants, etc., can be added with no changes to the basic theory. Binding

constructs such as universal and existential quantifiers can also be formulated in

the same framework (see Ghelli, 1993), but they are trickier, since they require

working with infinite trees ‘modulo renaming of bound variables’. Constructs such

as type operators that introduce nontrivial equivalences between type expressions

pose additional problems.

2 Induction and coinduction

Assume we have fixed some universal set U as the domain of discourse for our

inductive and coinductive definitions. U represents the set of ‘everything in the

world’, and the role of an inductive or coinductive definition will be to pick out

some subset of U. (Later on, we are going to choose U to be the set of all pairs

of types, so that subsets of U are relations on types. For the present discussion, an

arbitrary set U will do.) The powerset of U, i.e. the set of all the subsets of U, is

written P(U).

Definition 2.1

A function F ∈ P(U)→ P(U) is monotone if X ⊆ Y implies F(X) ⊆ F(Y ).

In the following, we assume that F is some monotone function on P(U). We often

refer to F as a generating function.

Definition 2.2

Let X be a subset of U.

1. X is F-closed if F(X) ⊆ X .

2. X is F-consistent if X ⊆ F(X).
3. X is a fixed point of F if F(X) = X .

A useful intuition for these definitions is to think of the elements ofU as some sort

of statements or assertions, and of F as representing a ‘justification’ relation that,

given some set of statements (premises), tells us what new statements (conclusions)

follow from them. An F-closed set, then, is one that cannot be made any bigger

by adding elements justified by F – it already contains all the conclusions that

are justified by its members. An F-consistent set, on the other hand, is one that

is ‘self-justifying’: every assertion in it is justified by other assertions that are also

in it. A fixed point of F is a set that is both closed and consistent: it includes all

the justifications required by its members, all the conclusions that follow from its

members, and nothing else.

Example 2.3

Consider the following generating function on the three-element universe U =

{a, b, c}:
E1(∅) = {c} E1({a, b}) = {c}
E1({a}) = {c} E1({a, c}) = {b, c}
E1({b}) = {c} E1({b, c}) = {a, b, c}
E1({c}) = {b, c} E1({a, b, c}) = {a, b, c}
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There is just one E1-closed set – {a, b, c} – and four E1-consistent sets – ∅, {c}, {b, c},
{a, b, c}.
E1 can be represented compactly by a collection of inference rules:

c

c

b

b c

a

Each rule states that if all of the elements above the bar are in the input set, then

the element below is in the output set.

Theorem 2.4

1. The intersection of all F-closed sets is the least fixed point of F .

2. The union of all F-consistent sets is the greatest fixed point of F .

Proof

We consider only part (2); the proof of part (1) is symmetric. Let C = {X |X ⊆ F(X)}
be the collection of all F-consistent sets, and let P be the union of all these sets.

Taking into account the fact that F is monotone and that, for any X ∈ C , we

know both that X is F-consistent and that X ⊆ P , we obtain X ⊆ F(X) ⊆ F(P ).

Consequently, P =
⋃
X∈C X ⊆ F(P ), i.e. P is F-consistent. Moreover, by its definition,

P is the largest F-consistent set. Using the monotonicity of F again, we obtain

F(P ) ⊆ F(F(P )). This means, by the definition of C , that F(P ) ∈ C . Hence, as for

any member of C , we have F(P ) ⊆ P , i.e. P is F-closed. Now we have established

both that P is the largest F-consistent set and that P is a fixed point of F , so P is

the largest fixed point. 2

Definition 2.5

The least fixed point of F is written µF . The greatest fixed point of F is written νF .

Example 2.6

For the sample generating function E1 shown above, we have µE1 = νE1 = {a, b, c}.

Exercise 2.7

Suppose a generating function E2 on the universe {a, b, c} is defined by the following

inference rules:

a

c

b

a b

c

Write out the set of pairs in the relation E2 explicitly, as we did for E1 above. List

all the E2-closed and E2-consistent sets. What are µE2 and νE2?

Note that µF itself is F-closed (hence, it is the smallest F-closed set) and that νF

is F-consistent (hence, it is the largest F-consistent set). This observation gives us a

pair of fundamental reasoning tools:

Corollary 2.8 (of Theorem 2.4)

1. Principle of induction: if X is F-closed, then µF ⊆ X .

2. Principle of coinduction: if X is F-consistent, then X ⊆ νF .
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The intuition behind these principles comes from thinking of the set X as a

predicate, represented as its characteristic set – the subset of U for which the

predicate is true; showing that property X holds of an element x is the same as

showing that x is in the set X . Now, the induction principle says that any property

whose characteristic set is closed under F (i.e. the property is preserved by F) is true

of all the elements of the inductively defined set µF .

The coinduction principle, on the other hand, gives us a method for establishing

that an element x is in the coinductively defined set νF . To show x ∈ νF , it suffices to

find a set X such that x ∈ X and X is F-consistent. Although it is a little less familiar

than induction, the principle of coinduction is central to many areas of computer

science; for example, it is the main proof technique in theories of concurrency based

on bisimulation, and it lies at the heart of many model checking algorithms.

The principles of induction and coinduction are used heavily throughout the paper.

We do not write out every inductive argument in terms of generating functions and

predicates; instead, in the interest of brevity, we often rely on familiar abbreviations

such as structural induction. Coinductive arguments are presented more explicitly.

Exercise 2.9

Show that the following familiar induction principles follow from the general prin-

ciple of induction in Corollary 2.8.

• Induction on natural numbers: let P ⊆ N be a predicate on natural numbers.

If P (0) and ∀i ∈ N . P (i)⇒ P (i+ 1), then ∀n ∈ N . P (n),

• Lexicographic induction on pairs: let P ⊆ N ×N be a predicate on pairs of

natural numbers. If ∀(m, n) ∈ N ×N . [∀(m′, n′) < (m, n). P (m′, n′)] ⇒ P (m, n),

then ∀(m, n) ∈ N×N . P (m, n).

(Recall that the lexicographic order on pairs is defined by: (m, n) < (m′, n′) iff either

m < m′ or m = m′ and n < n′.)

3 Finite and infinite types

We are going to instantiate the general definitions of greatest fixed points and the

coinductive proof method with the specifics of subtyping. Before we can do this,

though, we need to show precisely how to view types as (finite or infinite) trees.

For brevity, we deal in this paper with just three type constructors: →, × and

Top. We represent types as (possibly infinite) trees with nodes labeled by one of

the symbols →, ×, or Top. The definition is specialized to our present needs; for a

general treatment of infinite labeled trees see Courcelle (1983).

We write {1, 2}∗ for the set of sequences of 1s and 2s. The empty sequence is

written •, and ik stands for k copies of i. If π and σ are sequences, then π ·σ denotes

the concatenation of π and σ.

https://doi.org/10.1017/S0956796802004318 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004318


518 V. Gapeyev, M. Y. Levin and B. C. Pierce

Definition 3.1

A tree type1 (or, simply, a tree) is a partial function T ∈ {1, 2}∗ ⇀ {→,×, Top}
satisfying the following constraints:

• T(•) is defined;

• if T(π · σ) is defined then T(π) is defined;

• if T(π) =→ or T(π) = × then T(π · 1) and T(π · 2) are defined;

• if T(π) = Top then T(π · 1) and T(π · 2) are undefined.

A tree type T is finite if dom(T) is finite. The set of all tree types is written T; the

subset of all finite tree types is written Tf .

For notational convenience, we write Top for the tree T with T(•) = Top. When T1

and T2 are trees, we write T1×T2 for the tree with (T1×T2)(•) = × and (T1×T2)(i ·
π) = Ti(π) and T1→T2 for the tree with (T1→T2)(•) =→ and (T1→T2)(i ·π) = Ti(π),

for i = 1, 2. For example, the expression (Top×Top)→Top denotes the finite tree

type T defined by the function with T(•) = → and T(1) = × and T(2) = T(1 · 1) =

T(1 · 2) = Top. We use ellipses informally for describing non-finite tree types. For

example, Top→(Top→(Top→...)) corresponds to the type T defined by T(2k) =→,

for all k > 0, and T(2k ·1) = Top, for all k > 0. Figure 2 illustrates these conventions.

The set of finite tree types can be defined more compactly by a grammar:

T ::= Top

T×T
T→T

Formally, Tf is the least fixed point of the generating function described by the

grammar. The universe of this generating function is the set of all finite and infinite

trees labeled with Top, →, and × (i.e. the set formed by generalizing Definition 3 by

dropping its two last conditions). The whole set T can be derived from the same

generating function by taking the greatest fixed point instead of the least.

Exercise 3.2

Following the ideas in the previous paragraph, suggest a universe U and a generating

function F ∈ P(U)→ P(U) such that the set of finite tree types Tf is the least fixed

point of F and the set of all tree types T is its greatest fixed point.

4 Subtyping

We define subtype relations on finite tree types and on tree types in general as least

and greatest fixed points, respectively, of monotone functions on certain universes.

For subtyping on finite tree types the universe is the setTf×Tf of pairs of finite tree

types; our generating function will map subsets of this universe – that is, relations

on Tf – to other subsets, and their fixed points will also be relations on Tf. For

subtyping on arbitrary (finite or infinite) trees, the universe is T×T.

1 The locution ‘tree type’ is slightly awkward, but it will help to keep things straight when we discuss
the alternative presentation of recursive types as finite expressions involving µ (‘µ-types’) in Section 9.
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(Top×Top)→Top Top→(Top→(Top→...))

→

Top×

Top Top

Top

→Top

Top

→

→

..

.

1

1

1

1

2

2

1 2

2

2

Fig. 2. Sample tree types.

Definition 4.1 [Finite subtyping]

Two finite tree types S and T are in the subtype relation (‘S is a subtype of T’) if

(S, T) ∈ µSf , where the monotone function Sf ∈ P(Tf×Tf)→ P(Tf×Tf) is defined

by

Sf(R) = {(T, Top) | T ∈ Tf}
∪ {(S1×S2, T1×T2) | (S1, T1), (S2, T2) ∈ R}
∪ {(S1→S2, T1→T2) | (T1, S1), (S2, T2) ∈ R}.

This generating function precisely captures the effect of the standard definition of

the subtype relation by a collection of inference rules:

T <: Top

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

The statement S <: T above the line in the second and third rules should be read as

‘if the pair (S, T) is in the argument to Sf ’ and below the line as ‘then (S, T) is in the

result’.

Definition 4.2 [Infinite subtyping]

Two (finite or infinite) tree types S and T are in the subtype relation if (S, T) ∈ νS ,

where S ∈ P(T×T)→ P(T×T) is defined by:

S(R) = {(T, Top) | T ∈ T}
∪ {(S1×S2, T1×T2) | (S1, T1), (S2, T2) ∈ R}
∪ {(S1→S2, T1→T2) | (T1, S1), (S2, T2) ∈ R}.

Note that the inference rule presentation of this relation is precisely the same as for

the inductive relation above: all that changes is that we consider a larger universe

of types and take a greatest instead of a least fixed point.

Exercise 4.3

Check that νS is not the whole of T×T by exhibiting a pair (S, T) that is not in

νS .
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Exercise 4.4

Is there a pair of types (S, T) that is related by νS , but not by µS? What about a

pair of types (S, T) that is related by νSf , but not by µSf?

One fundamental property of the subtype relation on infinite tree types – the fact

that it is transitive – should be verified right away. If the subtype relation were

not transitive, the critical property of preservation of types under evaluation would

immediately fail. To see this, suppose that there were types S, T and U with S<:T

and T<:U but not S<:U. Let s be a value of type S and f a function of type U→Top.

Then the term (λx:T. f x) s could be typed, using the rule of subsumption once

for each application, but this term reduces in one step to the ill-typed term f s.

Definition 4.5

A relation R ⊆ U × U is transitive if R is closed under the monotone function

TR(R) = {(x, y) | ∃z ∈ U. (x, z), (z, y) ∈ R}, i.e. if TR(R) ⊆ R.

Lemma 4.6

Let F ∈ P(U×U)→ P(U×U) be a monotone function. If TR(F(R)) ⊆ F(TR(R))

for any R ⊆ U ×U, then νF is transitive.

Proof

Since νF is a fixed point, νF = F(νF), implying TR(νF) = TR(F(νF)). Therefore,

by the lemma’s assumption, TR(νF) ⊆ F(TR(νF)). In other words, TR(νF) is F-

consistent, so, by the principle of coinduction, TR(νF) ⊆ νF . Equivalently, νF is

transitive by Definition 4.5. 2

This lemma is reminiscent of the traditional technique for establishing redundancy

of the transitivity rule in inference systems, often called ‘cut-elimination proofs.’ The

condition TR(F(R)) ⊆ F(TR(R)) corresponds to the crucial step in this technique:

given that a certain statement can be obtained by taking some statements from R,

applying rules from F , and then applying the rule of transitivity TR, we argue that

the statement can instead be obtained by reversing the steps – first applying the rule

of transitivity, and then rules from F . We use the lemma to establish transitivity of

the subtype relation.

Theorem 4.7

νS is transitive.

Proof

By Lemma 4.6, it suffices to show that TR(S(R)) ⊆ S(TR(R)) for any R ⊆ T ×T.

Let (S, T) ∈ TR(S(R)). By the definition of TR, there exists some U ∈ T such that

(S, U), (U, T) ∈ S(R). Our goal is to show that (S, T) ∈ S(TR(R)). Consider the possible

shapes of U.

Case: U = Top

Since (U, T) ∈ S(R), the definition of S implies that T must be Top. But (A, Top) ∈ S(Q)

for any A and Q; in particular, (S, T) = (S, Top) ∈ S(TR(R)).
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Case: U = U1×U2

If T = Top, then (S, T) ∈ S(TR(R)) as in the previous case. Otherwise, (U, T) ∈ S(R)

implies T = T1×T2, with (U1, T1), (U2, T2) ∈ R. Similarly, (S, U) ∈ S(R) implies S =

S1×S2, with (S1, U1), (S2, U2) ∈ R. By the definition of TR, we have (S1, T1), (S2, T2) ∈
TR(R), from which (S1×S2, T1×T2) ∈ S(TR(R)) follows from the definition of S .

Case: U = U1→U2

Similar. 2

Exercise 4.8

Show that the subtype relation on infinite tree types is also reflexive.

The following section continues the discussion of transitivity by comparing its

treatment in standard accounts of subtyping for finite types and in the present

account of subtyping for infinite tree types. It can be skipped or skimmed on a first

reading.

5 A digression on transitivity

Standard formulations of inductively defined subtype relations generally come in two

forms: a declarative presentation that is optimized for readability and an algorithmic

presentation that corresponds more or less directly to an implementation. In simple

systems, the two presentations are fairly similar; in more complex systems, they can

be quite different, and proving that they define the same relation on types can pose

a significant challenge.

One of the most distinctive differences between declarative and algorithmic pre-

sentations is that declarative presentations include an explicit rule of transitivity – if

S<:U and U<:T then S<:T – while algorithmic systems do not. This rule is useless in

an algorithm, since applying it in a goal-directed manner would involve guessing U.

The rule of transitivity plays two useful roles in declarative systems. First, it makes

it obvious to the reader that the subtype relation is, indeed, transitive. Secondly,

transitivity often allows other rules to be stated in simpler, more primitive forms;

in algorithmic presentations, these simple rules need to be combined into heavier

mega-rules that take into account all possible combinations of the simpler ones.

For example, in the presence of transitivity, the rules for ‘depth subtyping’ within

record fields, ‘width subtyping’ by adding new fields, and ‘permutation’ of fields

can be stated separately, making them all easier to understand. Without transitivity,

the three rules must be merged into a single one that takes width, depth, and

permutation into account all at once.

Somewhat surprisingly, the possibility of giving a declarative presentation with the

rule of transitivity turns out to be a consequence of a ‘trick’ that can be played with

inductive, but not coinductive, definitions. To see why, observe that the property of

transitivity is a closure property – it demands that the subtype relation be closed

under the transitivity rule. Since the subtype relation for finite types is itself defined

as the closure of a set of rules, we can achieve closure under transitivity simply

by adding it to the other rules. This is a general property of inductive definitions
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and closure properties: the union of two sets of rules, when applied inductively,

generates the least relation that is closed under both sets of rules separately. This

fact can be formulated more abstractly in terms of generating functions:

Proposition 5.1

Suppose F and G are monotone functions, and let H(X) = F(X) ∪ G(X). Then µH

is the smallest set that is both F-closed and G-closed.

Proof

First, we show that µH is closed under both F and G. By definition, µH = H(µH) =

F(µH) ∪ G(µH), so F(µH) ⊆ µH and G(µH) ⊆ µH. Secondly, we show that µH

is the least set closed under both F and G. Suppose there is some set X such

that F(X) ⊆ X and G(X) ⊆ X . Then H(X) = F(X) ∪ G(X) ⊆ X , that is, X is

H-closed. Since µH is the least H-closed set (by the Knaster-Tarski theorem), we

have µH ⊆ X . 2

Unfortunately, this trick for achieving transitive closure does not work when we

are dealing with coinductive definitions. As the following exercise shows, adding

transitivity to the rules generating a coinductively defined relation always gives us a

degenerate relation.

Exercise 5.2

Suppose F is a generating function on the universe U. Show that the greatest fixed

point νFTR of the generating function

FTR(R) = F(R) ∪ TR(R)

is the total relation on U×U.

In the coinductive setting, then, we drop declarative presentations and work just

with algorithmic ones.

6 Membership checking

We now turn our attention to the central question of the paper: how to decide, given

a generating function F on some universe U and an element x ∈ U, whether or not

x falls in the greatest fixed point of F . Membership checking for least fixed points

is addressed more briefly (in Exercise 6.13).

A given element x ∈ U can, in general, be generated by F in many ways. That is,

there can be more than one set X ⊆ U such that x ∈ F(X). Call any such set X a gen-

erating set for x. Because of the monotonicity of F , any superset of a generating set

for x is also a generating set for x, so it makes sense to restrict our attention to min-

imal generating sets. Going one step further, we can focus on the class of ‘invertible’

generating functions, where each x has at most one minimal generating set.

Definition 6.1

A generating function F is said to be invertible if, for all x ∈ U, the collection of

sets

Gx = {X ⊆ U | x ∈ F(X)}
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either is empty or contains a unique member that is a subset of all the others. When

F is invertible, the partial function supportF ∈ U⇀ P(U) is defined as follows: 2

supportF (x) =

{
X if X ∈ Gx and ∀X ′ ∈ Gx. X ⊆ X ′
↑ if Gx = ∅

The support function is lifted to sets as follows:

supportF (X) =

{ ⋃
x∈X supportF (x) if ∀x ∈ X. supportF (x)↓
↑ otherwise

When F is clear from context, we will often omit the subscript in supportF (and

similar functions based on F that we define later).

Exercise 6.2

Verify that Sf and S , the generating functions for the subtyping relations from

Definitions 4.1 and 4.2, are invertible, and give their support functions.

Our goal is to develop algorithms for checking membership in the least and

greatest fixed points of a generating function F . The basic steps in these algorithms

will involve ‘running F backwards’: to check membership for an element x, we need

to ask how x could have been generated by F . The advantage of an invertible F

is that there is at most one way to generate a given x. For a non-invertible F ,

elements can be generated in multiple ways, leading to a combinatorial explosion in

the number of paths that the algorithm must explore. From now on, we restrict our

attention to invertible generating functions.

Definition 6.3

An element x is F-supported if supportF (x)↓; otherwise, x is F-unsupported. An

F-supported element is called F-ground if supportF (x) = ∅.

Note that an unsupported element x does not appear in F(X) for any X , while a

ground x is in F(X) for every X .

An invertible function can be visualized as a support graph. For example, figure 3

defines a function E on the universe {a, b, c, d, e, f, g, h, i} by showing which elements

are needed to support a given element of the universe: for a given x, the set

supportE(x) contains every y for which there is an arrow from x to y. An unsupported

element is denoted by a slashed circle. In this example, i is the only unsupported

element and g is the only ground element. (Note that, according to our definition, h

is supported, even though its support set includes an unsupported element.)

Exercise 6.4

Give inference rules corresponding to this function, as we did in Example 2.3. Check

that E({b, c}) = {g, a, d}, that E({a, i}) = {g, h}, and that the sets of elements marked

in the figure as µE and νE are indeed the least and the greatest fixed points of E.

Thinking about the graph in figure 3 suggests the idea that an element x is

2 As usual, the symbol ↑ means ‘undefined’, and the notation f(x) ↑ says that the function f is undefined
at x, while f(x)↓ says that f is defined at x.

https://doi.org/10.1017/S0956796802004318 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004318


524 V. Gapeyev, M. Y. Levin and B. C. Pierce

i

d

b

e

νE

µE

g

c

f

h

a

Fig. 3. A sample support function.

in the greatest fixed point iff no unsupported element is reachable from x in the

support graph. This suggests an algorithmic strategy for checking whether x is in

νF: enumerate all elements reachable from x via the support function; return failure

if an unsupported element occurs in the enumeration; otherwise, succeed. Observe,

however, that there can be cycles of reachability between the elements, and the

enumeration procedure must take some precautions against falling into an infinite

loop. We will pursue this idea for the remainder of this section.

Definition 6.5

Suppose F is an invertible generating function. Define the boolean-valued function

gfpF (or just gfp) as follows:3

gfp(X) = if support(X) ↑, then false

else if support(X) ⊆ X , then true

else gfp(support(X)∪X).

Intuitively, gfp starts from X and keeps enriching it using support until either it

becomes consistent or else an unsupported element is found. We extend gfp to

individual elements by taking gfp(x) = gfp({x}).

Exercise 6.6

Another observation that can be made from figure 3 is that an element x of νF is

not a member of µF if x participates in a cycle in the support graph (or if there is

a path from x to an element that participates in a cycle). Is the converse also true –

that is, if x is a member of νF but not µF , is it necessarily the case that x leads to

a cycle?

The remainder of the section is devoted to proving the correctness and termination

3 We use here the standard notation for defining recursive functions, i.e. we intend that gfp is the
smallest partial function satisfying the stated equation. Such definitions can themselves be viewed more
formally as least fixed points of appropriate generating functions. Details can be found in any standard
treatment of denotational semantics, e.g. the in texts of Gunter (1992), Winskel (1993) or Mitchell
(1996).
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of gfp. (First-time readers may want to skip this material and jump to the next

section.) We start by observing a couple of properties of the support function.

Lemma 6.7

X ⊆ F(Y ) iff supportF (X)↓ and supportF (X) ⊆ Y .

Proof

It suffices to show that x ∈ F(Y ) iff support(x)↓ and support(x) ⊆ Y . Suppose first

that x ∈ F(Y ). Then Y ∈ Gx = {X ⊆ U | x ∈ F(X)} – that is, Gx 6= ∅. Therefore,

since F is invertible, support(x), the smallest set in Gx, exists and support(x) ⊆ Y .

Conversely, if support(x) ⊆ Y , then F(support(x)) ⊆ F(Y ) by monotonicity. But

x ∈ F(support(x)) by the definition of support , so x ∈ F(Y ). 2

Lemma 6.8

Suppose P is a fixed point of F . Then X ⊆ P iff supportF (X)↓ and supportF (X) ⊆ P .

Proof

Recall that P = F(P ) and apply Lemma 6.7. 2

Now we can prove partial correctness of gfp. (We are not concerned with total

correctness yet, because some generating functions will make gfp diverge. We prove

termination for a restricted class of generating functions later in the section.)

Theorem 6.9

1. If gfpF (X) = true, then X ⊆ νF .

2. If gfpF (X) = false, then X 6⊆ νF .

Proof

The proof of each clause proceeds by induction on the recursive structure of a run

of the algorithm.

1. From the definition of gfp, it is easy to see that there are two cases where gfp(X)

can return true. If gfp(X) = true because support(X) ⊆ X , then, by Lemma 6.7,

we have X ⊆ F(X), i.e. X is F-consistent; thus, X ⊆ νF by the coinduction

principle. On the other hand, if gfp(X) = true because gfp(support(X)∪X) =

true, then, by the induction hypothesis, support(X)∪X ⊆ νF , and so X ⊆ νF .

2. Again, there are two ways to get gfp(X) = false. Suppose first that gfp(X) =

false because support(X) ↑. Then X 6⊆ νF by Lemma 6.8. On the other hand,

suppose gfp(X) = false because gfp(support(X)∪X) = false. By the induction

hypothesis, support(X) ∪X 6⊆ νF . Equivalently, X 6⊆ νF or support(X) 6⊆ νF .

Either way, X 6⊆ νF (using Lemma 6.8 in the second case). 2

Next, we identify a sufficient termination condition for gfp, giving a class of

generating functions for which the algorithm is guaranteed to terminate. To describe

the class, we need some additional terminology.
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Definition 6.10

Given an invertible generating function F and an element x ∈ U, the set predF (x)

(or just pred (x)) of immediate predecessors of x is

pred(x) =

{
∅ if support(x) ↑
support(x) if support(x)↓

and its extension to sets X ⊆ U is

pred (X) =
⋃
x∈X

pred (x).

The set reachableF (X) (or just reachable(X)) of all elements reachable from a set X

via support is defined as

reachable(X) =
⋃
n>0

predn(X).

and its extension to single elements x ∈ U is

reachable(x) = reachable({x}).

An element y ∈ U is reachable from an element x if y ∈ reachable(x).

Definition 6.11

An invertible generating function F is said to be finite state if reachable(x) is finite

for each x ∈ U.

For a finite-state generating function, the search space explored by gfp is finite

and gfp always terminates:

Theorem 6.12

If reachableF (X) is finite, then gfpF (X) is defined. Consequently, if F is finite state,

then gfpF (X) terminates for any finite X ⊆ U.

Proof

For each recursive call gfp(Y ) in the call graph generated by the original invocation

gfp(X), we have Y ⊆ reachable(X). Moreover, Y strictly increases on each call. Since

reachable(X) is finite, m(Y ) = |reachable(X)| − |Y | serves as a termination measure

for gfp. 2

Exercise 6.13

Suppose F is an invertible generating function. Define the function lfpF (or just lfp)

as follows:

lfp(X) = if support(X) ↑, then false

else if X = ∅, then true

else lfp(support(X)).

Intuitively, lfp works by starting with a set X and using the support relation to
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reduce it until it becomes empty. Prove that this algorithm is partially correct, in the

sense that

1. If lfpF (X) = true, then X ⊆ µF .

2. If lfpF (X) = false, then X 6⊆ µF .

Can you find a class of generating functions for which lfpF is guaranteed to terminate

on all finite inputs?

7 More efficient algorithms

Although the gfp algorithm is correct, it is not very efficient, since it has to recompute

the support of the whole set X every time it makes a recursive call. For example, in

the following trace of gfp on the function E from figure 3,

gfp({a})
= gfp({a, b, c})
= gfp({a, b, c, e, f, g})
= gfp({a, b, c, e, f, g, d})
= true.

Note that support(a) is recomputed four times. We can refine the algorithm to

eliminate this redundant recomputation by maintaining a set A of assumptions

whose support sets have already been considered and a set X of goals whose support

has not yet been considered.

Definition 7.1

Suppose F is an invertible generating function. Define the function gfpaF (or just

gfpa) as follows (the superscript ‘a’ is for ‘assumptions’):

gfpa(A,X) = if support(X) ↑, then false

else if X = ∅, then true

else gfpa(A ∪X, support(X) \ (A ∪X)).

To check x ∈ νF , compute gfpa(∅, {x}).

This algorithm (like the two following algorithms in this section) computes the

support of each element at most once. A trace for the above example looks like this:

gfpa(∅, {a})
= gfpa({a}, {b, c})
= gfpa({a, b, c}, {e, f, g})
= gfpa({a, b, c, e, f, g}, {d})
= gfpa({a, b, c, e, f, g, d}, ∅)
= true.

Naturally, the correctness statement for this algorithm is slightly more elaborate

than the one we saw in the previous section.
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Theorem 7.2

1. If supportF (A) ⊆ A ∪X and gfpaF (A,X) = true, then A ∪X ⊆ νF .

2. If gfpaF (A,X) = false, then X 6⊆ νF .

Proof

Similar to Theorem 6.9. 2

The rest of this section examines two more variations on the gfp algorithm that

correspond more closely to well-known subtyping algorithms for recursive types.

First-time readers may want to skip to the beginning of the next section.

Definition 7.3

A small variation on gfpa has the algorithm pick just one element at a time from X

and expand its support . The new algorithm is called gfpsF (or just gfps, ‘s’ being for

‘single’).

gfps(A,X) = if X = ∅, then true

else let x be some element of X in

if x ∈ A then gfps(A, X \ {x})
else if support(x) ↑ then false

else gfps(A ∪ {x}, (X ∪ support(x)) \ (A ∪ {x})).

The correctness statement (i.e. the invariant of the recursive ‘loop’) for this algorithm

is exactly the same as Theorem 7.2.

Unlike the above algorithm, many existing algorithms for recursive subtyping

take just one candidate element, rather than a set, as an argument. Another small

modification to our algorithm makes it more similar to these. The modified algorithm

is no longer tail recursive,4 since it uses the call stack to remember subgoals that

have not yet been checked. Another change is that the algorithm both takes a

set of assumptions A as an argument and returns a new set of assumptions as a

result. This allows it to record the subtyping assumptions that have been generated

during completed recursive calls and reuse them in later calls. In effect, the set of

assumptions is ‘threaded’ through the recursive call graph – whence the name of the

algorithm, gfpt.

Definition 7.4

Given an invertible generating function F , define the function gfptF (or just gfpt) as

follows:

4 A tail-recursive call (or tail call) is a recursive call that is the last action of the calling function, i.e.
such that the result returned from the recursive call will also be caller’s result. Tail calls are interesting
because most compilers for functional languages will implement a tail call as a simple branch, re-using
the stack space of the caller instead of allocating a new stack frame for the recursive call. This means
that a loop implemented as a tail-recursive function compiles into the same machine code as an
equivalent while loop.
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gfpt(A, x) = if x ∈ A, then A

else if support(x) ↑, then fail

else

let {x1, . . . , xn} = support(x) in

let A0 = A ∪ {x} in

let A1 = gfpt(A0, x1) in

. . .

let An = gfpt(An−1, xn) in

An.

To check x ∈ νF , compute gfpt(∅, x). If this call succeeds, then x ∈ νF; if it fails,

then x 6∈ νF . We use the following convention for failure: if an expression B fails,

then ‘let A = B in C ’ also fails. This avoids writing explicit ‘exception handling’

clauses for every recursive invocation of gfpt.

The correctness statement for this algorithm must again be refined from what we

had above, taking into account the non-tail-recursive nature of this formulation by

positing an extra ‘stack’ X of elements whose supports remain to be checked.

Lemma 7.5

1. If gfptF (A, x) = A′, then A ∪ {x} ⊆ A′.
2. For all X , if supportF (A) ⊆ A∪X ∪ {x} and gfptF (A, x) = A′, then supportF (A′)

⊆ A′ ∪X .

Proof

Part (1) is a routine induction on the recursive structure of a run of the algorithm.

Part (2) also goes by induction on the recursive structure of a run of the algorithm.

If x ∈ A, then A′ = A and the desired conclusion follows immediately from the

assumption. On the other hand, suppose A′ 6= A, and consider the special case where

support(x) contains two elements x1 and x2 – the general case (not shown here) is

proved similarly, using an inner induction on the size of support(x). The algorithm

calculates A0, A1, and A2 and returns A2. We want to show, for an arbitrary X0, that

if support(A) ⊆ A∪ {x}∪X0, then support(A2) ⊆ A2 ∪X0. Let X1 = X0 ∪ {x2}. Since

support(A0) = support(A) ∪ support(x)

= support(A) ∪ {x1, x2}
⊆ A ∪ {x} ∪X0 ∪ {x1, x2}
= A0 ∪X0 ∪ {x1, x2}
= A0 ∪X1 ∪ {x1},

we can apply the induction hypothesis to the first recursive call by instantiating

the universally quantified X with X1. This yields support(A1) ⊆ A1 ∪ X1 = A1 ∪
{x2} ∪X0. Now, we can apply the induction hypothesis to the second recursive call

by instantiating the universally quantified X with X0 to obtain the desired result:

support(A2) ⊆ A2 ∪X0. 2
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Theorem 7.6

1. If gfptF (∅, x) = A′, then x ∈ νF .
2. If gfptF (∅, x) = fail, then x /∈ νF .

Proof

For part (1), observe that, by Lemma 7.5(1), x ∈ A′. Instantiating part (2) of the

lemma with X = ∅, we obtain support(A′) ⊆ A′, that is, A′ is F-consistent by

Lemma 6.7, and so A′ ⊆ νF by coinduction. For part (2), we argue (by an easy

induction on the depth of a run of the gfptF algorithm, using Lemma 6.8) that if, for

some A, we have gfptF (A, x) = fail, then x /∈ νF . 2

Since all of the algorithms in this section examine the reachable set, a sufficient

termination condition for all of them is the same as that of the original gfp algorithm:

they terminate on all inputs when F is finite state.

8 Regular trees

At this point, we have developed generic algorithms for checking membership in

a set defined as the greatest fixed point of a generating function F , assuming that

F is invertible and finite state; separately, we have shown how to define subtyping

between infinite trees as the greatest fixed point of a particular generating function

S . The obvious next step is to instantiate one of our algorithms with S . Of course,

this concrete algorithm will not terminate on all inputs, since in general the set of

states reachable from a given pair of infinite types can be infinite. But, as we shall

see in this section, if we restrict ourselves to infinite types of a certain well-behaved

form, so-called regular types, then the sets of reachable states will be guaranteed to

remain finite and the subtype checking algorithm will always terminate.

Definition 8.1

A tree type S is a subtree of a tree type T if S = λσ. T(π ·σ) for some π, that is, if the

function S from paths to symbols can be obtained from the function T by adding

some constant prefix π to the argument paths we give to T; the prefix π corresponds

to the path from the root of T to the root of S. We write subtrees(T) for the set of

all subtrees of T.

Definition 8.2

A tree type T ∈ T is regular if subtrees(T) is finite, i.e. if T has finitely many distinct

subtrees. The set of regular tree types is written Tr .

Examples

1. Every finite tree type is regular; the number of distinct subtrees is at most the

number of nodes. The number of distinct subtrees of a tree type can be strictly

less than the number of nodes. For example, T = Top→(Top×Top) has five

nodes but only three distinct subtrees (T itself, Top×Top, and Top).
2. Some infinite tree types are regular. For example, the tree

T = Top × (Top × (Top × ...))

has just two distinct subtrees (T itself and Top).
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3. The tree type

T = B×(A×(B×(A×(A×(B×(A×(A×(A×(B×...)

where pairs of consecutive Bs are separated by increasingly many As, is not

regular. Because T is irregular, the set reachableS (T, T) containing all the

subtyping pairs needed to justify the statement T<:T is infinite.

Proposition 8.4

The restriction Sr of the generating function S to regular tree types is finite state.

Proof

We need to show that for any pair (S,T) of regular tree types, the set reachableSr(S, T)

is finite. Observe that reachableSr(S, T) ⊆ subtrees(S)× subtrees(T); the latter is finite,

since both subtrees(S) and subtrees(T) are. 2

This means that we can obtain a decision procedure for the subtype relation

on regular tree types by instantiating one of the membership algorithms with

S . Naturally, for this to work in a practical implementation, regular trees must

be represented by some finite structures. One such representation, µ-notation, is

discussed in the next section.

9 µ-Types

This section develops the finite µ-notation, defines subtyping on µ-expressions, and

establishes the correspondence between this notion of subtyping and the subtyping

on tree types.

Definition 9.1

Let X range over a fixed countable set {X1, X2, . . .} of type variables. The set Traw
m of

raw µ-types is the set of expressions defined by the following grammar:

T ::= X

Top

T×T
T→T

µX.T

The syntactic operator µ is a binder, and gives rise, in the standard way, to notions

of bound and free variables, closed raw µ-types, and equivalence of raw µ-types up

to renaming of bound variables. FV(T) denotes the set of free variables of a raw

µ-type T. The capture-avoiding substitution {X 7→ S}T of a raw µ-type S for free

occurrences of X in a raw µ-type T is defined as usual.

Raw µ-types have to be restricted a little to achieve a tight correspondence

with regular trees: we want to be able to ‘read off’ a tree type as the infinite

unfolding of a given µ-type, but there are raw µ-types that cannot be reasonably

interpreted as representations of tree types. These types have subexpressions of the

form µX.µX1...µXn.X, where the variables X1 through Xn are distinct from X. For
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example, consider T = µX.X. Unfolding of T gives T again, so we cannot read off

any tree by unfolding T. This leads us to the following restriction.

Definition 9.2

A raw µ-type T is contractive if, for any subexpression of T of the form

µX.µX1...µXn.S, the body S is not X. Equivalently, a raw µ-type is contractive

if every occurrence of a µ-bound variable in the body is separated from its binder

by at least one → or ×.

A raw µ-type is called simply a µ-type if it is contractive. The set of µ-types is

written Tm.

When T is a µ-type, we write µ-height(T ) for the number of µ-bindings at the

front of T.

The common understanding of µ-types as finite notation for infinite regular tree

types is formalized by the following function.

Definition 9.3

The function treeof , mapping closed µ-types to tree types, is defined inductively as

follows:

treeof (Top)(•) = Top

treeof (T1→T2)(•) = →
treeof (T1→T2)(i · π) = treeof (Ti)(π)

treeof (T1×T2)(•) = ×
treeof (T1×T2)(i · π) = treeof (Ti)(π)

treeof (µX.T)(π) = treeof ({X 7→ µX.T}T)(π)

To verify that this definition is proper (i.e. exhaustive and terminating), note the

following:

1. Every recursive use of treeof on the right-hand side reduces the lexicographic

size of the pair (|π|, µ-height(T)): the cases for S→T and S×T reduce |π| and

the case for µX.T preserves |π| but reduces µ-height(T).

2. All recursive calls preserve contractiveness and closure of the argument types.

In particular, the type µX.T is contractive and closed iff its unfolding {X 7→
µX.T}T is. This justifies the unfolding step in the definition of treeof (µX.T).

The treeof function is lifted to pairs of types by defining treeof (S, T) =

(treeof (S), treeof (T)).

A sample application of treeof to a µ-type is shown in figure 4.

The subtype relation for tree types was defined in Section 4 as the greatest fixed

point of the generating function S . In the present section, we extended the syntax

of types with µ-types, whose behavior is intuitively described by the rules of (right

and left, correspondingly) µ-folding :

S <: {X 7→ µX.T}T
S <: µX.T

and
{X 7→ µX.S}S <: T

µX.S <: T

Formally, we define subtyping for µ-types by giving a generating function Sm, with

https://doi.org/10.1017/S0956796802004318 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004318


Recursive subtyping revealed 533

.

.

.
.
..

.

..

.

.

.

×

Top

→

→×

Top ×

Top

treeof (µX.((X×Top)→X)) =

11 2

1

2

2

1 2

21

21

→

Fig. 4. Sample treeof application.

three clauses identical to the definition of S and two additional clauses corresponding

to the µ-folding rules.

Definition 9.4

Two µ-types S and T are said to be in the subtype relation if (S, T) ∈ νSm, where the

monotone function Sm ∈ P(Tm ×Tm)→ P(Tm ×Tm) is defined by:

Sm(R) = {(S, Top) | S ∈ Tm}
∪ {(S1×S2, T1×T2) | (S1, T1), (S2, T2) ∈ R}
∪ {(S1→S2, T1→T2) | (T1, S1), (S2, T2) ∈ R}
∪ {(S, µX.T) | (S, {X 7→ µX.T}T) ∈ R}
∪ {(µX.S, T) | ({X 7→ µX.S}S, T) ∈ R, T 6= Top, and T 6= µY.T1}.

Note that this definition does not embody precisely the µ-folding rules above: we

have introduced an asymmetry between its final and penultimate clauses to make it

invertible (otherwise, the clauses would overlap). However, as the next exercise shows,

Sm generates the same subtype relation as the more natural generating function5Sd
whose clauses exactly correspond to the inference rules.

Exercise 9.5

Write down the function Sd mentioned above, and demonstrate that it is not

invertible. Prove that νSd = νSm.

The generating function Sm is invertible because the corresponding support func-

5 The ‘d’ in Sd is a reminder that the function is based on the ‘declarative’ inference rules for µ-folding,
in contrast to the ‘algorithmic’ versions used in Sm.
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tion is well-defined:

supportSm(S, T) =



∅ if T = Top

{(S1, T1), (S2, T2)} if S = S1×S2 and

T = T1×T2

{(T1, S1), (S2, T2)} if S = S1→S2 and

T = T1→T2

{(S, {X 7→ µX.T1}T1)} if T = µX.T1

{({X 7→ µX.S1}S1, T)} if S = µX.S1 and

T 6= µX.T1, T 6= Top

↑ otherwise.

The subtype relation on µ-types so far has been introduced independently of the

previously defined subtyping on tree types. Since we think of µ-types as just a way of

representing tree types in a finite form, it is necessary to ensure that the two notions

of subtyping correspond to each other. Theorem 9.7 establishes this correspondence.

But first, we need a technical lemma.

Lemma 9.6

Suppose that R ⊆ Tm × Tm is Sm-consistent. For any (S, T) ∈ R, there is some

(S′, T′) ∈ R such that treeof (S′, T′) = treeof (S, T) and neither S′ nor T′ starts with µ.

Proof

By induction on the total number of µs at the front of S and T. If neither S nor T starts

with µ, then we can take (S′, T′) = (S, T). On the other hand, if (S, T) = (S, µX.T1),

then by the Sm-consistency of R, we have (S, T) ∈ Sm(R), so (S′′, T′′) = (S, {X 7→
µX.T1}T1) ∈ R. Since T is contractive, the result T′′ of unfolding T has one fewer µ

at the front than T does. By the induction hypothesis, there is some (S′, T′) ∈ R such

that neither S′ nor T′ starts with µ and such that treeof (S′′, T′′) = (S′, T′). Since, by

the definition of treeof , treeof (S, T) = treeof (S′′, T′′), the pair (S′, T′) is the one we

need. The case where (S, T) = (µX.S1, T) is similar. 2

Theorem 9.7

Let (S, T) ∈ Tm ×Tm. Then (S, T) ∈ νSm iff treeof (S, T) ∈ νS .

Proof

First, let us consider the ‘only if’ direction – that (S, T) ∈ νSm implies treeof (S, T) ∈ νS .

Let (A, B) = treeof (S, T) ∈ T×T. By the coinduction principle, the result will follow

if we can exhibit an S-consistent set Q ∈ T×T such that (A, B) ∈ Q. Our claim is

that Q = treeof (νSm) is such a set. To verify this, we must show that (A′, B′) ∈ S(Q)

for every (A′, B′) ∈ Q.

Let (S′, T′) ∈ νSm be a pair of µ-types such that treeof (S′, T′) = (A′, B′). By

Lemma 9.6, we may assume that neither S′ nor T′ starts with µ. Since νSm is Sm-

consistent, (S′, T′) must be supported by one of the clauses in the definition of Sm,

i.e. it must have one of the following shapes.

Case: (S′, T′) = (S′, Top)

Then B′ = Top, and (A′, B′) ∈ S(Q) by the definition of S .
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Case: (S′, T′) = (S1×S2, T1×T2) with (S1, T1), (S2, T2) ∈ νSm
By the definition of treeof , we have B′ = treeof (T′) = B1×B2, where each Bi =

treeof (Ti). Similarly, A′ = A1×A2, where Ai = treeof (Si). Applying treeof to these

pairs gives (A1, B1), (A2, B2) ∈ Q. But then, by the definition of S , we have (A, B) =

(A1×A2, B1×B2) ∈ S(Q).

Case: (S′, T′) = (S1→S2, T1→T2) with (T1, S1), (S2, T2) ∈ νSm
Similar.

Next, let us check the ‘if’ direction of the theorem – that treeof (S, T) ∈ νS implies

(S, T) ∈ νSm. By the coinduction principle, it suffices to exhibit an Sm-consistent set

R ∈ Tm ×Tm with (S, T) ∈ R. We claim that R = {(S′, T′) ∈ Tm ×Tm | treeof (S′, T′) ∈
νS} is such a set. Clearly, (S, T) ∈ R. To finish the proof, we must now show that

(S′, T′) ∈ R implies (S′, T′) ∈ Sm(R).

Note that, since νS is S-consistent, any pair (A′, B′) ∈ νS must have one of the

forms (A′, Top), (A1×A2, B1×B2), or (A1→A2, B1→B2). From this and the definition

of treeof , we see that any pair (S′, T′) ∈ R must have one of the forms (S′, Top),

(S1×S2, T1×T2), (S1→S2, T1→T2), (S′, µX.T1), or (µX.S1, T
′). We consider each of these

cases in turn.

Case: (S′, T′) = (S′, Top)

Then (S′, T′) ∈ Sm(R) immediately, by the definition of Sm.

Case: (S′, T′) = (S1×S2, T1×T2)

Let (A′, B′) = treeof (S′, T′). Then (A′, B′) = (A1×A2, B1×B2), with Ai = treeof (Si) and

Bi = treeof (Ti). Since (A′, B′) ∈ νS , the S-consistency of νS implies that (Ai, Bi) ∈ νS ,

which in turn yields (Si, Ti) ∈ R, by the definition of R. The definition of Sm yields

(S′, T′) = (S1×S2, T1×T2) ∈ Sm(R).

Case: (S′, T′) = (S1→S2, T1→T2)

Similar.

Case: (S′, T′) = (S′, µX.T1)

Let T′′ = {X 7→ µX.T1}T1. By definition, treeof (T′′) = treeof (T′). Therefore, by the

definition of R, we have (S′, T′′) ∈ R, and so (S′, T′) ∈ Sm(R), by the definition of Sm.

Case: (S′, T′) = (µX.S1, T
′)

If T′ = Top or T′ starts with µ, then one of the cases above applies; otherwise, the

argument is similar to the previous one. 2

The correspondence established by the theorem is a statement of soundness and

completeness of subtyping between µ-types, as defined in this section, with respect

to the ordinary subtype relation between infinite tree types, restricted to those tree

types that can be represented by finite µ-expressions.

10 Counting subexpressions

Instantiating the generic algorithm gfpt (7.4) with the specific support function

supportSm for the subtype relation on µ-types (9.4) yields the subtyping algorithm
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subtype(A, S, T) = if (S,T) ∈ A, then
A

else let A0 = A ∪ {(S, T)} in

if T = Top, then
A0

else if S = S1×S2 and T = T1×T2, then

let A1 = subtype(A0 ,S1, T1) in
subtype(A1 ,S2 ,T2)

else if S = S1→S2 and T = T1→T2, then

let A1 = subtype(A0 ,T1, S1) in
subtype(A1 ,S2 ,T2)

else if T = µX.T1, then

subtype(A0 , S, {X 7→ µX.T1}T1)
else if S = µX.S1, then

subtype(A0 , {X 7→ µX.S1}S1, T)

else
fail

Fig. 5. Concrete subtyping algorithm for µ-types.

shown in figure 5. The argument in Section 7 shows that the termination of this

algorithm can be guaranteed if reachableSm(S, T) is finite for any pair of µ-types (S, T).

The present section is devoted to proving that this is the case (Proposition 10.11).

At first glance, the property seems almost obvious, but proving it rigorously

requires a surprising amount of work. The difficulty is that there are two possible

ways of defining the set of ‘closed subexpressions’ of a µ-type. One, which we call

top-down subexpressions, directly corresponds to the subexpressions generated by

supportSm . The other, called bottom-up subexpressions, supports a straightforward

proof that the set of closed subexpressions of every closed µ-type is finite. The

termination proof proceeds by defining both of these sets and showing that the

former is a subset of the latter (Proposition 10.10). The development here is based

on Brandt & Henglein’s (1997).

Definition 10.1

A µ-type S is a top-down subexpression of a µ-type T, written S v T, if the pair (S, T)

is in the least fixed point of the following generating function:

TD(R) = {(T, T) | T ∈ Tm}
∪ {(S, T1×T2) | (S, T1) ∈ R}
∪ {(S, T1×T2) | (S, T2) ∈ R}
∪ {(S, T1→T2) | (S, T1) ∈ R}
∪ {(S, T1→T2) | (S, T2) ∈ R}
∪ {(S, µX.T) | (S, {X 7→ µX.T}T) ∈ R}

Exercise 10.2

Give an equivalent definition of the relation S v T as a set of inference rules.

From the definition of supportSm it is easy to see that, for any µ-types S and T, all
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the pairs contained in supportSm(S, T) are formed from top-down subexpressions of

S and T:

Lemma 10.3

If (S′, T′) ∈ supportSm(S, T), then either S′ v S or S′ v T, and either T′ v S or T′ v T.

Proof

Straightforward inspection of the definition of supportSm . 2

Also, the top-down subexpression relation is transitive:

Lemma 10.4

If S v U and U v T, then S v T.

Proof

The statement of the lemma is equivalent to ∀U,T. U v T⇒ (∀S. S v U⇒ S v T).

In other words, we must show that µ(TD) ⊆ R, where R = {(U, T) | ∀S. S v U ⇒
S v T}. By the induction principle, it suffices to show that R is TD-closed, that is,

that TD(R) ⊆ R. So suppose (U, T) ∈ TD(R). Proceed by cases on the clauses in the

definition of TD.

Case: (U, T) = (T, T)

Clearly, (T, T) ∈ R.

Case: (U, T) = (U, T1×T2) and (U, T1) ∈ R
Since (U, T1) ∈ R, it must be the case that S v U ⇒ S v T1 for all S. By the

definition of v, it must also be the case that S v U ⇒ S v T1×T2 for all S. Thus,

(U, T) = (U, T1×T2) ∈ R, by the definition of R.

Other cases:

Similar. 2

Combining the two previous lemmas gives us the proposition that motivates the

introduction of top-down subexpressions:

Proposition 10.5

If (S′, T′) ∈ reachableSm(S, T), then S′ v S or S′ v T, and T′ v S or T′ v T.

Proof

By induction on the definition of reachableSm , using transitivity of v. 2

The finiteness of reachableSm(S, T) will follow (in Proposition 10.11) from the above

proposition and the fact that any µ-type U has only a finite number of top-down

subexpressions. Unfortunately, the latter fact is not obvious from the definition of

v. Attempting to prove it by structural induction on U using the definition of TD

does not work because the last clause of TD breaks the induction: to construct the

subexpressions of U = µX.T, it refers to a potentially larger expression {X 7→ µX.T}T.

The alternative notion of bottom-up subexpressions avoids this problem by per-

forming the substitution of µ-types for recursion variables after calculating the

subexpressions instead of before. This change will lead to a simple proof of finite-

ness.
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Definition 10.6

A µ-type S is a bottom-up subexpression of a µ-type T, written S � T, if the pair (S, T)

is in the least fixed point of the following generating function:

BU(R) = {(T, T) | T ∈ Tm}
∪ {(S, T1×T2) | (S, T1) ∈ R}
∪ {(S, T1×T2) | (S, T2) ∈ R}
∪ {(S, T1→T2) | (S, T1) ∈ R}
∪ {(S, T1→T2) | (S, T2) ∈ R}
∪ {({X 7→ µX.T}S, µX.T) | (S, T) ∈ R}

This new definition of subexpressions differs from the old one only in the clause

for a type starting with a µ binder. To obtain the top-down subexpressions of such

a type, we unfolded it first and then collected the subexpressions of the unfold-

ing. To obtain the bottom-up subexpressions, we first collect the (not necessarily

closed) subexpressions of the body, and then close them by applying the unfolding

substitution.

Exercise 10.7

Give an equivalent definition of the relation S � T as a set of inference rules.

The fact that an expression has only finitely many bottom-up subexpressions is

easily proved.

Lemma 10.8

{S | S � T} is finite for each T.

Proof

Straightforward structural induction on T, using the following observations, which

follow from the definition of BU and �:

• if T = Top or T = X then {S | S � T} = {T};
• if T = T1×T2 or T = T1→T2 then {S | S � T} = {T}∪{S | S � T1}∪{S | S � T2};
• if T = µX.T′ then {S | S � T} = {T} ∪ {{X 7→ T}S | S � T′}. 2

To prove that the bottom-up subexpressions of a type include its top-down

subexpressions, we will need the following lemma relating bottom-up subexpressions

and substitution.

Lemma 10.9

If S � {X 7→ Q}T, then either S � Q or else S = {X 7→ Q}S′ for some S′ with S′ � T.

Proof

By structural induction on T.

Case: T = Top

Only the reflexivity clause of BU allows Top as the right-hand element of the pair,

so we must have S = Top. Taking S′ = Top yields the desired result.
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Case: T = Y

If Y = X, we have S � {X 7→ Q}T = Q, and the desired result holds by assumption. If

Y 6= X, we have S = {X 7→ Q}T = Y. Only the reflexivity clause of BU can justify this

pair, so we must have S = Y. Take S′ = Y to get the desired result.

Case: T = T1×T2

We have S � {X 7→ Q}T = {X 7→ Q}T1×{X 7→ Q}T2. According to the definition of BU,

there are three ways in which S can be a bottom-up subexpression of this product

type. We consider each in turn.

Subcase: S = {X 7→ Q}T
Then take S′ = T.

Subcase: S � {X 7→ Q}T1

By the induction hypothesis, either S � Q (in which case we are done) or else

S = {X 7→ Q}S′ for some S′ � T1. The latter alternative implies the desired result

S′ � T1×T2 by the definition of BU.

Subcase: S � {X 7→ Q}T2

Similar.

Case: T = T1→T2

Similar to the product case.

Case: T = µY.T′

We have S � {X 7→ Q}T = µY.{X 7→ Q}T′. There are two ways in which S can be a

bottom-up subexpression of this µ-type.

Subcase: S = {X 7→ Q}T
Take S′ = T

Subcase: S = {Y 7→ µY.{X 7→ Q}T′}S1

with S1 � {X 7→ Q}T′

Applying the induction hypothesis gives us two possible alternatives:

• S1 � Q. By our conventions on bound variable names, we know that Y /∈ FV(Q),

so it must be that Y /∈ FV(S1). But then S = {Y 7→ µY.{X 7→ Q}T′}S1 = S1, so

S � Q.

• S1 = {X 7→ Q}S2 for some S2 such that S2 � T′. In this case, S = {Y 7→ µY.{X 7→
Q}T′}S1 = {Y 7→ µY.{X 7→ Q}T′}{X 7→ Q}S2 = {X 7→ Q}{Y 7→ µY.T′}S2. Take

S′ = {Y 7→ µY.S′}S2 to obtain the desired result. 2

The final piece of the proof establishes that every top-down subexpression of a

µ-type can be found among its bottom-up subexpressions.

Proposition 10.10

If S v T, then S � T.

Proof

We want to show that µTD ⊆ µBU. By the principle of induction, this will follow if

we can show that µBU is TD-closed, that is, TD(µBU) ⊆ µBU. In other words, we
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want to show that (A, B) ∈ TD(µBU) implies (A, B) ∈ µBU = BU(µBU). The latter

will be true if every clause of TD that could have generated (A, B) from µBU is

matched by a clause of BU that also generates (A, B) from µBU. This is trivially

true for all the clauses of TD except the last, since they are exactly the same as the

corresponding clauses of BU. In the last clause, (A, B) = (S, µX.T) ∈ TD(µBU) and

(S, {X 7→ µX.T}T) ∈ µBU or, equivalently, S � {X 7→ µX.T}T. By Lemma 10.9, either

S � µX.T, which is (S, µX.T) ∈ µBU, what is needed, or S = {X 7→ µX.T}S′ for some

S′ with (S′, T) ∈ µBU. The latter implies (S, µX.T) ∈ BU(µBU) = µBU, by the last

clause of BU. 2

Combining the facts established in this section gives us the final result.

Proposition 10.11

For any µ-types S and T, the set reachableSm(S, T) is finite.

Proof

For S and T, let Td be the set of all their top-down subexpressions, and Bu

be the set of all their bottom-up subexpressions. According to Proposition 10.5,

reachableSm(S, T) ⊆ Td×Td. By Proposition 10.10, Td×Td ⊆ Bu×Bu. By Lemma 10.8,

the latter set is finite. Therefore, reachableSm(S, T) is finite. 2

11 Digression: an exponential algorithm

The algorithm subtype presented at the beginning of Section 10 (figure 5) can be

simplified a bit more by making it return just a boolean value rather than a new

set of assumptions (see figure 6). The resulting procedure, subtypeac, corresponds to

Amadio & Cardelli’s (1993) algorithm for checking subtyping. It computes the same

relation as the one computed by subtype, but much less efficiently because it does

not remember pairs of types in the subtype relation across the recursive calls in the

→ and × cases. This seemingly innocent change results in a blowup of the number

of recursive calls the algorithm makes. Whereas the number of recursive calls made

by subtype is proportional to the square of the total number of subexpressions in

the two argument types (as can be seen by inspecting the proofs of Lemma 10.8 and

Proposition 10.11), in the case of subtypeac it is exponential.

The exponential behavior of subtypeac can be seen clearly in the following example.

Define families of types Sn and Tn inductively as follows:

S0 = µX.Top×X Sn+1 = µX.X→Sn
T0 = µX.Top×(Top×X) Tn+1 = µX.X→Tn.

Since Sn and Tn each contain just one occurrence of Sn−1 and Tn−1, respectively, their

size (after expanding abbreviations) will be linear in n. Checking Sn <: Tn generates

an exponential derivation, however, as can be seen by the following sequence of
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subtypeac(A, S, T) = if (S, T) ∈ A, then true
else let A0 = A ∪ (S,T) in

if T = Top, then true

else if S = S1×S2 and T = T1×T2, then
subtypeac(A0, S1 ,T1) and

subtypeac(A0, S2 ,T2)

else if S = S1→S2 and T = T1→T2, then
subtypeac(A0, T1 ,S1) and

subtypeac(A0, S2 ,T2)

else if S = µX.S1, then
subtypeac(A0, {X 7→ µX.S1}S1, T)

else if T = µX.T1, then

subtypeac(A0, S, {X 7→ µX.T1}T1)
else false.

Fig. 6. Amadio and Cardelli’s subtyping algorithm.

recursive calls:

subtypeac(∅, Sn, Tn)
= subtypeac(A1, Sn→Sn−1, Tn)

= subtypeac(A2, Sn→Sn−1, Tn→Tn−1)

= subtypeac(A3, Tn, Sn) and subtypeac(A3, Sn−1, Tn−1)

= subtypeac(A4, Tn→Tn−1, Sn) and . . .

= subtypeac(A5, Tn→Tn−1, Sn→Sn−1) and . . .

= subtypeac(A6, Sn, Tn) and subtypeac(A6, Tn−1, Sn−1) and . . .

= etc.,

where

A1 = {(Sn, Tn)}
A2 = A1 ∪ {(Sn→Sn−1, Tn)}
A3 = A2 ∪ {(Sn→Sn−1, Tn→Tn−1)}
A4 = A3 ∪ {(Tn, Sn)}
A5 = A4 ∪ {(Tn→Tn−1, Sn)}
A6 = A5 ∪ {(Tn→Tn−1, Sn→Sn−1)}.

Notice that the initial call subtypeac(∅, Sn, Tn) results in the two underlined recursive

calls of the same form involving Sn−1 and Tn−1. These, in turn, will each give rise to

two recursive calls involving Sn−2 and Tn−2, and so on. The total number of recursive

calls is thus proportional to 2n.

12 Notes

Background on coinduction can be found in Barwise and Moss’s Vicious Circles

(1996), Gordon’s tutorial on coinduction and functional programming (1995), and

Milner and Tofte’s expository article on coinduction in programming language

semantics (1991). For basic information on monotone functions and fixed points see

Aczel (1977) and Davey & Priestley (1990).

The use of coinductive proof methods in computer science dates from the 1970s,
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for example in the work of Milner (1980) and Park (1981) on concurrency; also

see Arbib and Manes’s categorical discussion of duality in automata theory (1975).

But the use of induction in its dual ‘co-’ form was familiar to mathematicians

considerably earlier and is developed explicitly in, for example, universal algebra

and category theory. Aczel’s seminal book (1988) on non-well-founded sets includes

a brief historical survey.

Recursive types in computer science go back at least to Morris (1968). Basic

syntactic and semantic properties (without subtyping) are collected in Cardone &

Coppo (1991). Properties of infinite and regular trees are surveyed by Courcelle

(1983). Basic syntactic and semantic properties of recursive types without subtyping

were established in early papers by Huet (1976) and MacQueen, Plotkin & Sethi

(1986). The relation between iso- and equi-recursive systems was explored by Abadi

& Fiore (1996).

Amadio & Cardelli (1993) gave the first subtyping algorithm for recursive types.

Their paper defines three relations: an inclusion relation between infinite trees, an

algorithm that checks subtyping between µ-types, and a reference subtype relation

between µ-types defined as the least fixed point of a set of declarative inference rules;

these relations are proved to be equivalent, and connected to a model construction

based on partial equivalence relations. Coinduction is not used; instead, to reason

about infinite trees, a notion of finite approximations of an infinite tree is introduced.

This notion plays a key role in many of the proofs.

Brandt & Henglein (1997) laid bare the underlying coinductive nature of Amadio

and Cardelli’s system, giving a new inductive axiomatization of the subtype relation

that is sound and complete with respect to that of Amadio and Cardelli. The so-called

Arrow/Fix rule of the axiomatization embodies the coinductiveness of the system.

The paper describes a general method for deriving an inductive axiomatization for

relations that are naturally defined by coinduction and presents a detailed proof

of termination for a subtyping algorithm. Section 10 of the present article closely

follows the latter proof. Brandt and Henglein establish that the complexity of their

algorithm is O(n2).

Kozen, Palsberg & Schwartzbach (1993) obtain an elegant quadratic subtyping

algorithm by observing that a regular recursive type corresponds to an automaton

with labeled states. They define a product of two automata that yields a conven-

tional word automaton accepting a word iff the types corresponding to the original

automata are not in the subtype relation. A linear-time emptiness test now solves

the subtyping problem. This fact, plus the quadratic complexity of product construc-

tion and linear-time conversion from types to automata, gives an overall quadratic

complexity.

Hosoya, Vouillon & Pierce (2000) use a related automata-theoretic approach,

associating recursive types (with unions) to tree automata in a subtyping algorithm

tuned to XML processing applications.

Jim and Palsberg (1999) address type reconstruction for languages with subtyping

and recursive types. As we have done in this article, they adopt a coinductive view of

the subtype relation over infinite trees and motivate a subtype checking algorithm as

a procedure building the minimal simulation (i.e. consistent set, in our terminology)
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from a given pair of types. They define the notions of consistency and P 1-closure

of a relation over types, which correspond to our consistency and reachable sets.

The two alternative formulations of recursive types have been known since early

times, but the pleasantly mnemonic terms iso-recursive and equi-recursive are a

relatively new coinage by Crary, Harper & Puri (1999).
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Appendix: Solutions to exercises

Solution to Exercise 2.7

E2(∅) = {a} E2({a, b}) = {a, c}
E2({a}) = {a} E2({a, c}) = {a, b}
E2({b}) = {a} E2({b, c}) = {a, b}
E2({c}) = {a, b} E2({a, b, c}) = {a, b, c}

The E2-closed sets are {a} and {a, b, c}. The E2-consistent sets are ∅, {a}, and {a, b, c}.
The least fixed point of E2 is {a}. The greatest fixed point is {a, b, c}.

Solution to Exercise 2.9

To prove the principle of ordinary induction on natural numbers, we proceed as

follows. Define the generating function F ∈ P(N)→ P(N) by

F(X) = {0} ∪ {i + 1 | i ∈ X}.

Now, suppose we have a predicate (i.e. a set of numbers) P such that P (0) and

such that P (i) implies P (i+ 1). Then, from the definition of F , it is easy to see that

F(P ) ⊆ P , i.e. P is F-closed. By the induction principle, µF ⊆ P . But µF is the

whole set of natural numbers (indeed, this can be taken as the definition of the set

of natural numbers), so P (n) holds for all n ∈ N.

For lexicographic induction, define F ∈ P(N × N)→ P(N × N) to be

F(X) = {(m, n) | ∀(m′, n′) < (m, n), (m′, n′) ∈ X}.

Now, suppose we have a predicate (i.e. a set of pairs of numbers) P such that,

whenever P (m′, n′) for all (m′, n′) < (m, n), we also have P (m, n). As before, from the

definition of F , it is easy to see that F(P ) ⊆ P , i.e. P is F-closed. By the induction

principle, µF ⊆ P . To finish, we must check that µF is indeed the set of all pairs

of numbers (this is the only subtle bit of the argument). This can be argued in two

steps. First, we remark thatN × N is F-closed (this is immediate from the definition

of F). Secondly, we show that no proper subset of N × N is F-closed, i.e. N × N is

the smallest F-closed set. To see this, suppose there were a smaller F-closed set Y ,
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and let (m, n) be the smallest pair that does not belong to Y ; by the definition of F ,

we see that F(Y ) 6⊆ Y , i.e. Y is not closed – a contradiction.

Solution to Exercise 3.2

Define a tree to be a partial function T ∈ {1, 2}∗ ⇀ {→,×, Top} satisfying the

following constraints:

• T (•) is defined;

• if T (π · σ) is defined then T (π) is defined.

Note that occurrences of the symbols→,×,Top in the nodes of a tree are completely

unconstrained, e.g. a node with Top can have non-trivial children, etc. As in Section 3,

we overload the symbols →, × and Top to be also operators on trees.

The set of all trees is taken as the universe U. The generating function F is based

on the familiar grammar for types:

F(X) = {Top}
∪ {T1×T2 | T1, T2 ∈ X}
∪ {T1→T2 | T1, T2 ∈ X}.

It can be seen from the definitions of T and U that T ⊆ U, so it makes sense to

compare the sets in the equations of interest, T = νF and Tf = µF . It remains to

check that the equations are true.

T ⊆ νF follows by the principle of coinduction from the fact that T is F-

consistent. To obtain νF ⊆ T, we need to check, for any T ∈ νF , the two last

conditions from Definition 3.1. This can be done by induction on the length of π.

µF ⊆ Tf follows by the principle of induction from the fact that Tf is F-closed.

To obtain Tf ⊆ µF , we argue, by induction on the size of T, that T ∈ Tf implies

T ∈ µF . (The size of T ∈ Tf can be defined as the length of the longest sequence

π ∈ {1, 2}∗ such that T(π) is defined.)

Solution to Exercise 4.3

The pair (Top, Top×Top) is not in νS . To see this, just observe from the definition of

S that this pair is not in S(X) for any X . So there is no S-consistent set containing

this pair, and in particular νS (which is S-consistent) does not contain it.

Solution to Exercise 4.4

For an example of a pair of tree types that are related by νS but not by µS , we can

take the pair (T, T) for any infinite type T. Consider the set pairs R = {(T(π), T(π)) | π ∈
{1, 2}∗}. An examination of the definition of S easily gives R ⊆ S(R), and applying

the principle of coinduction gives R ⊆ νS . Then (T, T) ∈ νS because (T, T) ∈ R.

On the other hand, (T, T) 6∈ µS because µS relates only finite types – this can be

established by taking R′ to be the set of all pairs of finite types and obtaining

µS ⊆ R′ by the principle of induction.

There are no pairs (S, T) of finite types that are related by νSf , but not by

µSf , because the two fixed points coincide. This follows from the fact that, for any

S, T ∈ Tf , (S, T) ∈ νSf implies (S, T) ∈ µSf . (Since T is a finite tree, the latter statement

follows, in turn, be obtained by induction on T. One needs to consider the cases
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of T being Top, T1×T2, T1→T2, inspect the definition of Sf , and use the equalities

Sf(νSf) = νSf and Sf(µSf) = µSf .)

Solution to Exercise 4.8

Begin by defining the identity relation on tree types: I = {(T, T) | T ∈ T}. If we

can show that I is S-consistent, then the coinduction principle will tell us that

I ⊆ νS , that is, νS is reflexive. To show the S-consistency of I , consider an element

(T, T) ∈ I , and proceed by cases on the form of T. First, suppose T = Top. Then

(T, T) = (Top, Top), which is in S(I) by definition. Suppose, next, that T = T1×T2.

Then, since (T1, T1), (T2, T2) ∈ I , the definition of S gives (T1×T2, T1×T2) ∈ S(I).

Similarly for T = T1→T2.

Solution to Exercise 5.2

By the coinduction principle, it is enough to show that U×U is FTR-consistent, i.e.

U×U ⊆ FTR(U×U). Suppose (x, y) ∈ U ×U. Pick any z ∈ U. Then (x, z), (z, y) ∈
U×U, and so, by the definition of FTR , also (x, y) ∈ FTR(U×U).

Solution to Exercise 6.2

To check invertability, we just inspect the definitions of Sf and S and make sure

that each set G(S,T) contains at most one element.

In the definitions of Sf and S each clause explicitly specifies the form of a

supportable element and the contents of its support set, so writing down supportSf
and supportS is easy. (Compare with the support function for Sm in Definition 9.4.)

Solution to Exercise 6.4

i a

h

b c

a

b

d

d

e

e

b

f g

c

g

f g

Solution to Exercise 6.6

No, an x ∈ νF \ µF does not have to lead to a cycle in the support graph: it can

also lead to an infinite chain. For example, consider F ∈ P(N)→ P(N) defined by

F(X) = {0}∪{n | n+1 ∈ X}. Then µF = {0} and νF = N. Also, for any n ∈ νF \µF ,

that is for any n > 0, support(n) = {n+ 1}, generating an infinite chain.

Solution to Exercise 6.13

First, consider partial correctness. The proof for each part proceeds by induction on

the recursive structure of a run of the algorithm:

1. From the definition of lfp , it is easy to see that there are two cases where

lfp(X) can return true. If lfp(X) = true because X = ∅, we have X ⊆ µF

trivially. On the other hand, if lfp(X) = true because lfp(support(X)) = true,

then, by the induction hypothesis, support(X) ⊆ µF , from which Lemma 6.8

yields X ⊆ µF .

2. If lfp(X) = false because support(X) ↑, then X 6⊆ µF by Lemma 6.8. Oth-

erwise, lfp(X) = false because lfp(support(X)) = false, and, by the induction

hypothesis, support(X) 6⊆ µF . By Lemma 6.8, X 6⊆ µF .

Next, we want to characterize the generating functions F for which lfp is guaran-

teed to terminate on all finite inputs. For this, some new terminology is helpful.
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Given a finite-state generating function F ∈ P(U) → P(U), the partial function

heightF ∈ U ⇀ N (or just height ) is the least partial function satisfying the follow-

ing condition:6

height (x) =


0 if support(x) = ∅
0 if support(x) ↑
1 + max{height (y) | y ∈ support(x)} if support(x) 6= ∅

(Note that height(x) is undefined if x either participates in a reachability cycle itself

or depends on an element from a cycle.) A generating function F is said to be finite

height if heightF is a total function. It is easy to check that, if y ∈ support(x) and

both height (x) and height(y) are defined, then height (y) < height (x).

Now, if F is finite state and finite height, then lfp(X) terminates for any finite

input set X ⊆ U. To see this, observe that, since F is finite state, for every recursive

call lfp(Y ) descended from the original call lfp(X), the set Y is finite. Since F is finite

height, h(Y ) = max{height(y) | y ∈ Y } is well defined. Since h(Y ) decreases with

each recursive call and is always non-negative, it serves as a termination measure

for lfp .

Solution to Exercise 9.5

The definition of Sd is the same as that of Sm, except that the last clause does not

contain the conditions T 6= µX.T1 and T 6= Top. To see that Sd is not invertible,

observe that the set G(µX.Top,µY.Top) contains two generating sets, {(Top, µY.Top)} and

{(µX.Top, Top)} (compare the contents of this set for the function Sm).

Because all the clauses of Sd and Sm are the same, except the last, and the last

clause of Sm is a restriction of the last clause of Sd, the inclusion νSm ⊆ νSd is obvious.

The other inclusion, νSd ⊆ νSm, can be proved using the principle of coinduction

together with the following lemma, which establishes that νSd is Sm-consistent.

Lemma

For any two µ-types S, T, if (S, T) ∈ νSd, then (S, T) ∈ Sm(νSd).

The lemma is proved by lexicographic induction on (n, k), where k = µ-height(S)

and n = µ-height(T). This induction verifies the informal idea that any derivation

of (S, T) ∈ νSd can be transformed into another derivation of the same fact, that

also happens to be a derivation of (S, T) ∈ νSm. The restrictions in the rule of

left µ-folding dictate that the transformed derivation has the property that every

sequence of applications of µ-folding rules starts with a sequence of left µ-foldings,

which are then followed by a sequence of right µ-foldings.

Solution to Exercise 10.2

T v T

S v T1

S v T1×T2

S v T2

S v T1×T2

S v T1

S v T1→T2

S v T2

S v T1→T2

S v {X 7→ µX.T}T
S v µX.T

6 Observe that this way of phrasing the definition of height can easily be rephrased as the least fixed
point of a monotone function on relations representing partial functions.
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(Note, as a point of interest, that the generating function TD differs from the

generating functions we have considered throughout this article: it is not invertible.

For example, B v A×B→B×C is supported by the two sets {B v A×B} and {B v B×C},
neither of which is a subset of the other.)

Solution to Exercise 10.7

All the rules for BU are the same as the rules for TD given in the solution of

Exercise 10.2, except the rule for types starting with a µ binder:

S � T

{X 7→ µX.T}S � µX.T
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