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ABSTRACT

In this paper, we study the expected discounted penalty functions and their
decompositions in a Markov-modulated risk process in which the rate for the
Poisson claim arrivals and the distribution of the claim amounts vary in time
depending on the state of an underlying (external) Markov jump process.
The main feature of the model is the flexibility modeling the arrival process
in the sense that periods with very frequent arrivals and periods with very few
arrivals may alternate. Explicit formulas for the expected discounted penalty
function at ruin, given the initial surplus, and the initial and terminal envi-
ronment states, are obtained when the initial surplus is zero or when all the
claim amount distributions are from the rational family. We also investigate the
distributions of the maximum surplus before ruin and the maximum severity
of ruin. The dividends-penalty identity is derived when the model is modified
by applying a barrier dividend strategy.
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1. INTRODUCTION

Asmussen (1989) proposed a Markov-modulated risk model in which both the
frequency of the claim arrivals and the distribution of the claim amounts are
influenced by an external environment process {J(t); t$ 0}. This model is a gen-
eralization of the classical compound Poisson risk model and the primary
motivation for this generalization is the enhanced flexibility that it permits for
the modeling of the claim arrival process and the claim severity distribution
assumed in the classical risk process. The impact of poor weather conditions
on the financial performance of automobile insurance portfolios, or of the
outbreak of epidemics which impact health insurance portfolios, is well known.
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See, for example, Asmussen (1989). Zhu and Yang (2007) refer to states of the
process {J(t); t $ 0} as economic circumstances or political regime switchings.
It is therefore appealing to include in the classical risk process assumptions
which permit variation in both claim frequencies and claim severities as a result
of external environmental factors. The modeling framework that is advocated
in this paper achieves this.

Suppose that {J(t); t $ 0} is a homogeneous, irreducible and recurrent
Markov process with finite state space E = {1, 2,…, m}. Denote the intensity
matrix of {J(t); t $ 0} by L = (ai, j)

m
i, j =1, with ai, i := – ai for i ! E. Let p = (p1,

p2,…, pm) be the stationary distribution of {J(t); t $ 0}.
Let N(t) be the number of claims occuring in (0, t]. If J(s) = i for all s in a

small interval (t, t + h ], then the number of claims occuring in that interval, i.e.,
N(t + h) – N(t), has a Poisson distribution with parameter li (>0). We assume
further that given the process {J(t); t $ 0}, the process {N(t); t $ 0} has inde-
pendent increments. Then 

�(N(t + h) = n + 1 | N(t) = n, J(s) = i   for t < s # t + h) = li h + o(h).

The process {N(t); t$ 0} is called a Markov-modulated Poisson process, which
is a special case of a Cox process. It also can be seen as a Poisson process with
its parameter driven by an external environment process {J(t); t $ 0}.

We also assume that, given J(t) = i, the claim amounts have distribution
function Fi (x), with density function fi (x) and finite mean mi (i !E). Moreover,
we assume that premiums are received continuously at a positive constant rate c.

The corresponding surplus process {U(t); t $ 0} is given by 

,U t u ct n
n

N t

1

= + -
=

X!^

]

h

g

t $ 0, (1.1)

where u $ 0 is the initial surplus and Xn is the amount of the n-th claim.
We also assume that the positive loading condition holds, i.e.,

> .cp l m 0i
i

m

i i
1

-
=

! ^ h

For notational convenience, let �i (·) = � (· | J(0) = i ). Define T = inf{t $ 0 :
U(t) < 0} to be the time of ruin and let w (x,y), for x,y $ 0, be non-negative
valued of penalty function. Define for d $ 0, u $ 0 and i, j ! E

fi, j (u) = �i [e
– dTw(U(T–), |U(T) | ) I (T < 3, J(T ) = j ) | U(0) = u]

to be the expected discounted penalty (Gerber-Shiu) function at ruin if ruin is
caused by a claim in state j, given the initial surplus u and the initial environment
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i ! E, for the surplus U(T–) before ruin and the deficit |U(T) | at ruin, where
I (·) is the indicator function. Then 

fi (u) = ,f u,i j
j

m

1=

! ^ h u $ 0, i ! E,

is the expected discounted penalty function at ruin, given the initial surplus u and
the initial environment i ! E. In particular, when d = 0 and w(x,y) = 1, fi,j (u)
simplifies to Ci, j (u) with the definition

Ci, j (u) = �i (T < 3, J(T ) = j | U(0) = u), i, j ! E.

Here Ci, j (u) is the ruin probability if ruin is caused by a claim in state j given
that the initial state is i and hence 

Ci (u) = ,u,i j
j

m

1=

C! ^ h u $ 0, i ! E,

is the probability of ruin given that the initial state is i, and correspondingly
Fi(u) = 1 – Ci (u) is the non-ruin probability given that the initial state is i.

Models of this type have also been investigated by some authors, e.g., Rein-
hard (1984), Bäuerle (1996), Schmidli (1997), Wu (1999), Snoussi (2002),
Lu and Li (2005), and Lu (2006). Ng and Yang (2006) give closed form solu-
tions for the joint distribution of the surplus before and after ruin when the
initial surplus is zero or when the claim amount distributions are phase-type
distributed. Li and Lu (2007) study the moments of the present value of the
dividend payments and the distribution of the total dividends prior to ruin
for the Markov-modulated risk model modified by the introduction of a bar-
rier dividend. Albrecher and Boxma (2005) study the expected discounted
penalty function in a semi-Markovian dependent risk model in which at each
instant of a claim, the underlying Markov chain jumps to a new state and the
distribution of claim depends on this state. This model includes, as special
cases, the classical risk model, and the Sparre Andersen model with phase-
type inter-arrival times, as well as models with causal dependence between the
claim amounts distribution and the claim inter-arrivals distribution.

In this paper, we study the expect discounted penalty functions and their
decompositions for the Markov-modulated risk model. Explicit formulas for
the expected discounted penalty function at ruin if ruin is caused by a claim
in state j, given initial surplus u and initial environment i, are derived when the
initial surplus is zero or when all the claim amount distributions are from the
rational family. The distributions of the maximum surplus before ruin and the
maximum severity of ruin are studied through the ruin probabilities and their
decompositions. The dividends-penalty identity is also derived for the model
modified by the introduction of a barrier dividend.
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2. EXPECTED DISCOUNTED PENALTY FUNCTIONS

2.1. A system of integro-differential equations

Using the same arguments as in Ng and Yang (2006), we obtain the following
integro-differential equations for fi, j (u) by conditioning on the events occur-
ing in a small interval [0,h], for i ! E,

cf�i, i (u) = (li + d) fi, i (u) – li i i ik ,f a fu x f x dx u uw, , ,i i

u

i k
k

m

0 1

- + -
=

# !^ ^ ^ ^h h h h= G

(2.1)
and for i ! j,

cf�i, j (u) = (li + d) fi, j (u) – li i ,f a fu x f x dx u, , ,i j

u

i k k j
k

m

0 1

- -
=

# !^ ^ ^h h h (2.2)

where wi(u) = ,w u x u
u

-
3

# ^ h fi (x)dx.

Let f4i, j (s), fi (s), and wi (s) be the Laplace transforms of fi, j, fi and wi,
respectively. Taking Laplace transforms on both sides of Eqs. (2.1) and (2.2),
we have, for i, j ! E,

is c c sfl d li i-
+

+ ^ h= G f4i, j(s) + ac
1

,i k
k

m

1=

! f4k, j(s) = fi, j(0) – c
li wi(s) I (i = j ). (2.3)

Further for simplicity, define Si(s) = s – d/c – (li /c) (1 – fi (s)), for i ! E. Then
Eq. (2.3) can be rewritten in the following matrix form:

A(s)z4 (s) = z(0) – ŵ(s),

where A(s) = diag(S1(s), S2(s), …, Sm(s)) + L/c, z (u) = (fi, j (u))m
i, j =1, z4 (s) =

(f4i, j(s))m
i, j =1, and ŵ(s) = diag(l1ŵ1(s)/c, l2ŵ2(s)/c, …, lmŵm(s)/c). It follows that 

z4 (s) = [A(s)]–1 [z(0) – ŵ(s)] = det
z

s
s s s

A
A A w0 -* * t

^

^ ^ ^ ^

h

h h h h

7 A
, (2.4)

where A*(s) is the adjoint matrix of A(s).

2.2. The initial values for z (0)

Using the same arguments as in Albrecher and Boxma (2005), we can show that
the characteristic equation det[A(s)] = 0 has exactly m roots with positive real
parts, say, r1, r2, …, rm, which play an important role in determining the initial
values for fi, j (0). We assume that r1, r2, …, rm are distinct in the sequel.
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Now we define the divided differences of a matrix B(s), with respect to distinct
numbers r1, r2, …, recursively as follows:

B [ r1, s ] = ,s r
s rB B 1

-

-

1

^ ^h h

B [ r1, r2, s ] =
, ,

,s r
r s r rB B

2

1 1 2

-

-6 6@ @

B [ r1, r2, r3, s ] =
, , , ,

,s r
r r s r r rB B

3

1 2 1 2 3

-

-6 6@ @

and so on. As for the divided differences of a function (Gerber and Shiu
(2005)), we have the following formula for the (k – 1)-th divided difference 

B [r1, r2, …, rk ] =
j

j
.

r

B

!, ii i j

k
j

k

11 -
=

= r

r

%
!

_

_

i

i

For distinct r1, r2, …, rm, since f4i, j (s) is finite for � (s) $ 0, then 

A*(ri)z(0) = A*(ri) w4 (ri), i = 1,2, …, m.

Therefore 

A*[r1, r2 ] z(0) = (A*w4 ) [r1, r2 ],

where (A*w4 ) [r1, r2 ] is the divided difference of the product of matrices A*(s)
and w4 (s) with respect to r1 and r2, given by 

(A*w4 ) [r1, r2 ] = A*(ri) w4 [r1, r2 ] + A*[r1, r2 ] w4 (r2) (2.5)

and recursively,

A*[r1, r2 , …, ri ] z(0) = (A*w4 ) [r1, r2 , …, ri ] , i = 2,3, …, m,

where the matrix (A*w4 ) [r1, r2 , …, rm ] is given by the following formula:

(A*w4 ) [r1, r2 , …, rm ] = A
i

m

1=

*! [r1, …, ri ] w4 [ri, …, rm ]. (2.6)

Then we have the following result for z(0):

z(0) = {A*[r1, r2, …, rm]}–1(A*w4 ) [r1, r2 , …, rm]. (2.7)

In particular, when m = 2,
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A(s) = 1

2

,
s s

s s

f

f

1

1

a

a

a

a
c c

c

c

c c

d l

d l

1

2

1

2

- - -

- - -

+

+ 2

1J

L

K
KK

^

^

N

P

O
OO

h

h

8

8

B

B

and the adjoint matrix of A(s) is given as 

A*(s) = 2

1

.
s s

s s

f

f

1

1

a

a

a

a
c c

c

c

c c

d l

d l

2

2

1

1

- - -

-

-

- - -

+

+

2

1

J

L

K
KK

^

^

N

P

O
OO

h

h

8

8

B

B

Then A*[r1, r2 ] = diag(1 + (l2 /c) f2 [r1, r2 ], 1 + (l1/c) f1 [r1, r2 ]), and by Eq. (2.5),
Eq. (2.7) simplifies to

z (0) = w4 (r1) + {A* [r1, r2 ]}–1A*(r2) w4 [r1, r2 ]

.
w

w
r

r0

0 ,

,

,

,

,

,

,

,

w

w

w

w
c

c

S

S

f

f

f

f

l

l
r r

r r r

r r

r r

r r

r r

r r

r r r

1

2

1

1

1

1

a

a

a

a
c

c c

c

c

c

c

c

c c

l

l

l

l

l

l

l

l2

2

2
2

1

1

2
2

1

2

2
1 2

2

1

1 2

= +

-

-
+

-

+

+

+

-

1 2
1 2

1
2 1 2

1
1 2

1
1 2

2
1 2

1 2

1
1 2

2
2

1
1 2

1

1

J

L

K
KK

J

L

K
K
K
K
K

^

^

]

]

N

P

O
OO

N

P

O
O
O
O
O

h

h

g

g

5

8 5

5

5

5

5

5

8 5

?

B ?

?

?

?

?

?

B ?

Further, if w(x,y) = 1 and d = 0, we have that r1 = r, r2 = 0, wi(u) = Fi (u), and
fi, j(u) = Ci, j(u) for i, j = 1,2. In this case, we also get that Si(0) = 0, wi [r, 0] =
[wi(r) – mi ] /r and fi [r,0 ] = – wi(r). Then

.
w

w c

r

r r
C 0

0

0 1 /

/

/

/

w
w

w
w

w
w

w
w

a

a

a

a
c

c

c

c

c

c

l

l
l r

l r m

l r

l r m
l r

l r m

l r

l r m
1

2
2

1

1

1

1

2

2

2 1

1 1

2 1

2

2 1 2

1 1

2 1 2
= -

-

-

-

-

-

-

-

-

1
2

1 1

1 1

2

2

2

1

1

J

L

K
KK

J

L

K
K
KK

^
^

^

] ]

]

] ]

]

] ]

]

] ]

]

N

P

O
OO

N

P

O
O
OO

h
h

h

g g

g

g g

g

g g

g

g g

g

5

5

5

5

?

?

?

?

where C(0) = (Ci, j (0))2
i, j =1 and wi (r) = [1 – fi (r)] /r, for i = 1,2.

2.3. An explicit expression for z(u)

By applying the divided differences repeatedly to the numerator of Eq. (2.4),
we obtain the following expression for z4 (s) :

z4 (s) =
det s

s

A

rii

m

1
-

=
%

^

^

h

h

7 A
[A* [r1, r2 , …, rm, s] z(0) – (A*w4 ) [r1, r2 , …, rm, s] ].

By Eq. (2.6), we have

58 S. LI AND Y. LU

0587-07_Astin38/1_03  02-06-2008  11:37  Pagina 58

https://doi.org/10.2143/AST.38.1.2030402 Published online by Cambridge University Press

https://doi.org/10.2143/AST.38.1.2030402


(A*w4 ) [r1, r2 , …, rm, s] = A*[r1, r2 , …, rm, s] w4 (s)

A
i

m

1

+
=

*! [r1, …, ri ] w4 [ri , …, rm, s].

Then z4 (s) can be rewritten as

z4 (s) =
det s

s

A

rii

m

1
-

=
%

^

^

h

h

7 A
[A* [r1, r2 , …, rm, s] (z(0) – w4 (s))

(2.8)
A

i

m

1

-
=

*! [r1, …, ri ] w4 [ri , …, rm, s]].

The Laplace transform z4 (s) can be inverted for some special claim amount dis-
tributions. Consider the case where the claim amount distributions for m classes
are from the rational family, that is, their Laplace transforms can be expressed
as a ratio of polynomials:

fi(s) =
q s

p s
( )

( )

k
i

k
i

1

i

i -

^

^

h

h
, ki ! �+, i ! E,

where q(i )
ki

is a polynomial of degree ki, while p(i )
ki –1 is a polynomial of degree

ki – 1 or less; all have leading coefficient 1 and satisfy p(i)
ki –1(0) = q(i)

ki
(0). Further,

equation q(i )
ki

(s) = 0 has roots with only negative real parts.
To obtain expressions which can be inverted easily, we multiply both numer-

ator and denominator of Eq. 2.8 by q ski

m

1 i=

( )i% ^ h, yielding

z4 (s) = , , ..., ,

, ..., , ..., , .

det
z

s q s

s
s q s s

q s s

A
A

A

r
r r r

r r r r

w

w

0
( )

( )

( )

k
i

i

m

ii

m

m k
i

i

m

k
i

i

m

i
i

m

i m

1

1
1 2

1

1
1

1

i

i

i

-
-

-

=

=

=

= =

*

*

%

%
%

% !

t

t

^ ^

^
^ ^ ^

^

h h

h
h h h

h

7

6> 7

> 6 6

A

@ H A

H @ @

*

4

(2.9)

First, we look at the denominator in (2.9), denoted by D(s):

D(s) = ,det s q sA ( )
k
i

i

m

1
i

=

%^ ^h h7 A

which is clearly a polynomial of degree m kii

m

1
+

=
! with the leading coeffi-

cient 1, and therefore equation D(s) = 0 has m kii

m

1
+

=
! roots in the complex

plane. By the fact that equation det[A(s)] = 0 has exactly m roots, r1, r2, …, rm,
with positive real parts, we can rewrite D(s) as 
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,D s s s Rri
i

m

i
i

K

1 1

m

= - +
= =

% %^ ^ ^h h h

where K km ii

m

1
=

=
! , and all Ri’s have positive real parts by the definition of

the rational distribution. For simplicity, we further assume that these Ri’s are
distinct. Consequently, Eq. (2.9) can be expressed as follows:

z4 (s) =
m

, , ..., ,

, ..., , ..., , .

z
s R

s q s s

q s s

A

A

r r r

r r r r

w

w

1 0( )

( )

ii

K m k
i

i

m

k
i

i

m

i
i

m

i m

1

1 2
1

1
1

1

i

i

+
-

-

=
=

= =

*

*

%
%

% !

t

t

^

^ ^ ^

^

h

h h h

h

6> 7

> 6 6

@ H A

H @ @

*

4

(2.10)

It is easy to see that the elements in matrix A* [r1, r2 , …, rm, s] q ski

m

1 i=

( )i% ^ h are
polynomials of degrees which are less than Km, and all A* [r1,…, ri ] for i ! E
are constants. Then we have the following partial fractions:

, , ..., ,

,

s R

s q s
s R

s R

q s
s R

n

A Mr r r

1

( )

( )

ii

K

m k
i

i

m

l

l

l

K

ii

K

k
i

i

m

l

l

l

K

1

1 2 1

1

1

1

1

m

i
m

m

i
m

+
=

+

+
= +

+

=

=

=

=

=

=

*

%

%
!

%

%
!

^

^ ]

^

^

h

h g

h

h

6 @

where M(l ) = (m(l )
i, j )m

i, j =1, for l = 1,2, …, Km, are coefficient matrices with 

k, , ..., ,
,

R R

R q R
M

A r r r

!,

( )
l

ll

K

m l
i

i

m
l

nn n1

1 2 1

m

i=
-

- -

=

=
*

%

%
]

^

^
g

h

h6 @

while nl is the coefficient given by 

k ,n
R R

q R

!,

( )

l

ll

K

i

i

m
l

nn n1

1

m

i=
-

-

=

=

%

%

^

^

h

h
l = 1,2, …, Km.

Thus by partial fraction Eq. (2.10) can be expressed as 

z4 (s) = , ..., , ..., ,

, ..., , ..., , .

zs R s n s

s

M A

A

r r r r

r r r r

w w

w

1 0
l

l
l i

i

m

i m
l

K

i
i

m

i m

11

1

m

+
- -

-

==

=

1

1

*

*

!!

!

t t

t

]
^ ^

g
h h7 6 6

6 6

A @ @

@ @

) 3

(2.11)
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To obtain the explicit Laplace inverse of (2.11), we introduce an operator Tr

for a matrix B(y) with respect to a complex number r, to be 

,y e x dxB Br
r x y

y
=

3
- -T #^
]

^h
g

h r ! �, y $ 0. (2.12)

Here B(y) is a matrix with each element being an integrable real-valued func-
tion of y. The composition operators of Tr can be defined recursively, for
example,

r r r r
r r

r ,y y r
y y

B B
B B

2
1 2 2 1

1 2= =
-

-

1
T T T T

T T
^ ^

^ ^
h h

h h
r1 ! r2 ! �, y $ 0.

This operator has been used for the integrable real-valued function in some
papers, see, for example, Dickson and Hipp (2001) and Li and Garrido (2004).
Similar to (10.1) in Gerber and Shiu (2005), the following result holds for the
relationship between the operator Tr and the corresponding divided difference:

m 1-

r , , ..., .r r rB B0 1
i

m

m
1

1 2i
= -

=

T%e ^ ^o h h 6 @ (2.13)

Further by the definition of operator Tr in (2.12), we have that 

TsTr B(0) = r ,e x dxBsx

0

3
- T# ^ h7 A

which shows that the Laplace inverse of matrix Ts Tr B(0) is Tr B(x). In
general, we have the following formula for the Laplace inverse of matrix

r :B 0s i

m

1 i=
T T%b ^l h; E

r r .xB BL 0s
i

m

i

m
1

1 1
i i

=
-

= =

T T T% %e ^ e ^o h o h

R

T

S
SS

V

X

W
WW

(2.14)

Thus it follows from Eq. (2.11) and by (2.13) and (2.14), the explicit Laplace
inversion of z4 (s) is given by

m i

m i

-

-

r

r

, ...,

, ..., ,

z zu u e

e u n u

A M

A

r r

r r

w

w w✶

1 0

1

i
i

m

k i

m
R u l

l

K

R u
l i

i

m

k i

m

1 1

1

k

l
m

l

k

= - +

- - -

= =

-

=

-

= =

1

1

*

*

T

T

! % !

! %

^ ^ e ^
]

^

^ ^ e ^

h h o h
g

h

h h o h

R

T

S
SS

6

6

V

X

W
WW

@

@

%

4

where ✶ in above formula is the convolution operator.
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3. THE MAXIMUM SURPLUS BEFORE RUIN

For b > u $ 0, define 

zi, j (u; b) = �i < , < , ,sup U t b T J T j U u0
t T0

3 = =
# #

^ ^ ^d h h h n i, j ! E,

to be the probability that ruin occurs from initial surplus u without the sur-
plus process reaching level b prior to ruin if ruin is caused by a claim in state j
given that the process starts from initial state i . Alternatively, zi, j(u; b) is the
probability that ruin occurs in state j from initial state i in the presence of an
absorbing barrier at b. Obviously, zi, j(u; b) = 0 for b # u. Then 

; ; ,u b u bz z ,i i j
j

m

1

=
=

!^ ^h h i ! E,

is the probability that ruin occurs without the surplus process reaching level b
prior to ruin from initial state i and initial surplus u.

For 0 # u # b and i, j ! E, define xi, j (u; b) to be the probability that the
surplus process attains level b at state j from initial state i and initial surplus
u without first falling below zero. Clearly, xi, j (b; b) = I (i = j ) for i, j ! E. Then 

; ; ,u b u bx x ,i i j
j

m

1

=
=

!^ ^h h i ! E,

is the probability that the surplus process attains level b from initial state i and
initial surplus u without first falling below zero. Since eventually either ruin
occurs without the surplus attaining level b or the surplus attains level b, then
we have xi(u; b) = 1 – zi(u; b) for i ! E. Let x (u; b) = (xi, j (u; b))m

i, j =1. It follows
from Li and Lu (2007) that 

x (u; b) = v(u) [v(b)]–1, 0 # u # b,

where v(u) = (vi, j (u))m
i, j =1 is an m ≈ m matrix with vi, j (u) being the solution of

the following system of integro-differential equations:

cv �i, j (u) = li vi, j (u) – li ,av u x x dx v u, , ,i j i i k k j
k

mu

10
- -

=

f# !^ ^ ^h h h

with the boundary conditions vi, j (0) = I (i = j ) for i, j ! E.
By considering whether or not the surplus reaches b(>u) before ruin, we have 

Ci, j (u) = zi, j (u; b) + x ,i k
k

m

1=

! (u; b)Ck, j (b), i, j ! E,
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or in matrix notation,

C(u) = z(u; b) + x (u; b)C(b), (3.1)

where z (u, b) = (zi, j (u; b))m
i, j =1 with z (b; b) = 0 and 0 being the m ≈ m zero

matrix. In particular, when m = 1, the model simplifies to the classical risk
model and since x (u; b) = 1 – z(u; b), then Eq. (3.1) gives 

z(u; b) = ,
b

u b
C

C C
1 -

-

^

^ ^

h

h h
0 # u # b.

This formula can be found in Dickson and Gray (1984). For m ! �+, we will
show in the next section that x (u; b) can be expressed in terms of the ruin
probability matrix C(u) and therefore the distribution of the maximum surplus
before ruin given in (3.1) can also be expressed in terms of the ruin probability
matrix.

4. THE MAXIMUM SEVERITY OF RUIN

In this section, we allow the surplus process to continue if ruin occurs, and
consider the insurer’s maximum severity of ruin from the time of ruin until the
time that the surplus returns to level 0. Since we assume that the positive load-
ing condition holds, it is certain that the surplus process will attain this level
after ruin. For the classical risk model, Picard (1994) gives an explicit expression
in terms of the ruin probability for the distribution of the maximum severity of
ruin. Li and Dickson (2006) study the distribution of the maximum severity
of ruin for the Sparre Andersen risk model with Erlang inter-arrival times.

For u $ 0, we define T to be the time of the first upcrossing of the surplus
process through level 0 after ruin, i.e.,

T = inf{t : t > T, U(t) $ 0},

and define

Mu = sup{|U(t) |, T # t # T}

to be the maximum severity of ruin. Let 

Hi, j (z; u) = �i (Mu # z,T < 3, J(T ) = j ), z $ 0, i, j ! E,

denote the distribution function of the maximum severity of ruin if ruin is
caused by a claim in state j given that the process starts from initial state i and 

Hi (z; u) = ,i j
j

m

1=

H! (z; u ), i ! E,
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is the distribution function of the maximum severity of ruin given that the process
starts from initial state i .

If the surplus process starts with an initial surplus u and initial state i, then
the maximum severity of ruin will be no more than z if ruin occurs (by a claim
in state j) with a deficit y # z and if the surplus does not fall below –z from the
level –y. The probability of the latter event is xj (z – y; z) since attaining level 0
from level –y without falling below –z is equivalent to attaining level z from
level z – y without falling below 0. Thus 

Hi, j (z; u) = g ,i j

z

0
# (u,y) xj (z – y; z)dy,

where gi, j (u,y) = �Gi, j (u, y) /�y with 

Gi, j (u, y) = �i (T < 3, J(T ) = j, |U(T ) | # y), u, y $ 0, i, j ! E,

being the probability that ruin occurs by a claim in state j and the deficit at
ruin is at most y given that the initial state is i. Therefore 

Hi (z; u) = ,i j
j

m

1=

H! (z; u) = g ,i j
j

mz

10
=

# ! (u, y) xj (z – y; z)dy,

or in matrix notation,

H (z; u) = g
z

0
# (u, y) x (z – y; z)1dy, (4.1)

where H (z; u) = (H1(z; u), H2(z; u), …, Hm(z; u))T is an m ≈ 1 column vector,
g (u, y) = (gi, j (u, y))m

i, j =1 is an m ≈ m matrix, and 1 = (1,1, …, 1)T is an m ≈ 1 col-
umn vector.

For the classical risk model (m = 1), Picard (1994) shows that the integral
in (4.1) can be expressed in terms of the ruin probability. Now we aim at cal-
culating the integral in (4.1) for m ! n+. To achieve this, first we need to express
x (u; b) in terms of C(u).

Let x(u) = (Ci, j (u))m
i, j =1 = I – C(u) with I being the m ≈ m identity matrix.

Setting d = 0 and w(x, y) = 1 in Eqs. (2.1) and (2.2), we have, for i, j ! E, that 

cC�i, j(u) = liCi, j (u) – li ,i jC
u

0
# (u – x) fi (x)dx – a ,i k

k

m

1=

! Ck, j (u) + ai, j . (4.2)

Let Ĉi, j (s) = e su

0

3
-# Ci, j (u) du be the Laplace transform of Ci, j (u). Taking

Laplace transforms on both sides of Eq. (4.2) yields, for i, j ! E, that 

s c s
l

1i
i- - f ^` hj= G Ĉi, j (s) + ac

1
,i k

k

m

1=

! Ĉk, j (s) = Ci, j (0) + .
a
cs

,i j (4.3)
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Eq. (4.3) can be expressed in the following matrix form:

A(s)z(s) = x(0) + ,cs
L

where z(s) = (Ĉi, j (s))m
i, j =1, and A(s) is defined in Section 2 with d = 0. Since

x (u; b) = v(u) [v(b)]–1 with v(s) = (vi, j(s))m
i, j =1 = [A(s)] –1, then we have 

z(s) = v(s)x(0) + .s
s

c
v L^ h

(4.4)

Inverting (4.4) yields 

x(u) = v(u)x(0) + .x dx cv Lu

0
# ^e h o (4.5)

Taking derivatives with respect to u on both sides of (4.5) we obtain the fol-
lowing first order differential equation for the matrix v (u):

v�(u)+ v(u)
x

c
L 0

1-

^ h8 B

= x�(u) [x(0)] –1, u $ 0,

with boundary condition v (0) = I . Solving it gives 

1 1
1

- -

-

.x x x x
x

u u x c e dxv
L

0 0
0 xu

c u x
L

0

0
1

= -
- -

-

#^ ^ ^ ^ ^
^ ]

]
h h h h h

h g
g

8 8

8 6

B B

B @

(4.6)

For simplicity, let y(u) = x(u)[x(0)]–1 and D = (L /c)[x(0)]–1. Then Eq. (4.6)
can be rewritten as 

v(u) = y(u) – y x
u

0
# ^ hDe–D(u – x)dx. (4.7)

Since x (u; b) = v(u) [v(b)] –1 with v(u) being given by (4.7), then Eq. (4.1) can
be rewritten as

; ,

,

,

,

, .

y

y

y

y

z u u y z y z dy

u y z y z dy

u y z y x e dx dy z

u y z y dy z

u y z y x dy e dx z

H g v v

g v

g v

g v

g v

D

D

1

1

1

1

1

z

z

xz yz

z

z xz x

D

D

0

1

0

1

00

1

0

1

00

1

= -

= -

- - -

= -

- - -

-

-

-
- -

-

-
- -

#

#

##

#

##

^ ^ ^ ^

^ ^ ^

^ ^e ^

^ ^ ^

^ ^e ^

h h h h

h h h

h h o h

h h h

h h o h

7

7

7

7

7

A

A

A

A

A

(4.8)
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For further evaluation, note that

, ,i i i, , ,u z g u y z y dy g u y dy, ,j k k j

z

k

m

j
z01

+ = - +
3

=

C C# #!^ ^ ^ ^h h h h

or in matrix form 

, , ,u z u y z y dy u y dyg gC C
z

z0
+ = - +

3

# #^ ^ ^ ^h h h h

which is equivalent to 

I – x(u + z) = , , .xu y z y dy u y dyg I g
z

z0
- - +

3

# #^ ^ ^h h h8 B (4.9)

By using the formula that , ,u y dy ug C
0

=
3

# ^ ^h h Eq. (4.9) can be simplified to 

, ,x x xu y z y dy u z ug
z

0
- = + -# ^ ^ ^ ^h h h h

and consequently,

, .y y yu y z y dy u z ug
z

0
- = + -# ^ ^ ^ ^h h h h (4.10)

Finally, by substituting (4.7) and (4.10) into (4.8) we have 

;

,

y y y y

y y

z u u z u u z x u e dx

z z x e dx

H D

D 1

xz

xz

D

D

0

0

1

#

= + - - + - -

- -

-

-
-

#

#

^ ^ ^ ^ ^

^ ^

h h h h h

h h

8

=

B

G

) 3

where y(u) = x(u) [x(0)] –1 = [I – C(u)] [I – C(0)] –1.

Remarks:

• As in the classical risk model, H (z; u) depends only on the ruin probability
matrix C(u).

• When m = 1, the model reduces to the classical risk model; L = 0, and then
D = 0. In this case, H (z; u) simplifies to 

H (z; u) = [x(u + z) – x(u)] [x(z)] –1,
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which can be found in Picard (1994). Here x(u) is the survival probability
for the classical risk model.

5. THE DIVIDENDS-PENALTY IDENTITY

In this section, as in Lin et al. (2003) and Gerber et al. (2006), we derive the
dividends-penalty identity for the Markov-modulated risk model. Now we con-
sider the surplus process (1.1) modified by the payment of dividends according
to a barrier strategy: when the surplus exceeds a constant barrier b ($u), div-
idends are paid continuously so the surplus stays at level b until a new claim
occurs. Let Ub(t) be the surplus process with initial surplus Ub(0) = u under the
above barrier strategy and define Tu,b = inf{t $ 0 : Ub(t) < 0} to be the time of
ruin. Let d > 0 be the force of interest for valuation and define 

,D e dD t,u b
tT d

0

,u b
=

-# ^ h 0 # u # b,

to be the present value of all dividends paid until the time of ruin Tu,b given that
the initial surplus is u, where D(t) is the aggregate dividends paid by time t.
Define 

Vi, j (u ; b) = �i [Du,b I (J(Tu,b) = j )], 0 # u # b, i, j ! E,

to be the expected present value of the dividend payments before ruin if ruin
is caused by a claim in state j given the initial state is i. Then 

; ; ,u b u b,i i j
j

m

1

=
=

V V!^ ^h h 0 # u # b, i ! E,

is the expected present value of the dividend payments before ruin given that
the initial state is i.

Let V(u; b) = (Vi, j (u; b))m
i, j =1 be an m ≈ m matrix. It follows from Li and Lu

(2007) that 

V(u; b) = vd(u) [v�d(b) ] –1, 0 # u # b, (5.1)

where vd(u) = (vi, j (u; d))m
i, j =1 is an m ≈ m matrix with vi, j(u; d) satisfying the sys-

tem of homogenous integro-differential equations 

cv�i, j (u; d ) = (li + d )vi, j (u; d ) – li v ,i j

u

0
# (u –x; d ) fi(x)dx – ,i k

k

m

1=

a! vk, j(u; d ), (5.2)

with boundary conditions vi, j (0; d ) = I (i = j ) for i, j ! E.
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For the modified surplus process {Ub(t); t $ 0}, we define fi, j (u; b) for 0 #
u # b and i, j ! E to be the expected discounted penalty function at ruin if
ruin is caused by a claim in state j, given initial surplus u and initial environ-
ment i ! E. In the definition of fi, j (u; b), we use the same d and penalty func-
tion w(x,y) as in fi, j (u).Then 

fi (u; b) = f ,i j
j

m

1=

! (u; b), u $ 0, i ! E,

is the expected discounted penalty (Gerber-Shiu) function at ruin, given initial
surplus u and initial environment i . In particular, when d = 0 and w(x,y) = 1,
fi, j (u; b) simplifies to Ci, j(u; b) with the definition 

Ci, j(u; b) = �i (Tu,b < 3, J(Tu,b) = j |Ub(0) = u ), i, j ! E,

where Ci, j(u; b) is the ruin probability if ruin is caused by a claim in state j given
that the initial state is i and hence 

Ci (u; b) = ,i j
j

m

1=

C! (u; b), i ! E,

is the probability of ruin given that the initial state is i. Fi (u; b) = 1 – Ci (u; b)
is the non-ruin probability.

To construct the dividends-penalty identity, we define tb to be the first time
that the surplus Ub(t) reaches b, and for d > 0, define 

Li, j (u; b) = �i [e
– dtbI (tb < Tu,b, J(tb) = j ) | Ub(0) = u ], 0 # u # b, i, j ! E.

Li (u; b) can be interpreted as the expected present value of one dollar payable
at the time of reaching the barrier b in state j without ruin occuring, given
that the initial environment state is i and the initial surplus is u. Alternatively,
it can be viewed as the Laplace transform of the time to reach the dividend
barrier b without ruin occuring, with respect to the parameter d.

Using the same arguments as in Li and Lu (2007), we can show that Li, j (u)
for i, j ! E and 0 # u < b satisfy the following system of homogenous integro-
differential equations 

cL�i, j (u; b) = (li + d )Li, j (u; b) – li L ,i j

u

0
# (u –x; b) fi(x)dx – ,i k

k

m

1=

a! Lk, j(u; b),

with boundary conditions Li, j (b; b) = I (i = j ).
Let L(u; b) = (Li, j (u; b))m

i, j =1 be an m ≈ m matrix. Following from the fact
L (b; b) = I, we have 

L (u; b) = vd(u)L (0; b) = vd(u) [vd(b)] –1. (5.3)
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Using the same arguments as in Gerber et al. (2006), we have for 0 # u < b that 

fi, j(u; b) – fi, j(u) = L ,i k
k

m

1=

! (u; b) [fk, j(b; b) – fk, j(b)], (5.4)

with boundary conditions 

f�i, j (b–; b) = 0, i, j ! E.

Formula (5.4) can be obtained by reasoning as in Gerber et al. (2006): consider
a particular sample path of the surplus process starting at u < b and in state i.
The penalties at ruin if the ruin is caused by a claim in state j, with and without
the dividend barrier, can be different only if the surplus reaches the level b in
state k before ruin for k ! E.The boundary conditions f�i, j (b–; b) = 0 can be
explained by heuristic reasoning as in Gerber et al. (2006).

In matrix notation, Eq. (5.4) and its boundary conditions can be expressed as

z(u; b) – z(u) = L (u; b) [z(b; b) – z(b)],

z�(b–; b) = 0,

where z (u; b) = (fi, j (u; b))m
i, j =1, z�(b–; b) = (f�i, j (b–; b))m

i, j =1, and 0 is the
m ≈ m zero matrix. Then 

z(b; b) – z(b) = – [L�(b; b)]–1z�(b) = – [v�d(b) [vd(b)]–1] –1z�(b)

= – vd(b) [v�d(b)]–1z�(b). (5.5)

Finally by Eqs. (5.1), (5.3), and (5.5) we have the following dividends-penalty
identity in matrix form:

z(u; b) = z(u) – L (u; b)vd(b) [v�d(b)]–1z�(b)

= z(u) – vd(u) [vd(b)]–1vd(b) [v�d(b)]–1z�(b)

= z(u) – V(u; b) z�(b), 0 # u # b. (5.6)

We remark that z(u) can be obtained explicitly for rational claim amounts as
in Section 2. In particular, when d = 0 and w(x, y) = 1, Eq. (5.6) simplifies to 

C(u; b) = C(u) – V(u; b)C�(b), 0 # u # b. (5.7)

Eq. (5.7) can be used to show that ruin is certain under the barrier strategy,
i.e., Fi(u; b) = 0 for i ! E and 0 # u # b. Let F(u) = (F1(u), F2(u), …, Fm(u))T

and F(u; b) = (F1(u; b), F2(u; b), …, Fm(u; b))T be m ≈ 1 column vectors. Then 

F(u; b) = 1 – C(u; b)1 = 1 – C(u)1 + V(u; b)C�(b)1
= F(u) – V(u; b) F�(b), 0 # u # b. (5.8)
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Lu and Li (2005) show that Fi (u) for i !E satisfies the following system of inte-
gro-differential equations 

cF�i (u) = li Fi (u) – li Fi

u

0
# (u –x) fi(x)dx – ,i k

k

m

1=

a! Fk (u). (5.9)

The solutions of the above system of equations are uniquely determined by the
initial conditions Fi (u) for i ! E. It follows from (5.2) that ,i jj

m

1=
v! (u)Fj(0)

for i ! E has the same initial values as Fi(u) and satisfies the system of
integro-differential equations (5.9) when d = 0. Then we conclude that Fi(u) =

,i jj

m

1=
v! (u)Fj(0), or F(u) = v0(u)F(0), and Eq. (5.8) simplifies to

F(u; b) = v0(u)F(0) – V(u; b)v�0(b)F(0)

= v0(u)F(0) – v0(u) [v�0(b)] –1 v�0(b)F(0) = 0, 0 # u # b,

where 0 is the zero m ≈ 1 column vector.

CONCLUDING REMARKS

By using matrix notation, we have shown how the evaluation of Gerber-Shiu’s
expected discounted penalty function for the classical risk model can be
extended to a Markov-modulated risk model with claim amount distributions
belonging to the rational family. We have generalized the results on the maxi-
mum surplus before ruin and maximum severity of ruin for the classical risk
model to those for the Markov-modulated risk model. The dividends-penalty
identity was first given in Lin et al. (2003) for the classical compound Poisson
risk model. Gerber et al. (2006) extend the identity to the risk model with inde-
pendent and stationary increments. The matrix form dividends-penalty iden-
tity is derived in this paper for the Markov-modulated risk model.

All the results obtained in Section 3-5 can be evaluated by the expected
discounted penalty functions and the (decomposed) ruin probabilities studied
in Section 2. Finally, all the results obtained in this paper can be extended to
the case where premium rate c varies according to the state of the external
environment process {J(t); t $ 0}.
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