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Abstract

We prove, by constructing a function with given parameters, that the estimate by G. V. Chudnovsky
of the number of points at which a meromorphic function has algebraic Taylor coefficients is optimal.
The construction is carried out by the use of interpolation series.
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Introduction

Let fi,••-,/„ be meromorphic functions on the complex plane C. We discuss the
optimality of certain estimates of the number of points at which fu... ,fm have
algebraic Taylor coefficients. The classical Schneider-Lang theorem, improved by
M. Waldschmidt [8, Theorem 3.3.1], asserts the following. Suppose fx,...,fm

satisfy suitable differential equations with coefficients in a number field K.
Suppose also/1 ; f2 are algebraically independent over the rational number field Q,
and of order at most pv p2 respectively. Then the number of points at which all
the derivatives of / 1 ; . . . ,fm take values in K is at most [K: Q](px + p2). Let us
note that E. Bombieri conjectures that the number of such points will be at most
Pj + p2. On the other hand, D. Bertrand [1] extended the above theorem to
general meromorphic functions; that is, in place of considering functions satisfy-
ing differential equations, he considered functions such that the size of then-
Taylor coefficients satisfies certain conditions (we find analogous conditions also
in Waldschmidt [9].) Then he obtained a similar but more general estimate
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[21 Algebraic values of analytic functions 401

(Theorem 1) (see also Bertrand-Waldschmidt [2] for the detailed proof). But in
the special case of Bertrand's theorem where the size of the Taylor coefficients of
the functions behave as that of functions satisfying differential equations, the
number of exceptional points is at most [K:Q](p1 + p2). So also for general
meromorphic functions the estimate is the same as that of Schneider, Lang and
Waldschmidt. G. V. Chudnovsky [4,5] further extended these results: he suc-
ceeded in removing a certain condition imposed on the variable z, and obtained,
under weaker assumptions, an estimate of the same form as Bertrand (Theorem
2).

The purpose of the present paper is to show that Chudnovsky's estimate is
optimal (Theorem 3). Our method also fits the situation of Bertrand's theorem, so
the estimate of Bertrand is also optimal, though it is for a slightly restricted case.
From this result, we observe especially that in Bombieri's conjecture, the assump-
tion that the functions satisfy suitable differential equations is certainly necessary.
In other words, we can not replace this assumption by the assumption that they
are general meromorphic functions with moderate Taylor coefficients.

The proof will be achieved by constructing a function with given parameters
satisfying Chudnovsky's estimate, and the construction will be carried out by the
use of interpolation series.

1. Statement of result

We shall state here Bertrand's theorem, Chudnovsky's theorem and our result.
To this aim we recall the definition of well-behaved points, which is found in
Bertrand [1] (Bertrand informed us that the terminology "well-behaved points"
was suggested to him by D. Masser.) We denote by Q the algebraic closure of Q,
and for a e Q we denote by \a\ the maximum of the absolute values of its
conjugates, and for a number field K we denote by IK the ring of algebraic
integers in K.

DEFINITION 1. Let fi,...,fm be functions holomorphic at a point w e C. We
say that w is a well-behaved point of {/1;... , / m } , if there exist a number field Kw

(of degree dw), a positive number p.w, a natural number 8W and nonnegative
integers 8^, 8'^ such that the following conditions are satisfied:

(i) all the numbers f^k\w) for k > 0, / = 1,... ,m lie in KK;
(ii)

log 1/,W(H0|

for i = \,...,m;
(iii) 8t+\{8'wk)\f~rtk\W) e / for k > 0, i = 1,... ,m.
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DEFINITION 2. An entire function/is of order p if

where

|/U=max|/(z)|.
\z\ = R

A meromorphic function is of order at most p if it is the quotient of two entire
functions of order at most p.

DEFINITION 3. An entire function / is of strict order at most p if there exists a
constant c > 0 such that \f\R < ecRP for R » 1. A meromorphic function is of
strict order at most p if it is the quotient of two entire functions of strict order at
most p.

REMARK 1. The order of an entire function/is equal to inf{p|/is of strict order
at most p}.

Extending the Schneider-Lang theorem on meromorphic functions satisfying
suitable differential equations, Bertrand obtained the following theorem on
general meromorphic functions (see also [2]).

THEOREM 1 (Bertrand [1]). Let fx and f2 be two algebraically independent
meromorphic functions of orders at most pv p2 respectively. Then

v 1
w dw8wSw +1 +(dw- l)ixw

where w ranges over all well-behaved points of { / 1 ; f 2 } , and p'w = max(l, nw).

Let / (z) be a transcendental meromorphic function of order at most p. Then
for the pair of functions { z, /(z)}, he obtained by the same method

y 1 <

where w ranges over all well-behaved points of { z, / } ,
Let us note that by the definition of well-behaved points, here the value w of

the variable z and the values/^^w) must belong to the same number field Kw.
However Chudnovsky succeeded in removing this condition on values of the

variable, and proved that the same inequality holds provided only that w are
algebraic numbers.
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THEOREM 2 (Chudnovsky [4,5]). Let f be a transcendental meromorphic function
of order at most p. Then

y 1

where w ranges over all well-behaved points of { / } such that w e Q.

We shall show that the estimate of Theorem 2 is optimal. To this aim, we shall
show that, for arbitrary parameters satisfying the estimate of Theorem 2, there
exists a function / whose well-behaved points correspond to these parameters. It
will turn out that these well-behaved points are all rational (and even integral):
hence they are well-behaved points of {z, / } . So our result also shows that
Theorem 1 is optimal, though it is for a slightly restricted case, that is, for the case
where one of two functions is z.

THEOREM 3. Let n range over the natural numbers from 1 to N or from 1 to oo.
Suppose we are given p > 0, dn e N, pn > 0, 8'n, 8n" e M U {0} such that

and

(2) fin > 1 - 1/P

for all n. Let Kn be real number fields such that dn = [Kn: Q].
Then there exists a transcendental entire function f of strict order at most p such

that the following conditions are satisfied for all n:
(i') all the numbers f(k\n) for k > 0 lie in Kn;

(iii') there exists 8 , eM such that for k > 0

REMARK 2. The condition (2) is a necessary condition for the existence of / . In
fact (ii') implies \f(k\n)\ < k(>i-+e)k for e > 0 and k » 1. We may assume
Hn < 1 and fin + e < 1. Then by applying Lemma 1 below to the Taylor expan-
sion of / at z = n, we see that / is of strict order at most 1/(1 — nn — e). So by
Remark 1, / is of order at most 1/(1 - fin). Then Theorem 2 and (1) imply
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2. Preliminary lemmas

Concerning the strict order of a function, we have the following lemma.

LEMMA 1. Let Pm (m = 0,1,...) be polynomials such that the degree of Pm is at
most m. Suppose p > 0 and there exists a constant c such that \Pm\R < cmm~m/f>Rm,
for all /? » 1 and m » 1. Then the series L™=0Pm converges uniformly on any
compact set and defines an entire function of strict order at most p.

PROOF. We may assume c > 1. Let R » 1 and /0 » 1. Then using the fact that
the number of integers m with p(/ - 1) < m < pi is at most [p] + 1, we have

\Pm\R< E cmm
m>p(lo~l)

oo

= E E cmm-m/pR

c''r'R»l <

with a constant c' independent of /, /0 and R. This proves that T.™=0Pm(z)
converges uniformly on \z\ < R, so on any compact set, and defines an entire
function of strict order at most p, as desired.

The following lemma on simultaneous approximation is due to P. G. L.
Dirichlet, and is well known (cf. W. M. Schmidt [6, page 34]).

LEMMA 2. Let 0l,...,Om be real numbers and suppose Q > 1. Then there exist
integers p,q1,...,qmwith

1 < m a x ( | 9 l | , . . . , | g J ) < Q

and

\P + eiqi + ••• + emqm\< Q-m.

Among the following lemmas we shall need later Lemma 5 which is derived
from Lemmas 3 and 4. Lemma 3 is on bad approximation, and is easily derived
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[ 6 ] Algebraic values of analytic functions 405

from the fact that the product of an algebraic integer with its all other conjugates
is at least 1 in absolute value (cf. J. W. S. Cassels [3, page 79]).

LEMMA 3. Let 01,...,Om be m numbers in a real number field of degree m + 1
such that 1, 61,...,6m are linearly independent over Q. Then there is a constant
c > 0 (depending only on dr,..., 6m) such that

\p + 6iqi+ ••• + emqm\> c(mnx(\qi\,... ,\qm\))'m,

for any integersp, qv.. .,qm with (qv... ,qm) * (0, . . . ,0).

The next lemma is called a transference theorem with respect to simultaneous
approximation (cf. Cassels [3, page 82]).

LEMMA 4. Let Lj(x), x = (JCJ,. . . ,xm) be I linear forms in m variables with real
coefficients. Suppose that the simultaneous homogeneous inequalities

\yj + Lj(x)\<C, \xt\<X,

have no integer solution x, yx,... ,yt with x =£ 0. Then for any real numbers ax, . . . , a,
the simultaneous inhomogeneous inequalities

\yt + Lj(x) - *j\< C, \xt\<X',

have no integer solution x, ylt... ,yt, where

By applying Lemmas 3 and 4 to Lx(x) = 6lx1 + • • • + 6mxm, we obtain the
following lemma on inhomogeneous approximation.

LEMMA 5. Let 6X,... ,6m be m numbers in a real number field of degree m + 1
such that 1, O1,...,0m are linearly independent over Q. Then there is a constant
c > 0 (depending only on 6X,... ,dm) such that for any real number a and Q > 0,
there exist integersp, qv... ,qm with

( . . , | $ J ) < Q

and
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3. Proof of Theorem 3

We now turn to the proof of Theorem 3. So we suppose that n ranges over the
natural numbers from 1 to N or from 1 to 00 and that p, dn, pn, 8'n, 8'n' and Kn

satisfy the assumptions of Theorem 3. Let

(3) fn = (^6A" + l + ( ^ - l ) M J p .

Then (1) is equivalent to

(10 Ef-i.

We divide the proof into steps.
Step 1: interpolation series. We shall construct the desired function / by the use

of interpolation series (cf. Th. Schneider [7, Chapter 2]). For interpolation points,
we take N points 1,2,... ,N or a countable number of points 1,2,... according as
n ranges from 1 to Â  or from 1 to 00. Furthermore, we take each point n infinitely
often, but we take n in such a way that the frequency of taking each n has weight
l / ? n . We state this precisely below. To this aim, we introduce some notation.

First for any integer m > 0, let

(4) Am={n|[W/U<[(m + l ) / U } ,

[ ] denoting the Gauss symbol, and let

s (m) = the number of the elements of A m.

We see that s(m) is finite. More precisely, we have the following estimate. By (1')
we have f„ > 1 for any n, and so [(w + 1)/£J - ["»/£„] = 0 or 1. Therefore we
have

and by (1') again we have

(5) s(0) + ••• + s(m) < m + 1.

Let us arrange the elements of A m in the order of size, and denote them by

"m.V • • »«m..(m) S O t h a t W e h a V e

" m , l < "m,2 < • • • < nms(m).

In the following we shall consider only the pairs of integers (m, s) such that
Am =£ 0 and 1 < s < s(m). We introduce a linear order among such pairs by
defining lexicographically

(6) (/, a)<(m,s) if / < m or / = m, and a < s.
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[ 8 ] Algebraic values of analytic functions 407

Now for every pair (m, s) we define a function <j>ms(z)by

(7) <f>m s{z) = Y\ ~ •

With this notation, we shall construct the desired function / in the form

(8) f(z) = L <VA,.,,
(m,s)

where (m, s) ranges over all pairs such that Am =£ 0 and 1 < s < s(m).
Note that <t>ms(z) can be written

"m,l nm,s-l

because for some / < m, n is written n = n, a if n belongs to A,, equivalently if
U/Sn] < [(̂  + l ) / f J a n d because there are [ m / f j number of such /. In view of
this expression we see that for m fixed, (z - n) appears in </>m s(z) almost [ m / f j
times for each n. This is the meaning of our former phrase "the frequency of
taking each n has weight l/fB."

Step 2: properties of<j>ms. We show that <J>m s has the following properties.

ASSERTION 1.

(a) <f>m s has at most m factors.

(b) |<f><h(")l < nmk\forallk > 0 andn.

(d) 0<,*> ¥=0ifk> m.
(e) S«p/*Me /: = [m/£m ].

= \m/tnj. Then \<t><m
k](nmj\ > kl/(2nmjm.

PROOF.

(a) By the definition of linear order (6) and the definition (7), <j>m s has
s(Q) + • • • + s(m — 1) + s — 1 factors, and by (5) this number is at most m.

(b) Let Tn be the circle of center n with radius 1. Then Cauchy's integral
formula implies

where \<f>m S\T^ = maxz6rJ</>m s(z)|. Note that for any positive integer ri we have

z — n \n' - n\+

«' - n + 1 , .„ ,
; < 1 < n nn > n,

n
n - n' + 1 n

: < —7 < n \\n <, n.

https://doi.org/10.1017/S1446788700026161 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026161


408 Isao Wakabayashi [9]

Then since <f>m s has at most m factors by (a), we obtain \$m S\T < nm, which
imphes (b).

(c) F o r a n y n, \z — n\R = R + n. A l s o R + n < 2Rn, s ince R,n~^\. So
Kz - n)/n\R «£ 2R. Then by (a) we obtain \<j>mJR < (2R)m.

(d) By (a) the degree of <f>m s is at most m. Hence clearly (d) holds.
(e) Suppose k = [m/£n ]. If (/, a) > (w, s), then by the expression (9) we see

that <f>, a contains the factor (z — nms) at least [m/tnm ] + 1 times. Therefore

(f) Suppose k = [m/SUms]. By the expression (9), <#>m s has the factor (z - nms)
exactly [m/$n ] times. So we have

n n

s

n

s-l

On the other hand, we have K"m,s ~ n)/n\ > l/(2nm s) for n ¥= nm s. In fact, if
n < 2nm s, then this is clear, and if n > 2nms, then K«m,, — «)/« | > 1/2 >
l/(2nm s). Therefore (a) implies that the right-hand side of the above equahty is
greater than or equal to k\/(2nm s)

m, as desired.

Step 3: induction for am s. Our objective is to choose am s well so that the
function / defined by (8) has the desired properties. We wish to choose ams by
induction on (m, s) with respect to our lexicographic linear order. In order to
formulate the induction, we make some preliminary observation.

Let us suppose that ams have been chosen and the termwise differentiation of
(8) is allowed. Then by (e) we find that for any k ^ 0 and any n, f(k)(n) is
expressed as a finite sum

Indeed, the smallest (w, s) admitting such an expression is given as follows. Let
m be the integer with k = [m/ f j < [(m + 1)/£J. Then n is an element of Am.
Hence we can find s with 1 < 5 < s{m) such that n = nms. Clearly (w, s) is
determined in a unique way by (k, n). Let us denote this correspondence by G:
(k, n) -» (w, s). Then (e) tells us that if (/, a) > (m, s) then ^{nms) = 0; that
is, 4>(,ka\n) = 0. Moreover (0 tells us that ^ ' C 1 ) * °- Therefore this (w, s) is just
the smallest one having the above mentioned property. Note that G is a one to
one mapping of the set of all pairs (k, n) with k > 0 onto the set of all pairs
(m, s) such that Am ¥= 0 and 1 < s < s(m).
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Now with this observation we introduce the following notation. For any k > 0
and n, we set (m, s) = G(k, n), and write

(10) /?*,„= I «

and

Note that

(11) k = [m/U < [(« + l)/rn] and n = »„,,.
Also we have

(12) Y*,n = /**,„ + am>/ti&(n).
Furthermore,/**'^) = yk „ if the termwise differentiation of (8) is allowed.

With this notation our objective is stated as follows.

ASSERTION 2. There exist positive constants Cn, positive integers Sn (both depend-
ing only on the n-th date in Theorem 3) and real algebraic numbers am s such that the
following conditions are satisfied for all (m, s) and (k, n) with Am ¥= 0, 1 < s <
s(m)andk > 0:

0 and \yktn\

For the proof we use the following induction on (m, s).
For a pair (m, s) with Am # 0 and 1 < s < s(m), we assume the following

condition (A) holds.
(A) For all (/, a) < (m, s), real algebraic numbers a, a have been chosen, and

they satisfy (i").
Under this assumption, we show that the following condition (B) holds.
(B) There exists a real algebraic number ams such that ams satisfies (i"), and

such that for (k, n) = G~\m, s), ykn satisfies (ii") and (iii")-
Note that for the smallest pair, say (w0,1), we may consider that (A) holds

trivially. Also recall that G is a one to one mapping. Then it is easy to see that by
induction this implies Assertion 2.

In this paper we set 0° = 1.
In the following steps we shall prove that (B) holds under the assumption (A).

To this aim, we choose a basis of IK, {u>l = 1, «2 , . . . ,«d } for every n. For
simplicity we use the same letters for all n. Then we fix a pair (m, s) with
Am ^ 0 a n d i ^ s < s(m), and assume (A) holds for this (m, s). Let (k, n) =
G'l(m, s); that is, let k, n, m, s satisfy (11). We fix this notation: so in the
following (up to Step 8), by (k, n) we shall always mean this (k, n) defined here.
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Step 4: \frkj < (2H)m*:(1~1/p>*- Indeed, by (10) and Assertion l(d) we have

( / , o ) < ( m , i ) , / » *

Then by (b), (A) and (5), we obtain

< k\nmk-k/»(m + 1) < (2«)mA:(1

as desired.

Step 5: determination of ams in the case dn — \. Here we suppose dn = 1; that
is, Afn = Q. Let Sn be a positive integer such that

(13) 8n>(2n)

For simplicity, let us write

(14) 8k,n-8n
k+1((Kky.)K-

If [Sk nfik „] = 0, then we set q — \, and otherwise we set q = [8t>ni8tiB]. We
define am<s by

g ~ Sk,nPk,n

Then am s e Q. Further together with (12), we have

(16) yk,n =

Also we have yk „ =# 0, as q =t 0.

6: verification of (i"), (ii") a«rf (iii") w f/ie case dB = 1. First let us verify
(i") for the above ams. Since the absolute value of the numerator of (15) is at
most 1, (11) and (f) yield \amj < (ln)m/(8knk^. Note that (8'nk)\ > (A:!)s», and
thus 8k nk\ > 8*+1(A;!)1+s"s;i''by (14). Recall that k = [m/JJ by (11). So k + 1 >
m/ln. Then evaluating k\ by the use of the inequahty [x]\ > xx/(2e)x (x > 0),
we obtain
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1121 Algebraic values of analytic functions 411

On the other hand, since dn = 1, we have (1 + 8'X')/L = V P by (3). Therefore
together with (13) we obtain

^ m-m/p

I >

as desired.
Next let us verify (ii") and (iii") for the above yk „. It was already verified that

yk „ # 0. By (16) and the definition of q, we have yk n e Q and \ykn\ < \fik J + 1.
Then in view of (2), the inequality m/ln < k + 1 and the estimate of \fik J, we
obtain

with a constant Cn greater than or equal to (4n)f». Thus (ii") holds. By (14) and
(16), (iii") holds clearly.

Step 7: determination of am s in the case dn > 1. Next we suppose dn > 1. In this
case we use Lemma 5 to determine am s. For simplicity, here we write

(17) V-= ((«»0'".
instead of (14). Recall that {ul = 1, u2,...,ud } is a basis of IK. Let us apply
Lemma 5 to u2,... ,ud^ in place of 6V... ,6m and to the number field Kn. Then
there exists a constant C'n depending only on u2,- • • ,oid , and playing the same
role as the constant c in Lemma 5. Therefore for Sk nfik n and

(18) Q = w,(M.+w)«/f.C;'"(cl,' + ifAd"-l)

with a constant CB" such that

(19) C^"1 :
there exist integers q{, • •••,q'dii such that maxd^l , • • • >kij) < 2

L Ui4'i ~ 8k,nPk,n
1 = 1

If Efi xw,^/ # 0, then we set qt = q\. If it is equal to 0, then (q[,...,q'dJ = (0,..., 0)
as u1 — 1, w2, . . . ,wd are linearly independent over Q, and in this case we set
qt = q[', where q",...,q'd[ are integers such that 1 < max( |^ ' | , . . .,\q'JJ) < Q a n d

l^f-iw/9/'l < Q'(d"~1}. The existence of these q" follows from Lemma 2, as g > 1
by (18). Note that HfiiUjq" * 0. Therefore in both the cases we have

(20) naa[\q2\,...,\qdm\)<Q
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and

(21)
d

E

Now using these qx,..

(22)

ThenaMjl

(23)

A l s o yk,n *

e Q. Further

Isao Wakabayashi

«,£f, - 6.. „/?,. „

.,qd,v/e define am s by

8k n<S>(J](n)

by (12) we have

[131

Step 8: verification o/(i"), (ii") anrf (iii") '« /Ae case dn > 1. First let us verify
(i") for amt, defined in Step 7. By (18), (21), (22) and (0, we have

- 1
$ k\

Then since k = [m/f j and we have (17), the same argument as Step 6 implies

. . (2n)m(2ef+KK')mA"

On the other hand, by the definition (3) we have

Thus by (19) we have

= {dn8'nK' + 1 +(dn - l)M»)/fB = 1/P-

m
m/p

as desired.
Next let us verify (ii") for ykn. It was already verified that ykn # 0. By (23) we

have

i d»

\?r-Y.2\ul\\ql\.

Also by (18), (21), (23) and Step 4, we have
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Hence by (17), (18) and (20) we have

2(dn - l)max( k | ) M4.-1)
I |«,| ]m^" •-»-»'-"»L,_- |L. t i ]

/>2

Note that we have m/$n < k + 1, and 1 — 1/p < [in by (2). Then using again the
inequality (8^k)\ > (k\)s'» > ks'-k(2eys'-k, we obtain

\ r k , n \ ^ '-n K •>

with a sufficiently large constant Cn independent of k.
Finally, by (17) and (23), (iii") holds clearly with 8n = 1.
Thus the results of Step 4 to Step 8 together imply that (B) holds under the

assumption (A). Therefore by induction, Assertion 2 in Step 3 is proved.

Step 9: verification of properties of f. Let us define / by (8), using ams of
Assertion 2. We wish to verify that/has the desired properties of Theorem 3.

First let us verify that / is a transcendental entire function of strict order at
most p. We apply Lemma 1 with Pm = E1<J5!,(m)ami>mi,. By (5), (c) and (i"), we
have for any m and R > I.

\PJR < E l««Jk.JR < (rn + l)m-

Hence / is an entire function of strict order at most p. Further, since the termwise
differentiation is allowed, we have/(A;)(/i) = yk n by the preliminary observation
in Step 3. So by (ii"),/is transcendental.

Next let us verify (i'), (ii') and (iii'). Since'/(t)(n) = yk „, clearly (iii") implies
(i') and (iii'), and also (ii") implies (ii'). Thus the proof of Theorem 3 is completely
achieved.
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