
JFP 29, e2, 57 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796818000229

The verified CakeML compiler backend

Y O N G K I A M T A N
Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
(e-mail: yongkiat@cs.cmu.edu)

M A G N U S O . M Y R E E N
CSE, Chalmers University of Technology, Gothenburg 412 96, Sweden

(e-mail: myreen@chalmers.se)

R A M A N A K U M A R
Data61, CSIRO / CSE, University of New South Wales,

Kensington, NSW 2033, Australia
(e-mail: ramana.kumar@gmail.com)

A N T H O N Y F O X
Department of Computer Science and Technology, University of Cambridge,

Cambridge CB3 0FD, UK
(e-mail: Anthony.Fox@arm.com)

S C O T T O W E N S
School of Computing, University of Kent, Canterbury CT2 7NF, UK

(e-mail: S.A.Owens@kent.ac.uk)

M I C H A E L N O R R I S H
Data61, CSIRO / Research School of Computer Science, Australian National University,

Canberra, ACT 2600, Australia
(e-mail: Michael.Norrish@data61.csiro.au)

Abstract

The CakeML compiler is, to the best of our knowledge, the most realistic verified compiler for a
functional programming language to date. The architecture of the compiler, a sequence of inter-
mediate languages through which high-level features are compiled away incrementally, enables
verification of each compilation pass at an appropriate level of semantic detail. Parts of the com-
piler’s implementation resemble mainstream (unverified) compilers for strict functional languages,
and it supports several important features and optimisations. These include efficient curried multi-
argument functions, configurable data representations, efficient exceptions, register allocation, and
more. The compiler produces machine code for five architectures: x86-64, ARMv6, ARMv8, MIPS-
64, and RISC-V. The generated machine code contains the verified runtime system which includes a
verified generational copying garbage collector and a verified arbitrary precision arithmetic (bignum)
library. In this paper, we present the overall design of the compiler backend, including its 12 inter-
mediate languages. We explain how the semantics and proofs fit together and provide detail on how
the compiler has been bootstrapped inside the logic of a theorem prover. The entire development has
been carried out within the HOL4 theorem prover.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229
mailto:yongkiat@cs.cmu.edu
mailto:myreen@chalmers.se
mailto:ramana.kumar@gmail.com
mailto:Anthony.Fox@arm.com
mailto:S.A.Owens@kent.ac.uk
mailto:Michael.Norrish@data61.csiro.au
https://doi.org/10.1017/S0956796818000229

2 Y. K. Tan et al.

1 Introduction

Optimising compilers are complex pieces of software and, as such, errors are almost
inevitable in their implementations, as Yang et al. (2011) showed with systematic exper-
iments. The only compiler Yang et al. did not find flaws in was the verified part of the
CompCert C compiler (Leroy, 2009). The CompCert project has shown that it is possi-
ble to formally verify a realistic, optimising compiler and thereby encouraged significant
interest in compiler verification. In fact, much of this interest has gone into extending or
building on CompCert itself (Sevcík et al., 2013; Stewart et al., 2015; Mullen et al., 2016).

Verified compilers for functional languages have not previously reached the same level
of realism, even though there have been many successful projects in this space, for exam-
ple, the compositional Pilsner compiler (Neis et al., 2015) and the previous CakeML
compiler which is able to bootstrap itself (Kumar et al., 2014).

This paper is the extended version of our earlier conference paper (Tan et al., 2016).
We present the most realistic, to our knowledge, verified compiler for a functional
programming language to date:

• The backend starts from a fully featured source language, namely CakeML,
which includes user-defined modules, signatures, user-defined exceptions and
datatypes, mutually recursive functions, pattern matching, references, mutable
arrays, immutable vectors, strings, and a foreign function interface (FFI).

• Compilation passes through the usual compilation phases, including register allo-
cation via iterated register coalescing (IRC). The backend uses 12 intermediate
languages (ILs) that together allow implementation of optimisations at convenient
levels of abstraction. It uses efficient, configurable data representations and properly
compiles the call stack into memory, including the ML-style exception mechanism.
The final memory model does not distinguish between pointers and machine words.

• The output is concrete machine code for five real machine languages, including both
32- and 64-bit architectures, and both big- and little-endian architectures.

• We bootstrap the compiler within the logic so that it can be used both inside and
outside of the logic. Inside the logic, the compiler backend takes source language
abstract syntax trees (ASTs) as input. Outside of the logic, it takes concrete syntax
as input, which it parses, performs type inference on, and then compiles using the
compiler backend.

The compilation strategy is not the novelty here, and we freely take inspiration from exist-
ing compilers, including CompCert and OCaml. Our contribution here is the verification
effort and explaining how it affects the compiler’s structure and vice versa.

Traditional compiler design is motivated by generated-code quality, compiler-user expe-
rience (especially compile times), and compiler-writer convenience. Designing a verified
compiler is not simply a matter of taking an existing compiler and proving it correct while
simultaneously fixing all its bugs. To start with, it is probably not written in the input lan-
guage of a theorem proving system, but even if it could be translated into such a form, we
would not expect to get very far in the verification effort. Although theoretically possible,
verifying a compiler that is not designed for verification would be a prohibitive amount of
work in practice.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 3

To make the verification tractable, the compiler’s design must also consider the compiler
verifier. This means that the compiler’s ILs, including their semantics, need to be carefully
constructed to support precise specification of tractable invariants to be maintained at each
step of compilation. Of course, we cannot forgo the other design motivations completely,
and our main contribution here is a design that allowed us to complete the verification
while supporting both good quality code (for multiple targets) and the implementation of
further optimisations in the future.

This paper aims to be a comprehensive presentation of how the design, implementation,
and verification of the CakeML compiler fit together to produce an end-to-end verified
compiler with acceptable performance. This paper presents the following:

• the top-level design of the compiler and the structure of its implementation;

• the proof methodology used throughout the verification of the compiler backend;

• the top-level correctness theorem for the compiler;

• a run through of all of the main phases of the compiler, providing more detail on the
phases that we suspect are interesting from a verification point of view;

• how the new compiler has been bootstrapped inside the logic of a theorem prover;

• benchmarking numbers that show how different optimisations impact the perfor-
mance and also compare the CakeML compiler against other ML compilers.

All of our definitions and proofs are carried out in the HOL4 system (Slind & Norrish,
2008). The code is available at: https://code.cakeml.org.

2 Approach

In this section, we start with a brief overview of the compiler implementation including a
summary of the main design decisions. We then describe the semantics of its ILs and the
correctness proofs. Subsequent sections will expand on the details.

2.1 Compiler implementation and major design decisions

This paper describes what we call version 2 of the CakeML compiler, which is the latest
version, at the time of writing. Version 2 uses 12 ILs, as illustrated in Figure 1. The com-
piler backend starts from full CakeML, which includes modules, nested pattern matching,
data types, references, arrays, and an I/O interface, and targets five real machine archi-
tectures. Each important step is separated into its own compiler pass, including closure
conversion, concretisation of data representations, register allocation, concretisation of the
stack, etc. The compiler uses a configuration record which specifies the data representation
to use and details of the target architecture.

We note that the CakeML compiler continues to evolve and many details will change
as the compiler improves. However, there are certain deep-rooted design decisions that are
likely to persist. In what follows, we describe those major design decisions, while the rest
of the paper describes the compiler as it is now.

The top-most design decision is about the purpose of the compiler. The purpose of the
CakeML compiler is to be a verified compiler that is, P1: as realistic as is practically

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://code.cakeml.org
https://doi.org/10.1017/S0956796818000229

4 Y. K. Tan et al.

Compiler transformations

Source syntax

Source AST

LanguagesValues

Parse concrete syntax

No modules

No cons names

No declarations

Exhaustive
pat. matches

No pat. match

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules

Replace constructor
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible

Remove dead code

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove dead code

Combine adjacent
memory allocations

Concretise data repr.

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

BVL:
functional
language

without
closures

Only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

High-level comments

Parsing and type inference
are essentially unchanged
from the previous version.

The initial phases of the
compiler backend
successively remove
features from the input
language. These phases
remove modules,
declarations,pattern
matching. All names are
turned into representations
based on the natural
numbers, e.g. de Brujin
indices are used for local
variables and constructor
names become numbers.

ClosLang is a language for
optimising function calls
before closure conversion.
These phases fuse all
single-argument function
applications into true multi-
argument applications, and
attempt to turn as many
function applications as
possible into fast C-like
calls to known functions.

The languages after closure
converstion but before data
becomes concretemachine
words, i.e., languages from
BVL to DataLang, are
particularly simple both to
write optimisations for
and for verification proofs.
The compiler performs
many simple optimisations
in these laguages, including
function inlining, constant
folding and merging of
nearby memory allocations.

One of the most delicate
compiler phases. This
introduces the bit-level
data representation, GC and
bignum implementation.
The rest of the compiler is
similar to the backend of a
simple compiler for a C-like
language. Our compiler
implements fast long jumps
in order to support ML-style
execptions. The compiler
differs from a C compiler
by having to interact with
and implement the GC.
The GC is introduced as a
language primitive on
compilation into WordLang.
Further down in StackLang,
the GC is implemented as a
helper function that is
attached to the currently
compiled program.

The final stage turns a
target-neutral assembly
language to concrete
machine for five target
architectures, including
32- and 64-bit architectures,
and big-endian and
little-endian architectures.

Fig. 1. The structure of the new CakeML compiler.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 5

possible and P2: simple and tidy enough to be used as a platform for future research and
student projects. In situations where P1 and P2 have been in conflict, for example, when a
modification was about to make the compiler more complicated in order to produce better
code, we have tended to emphasise P1 over P2.

The following high-level design decisions have been made during the development of
the compiler. Note that for some of these, namely D1, D3, D4, and D5, we could have taken
the decisions differently and the resulting compiler and its verification could possibly have
been equally good overall – it would just have ended up with the implementation and
verification complexities distributed differently. We motivate our choices below.

D0: Sufficiently many ILs for ease of compiler implementation and verification. When
designing the structure of a compiler, there is a question: should there be many ILs
or just a few? In the context of a verified compiler, having fewer ILs supports the
reuse of infrastructure, including utility lemmas, that is specific to each IL’s seman-
tics. However, ILs whose semantics support both higher- and lower-level features
can complicate the invariants needed to verify transformations, especially when no
program will contain both at the same time. Thus, our CakeML compiler introduces
a new IL whenever a significant higher-level language feature has been compiled
away or when a new lower-level one is introduced. Although this leads us to 12 ILs,
many transitions work within a single IL, as can be seen from Figure 1. We note that
this design choice is not unique to our compiler; CompCert (Leroy, 2009) similarly
uses several ILs in order to capture syntactic and semantic guarantees at each stage
of compilation.

D1: Direct-style compilation (as opposed to continuation-passing style (CPS)) and the
call stack separate from the heap. Compiling with CPS (Appel, 1992) has been
investigated by the research community for a while, and it is tempting to try to
write an ML compiler in that style, as Standard ML of New Jersey has done. It
is tempting since all function calls become tail calls which means that there is no
need for a conventional call stack in the generated code. The downside is that CPS
makes the compiler harder to write (against our P2) and effectively moves the call
stack into the heap, which means that stack frame deallocation (which is simple and
fast with a direct style) is usually left to the garbage collector in CPS (against our
P1). We further note that the leading ML and Haskell compilers (MLton, Poly/ML,
OCaml, GHC) opt for direct-style compilation.

D2: Curried functions, compilation to multi-argument functions, and good closure rep-
resentations (but without interior pointers). In ML (and Haskell), each function
takes only one argument, and programmers write multi-argument functions at the
source level either with currying or taking input as a tuple. Any realistic ML com-
piler has to optimise for at least one of these patterns and pass multiple arguments
to functions without any intermediate allocation of closures or tuples. The CakeML
compiler emphasises curried functions and compiles them into true multi-argument
closure values (emphasis on P1 rather than P2). It uses a flat representation of
the closure environments with constant-time lookups. Some compilers use internal
pointers, i.e., pointers into the inside of heap objects rather than the heads of heap

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

6 Y. K. Tan et al.

objects, in the representation of closures for mutually recursive functions. We do not
do this partly due to D3 below and partly because it would cause more complexity
in the garbage collector and probably slow it down.

D3: A first-order functional IL, bytecode-value language (BVL), that is as clean and
simple as possible. Motivated by P2, the middle part of the compiler grew outwards
from a first-order functional language called BVL, which we have tried to keep as
neat and tidy as possible. For purposes of modularity, we did not want to build
a specific closure format into the language definition. In the current compiler, the
only compiler phase that needs to know the closure format is the compilation pass
from CLOSLANG into BVL, at which point closures are compiled into a format that
uses BVL’s code pointers. The semantics of BVL treats these code pointers like any
other semantic value (constructor, integer, reference pointer, etc.) – a design deci-
sion that affects the rest of the compiler because from this point onwards, any value
can potentially be a code pointer. This has an impact on the garbage collector and
lower-level data representations. In particular, the implementation of the garbage
collector must be able to efficiently spot the difference between code pointers and
data pointers. Efficiency is achieved here by ensuring that all code pointers have the
least-significant bit set to zero, while all data pointers have it set to one. We make our
verified assembler two-byte align1 all code labels so that every code pointer has zero
in the least-significant bit. By representing small data (e.g., small integers) also with
a zero in the least-significant bit, the garbage collector can treat all code pointers as
data. An alternative would have been to do a range check for the code addresses in
the garbage collector, but that would have cost us performance and gone against P1.

D4: Structured control flow (e.g., if-statements as opposed to gotos) for nearly all
of the ILs. Motivated by P2, a decision was made early on that every IL, except
the assembly language LABLANG, should have structured control flow based on
if- and case-statements that are familiar from while-languages. An alternative, at
least for the lower-level more C-like ILs, is to represent code with a control flow
graph consisting of basic blocks along with control flow edges between blocks.
For example, the CompCert compiler uses such a representation internally. Our
representation loses the flexibility of control flow graph-based representations
but in return makes certain important compilation passes more straightforward to
implement and verify, for example, the liveness analysis described in Section 7.2.

D5: One place for concretisation of data representations into finite memory. When
structured data (tuples, arrays, arbitrary sized integers, etc.) is compiled into
machine words and memory, we do not want to be obstructed by intermediate
abstraction levels that hinder low-level trickery with bit-level representations and
creative use of memory. By intermediate abstractions, we mean CompCert-style
abstractions that make pointers distinct from machine words and abstractions that
give memory more structure than a flat array of machine words. There is a trade-off
here: CompCert-like abstractions would have allowed us to avoid the garbage
collection oracle of Section 7.1, but such abstractions would have prevented –

1 On most architectures, all code labels are naturally aligned to 2- or 4-bytes because of the instruction format;
the x86-64 architecture is an exception.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 7

or at least complicated – several low-level optimisations and tricks (emphasis
on P1 instead of P2 here). One example of such low-level trickery is how the
implementation of integer addition performs a word-addition on machine words
and then checks with only one test whether there was overflow in the word-addition
or whether one of the inputs was a pointer to a bignum.

D6: Concrete machine code targets for several different architectures. This is moti-
vated by P1 and means that every part of the compiler must be able to use data
representations that work for both 32- and 64-bit architectures, and big-endian and
little-endian architectures. Concretely, the compiler and its verification proof are
parametrised by a configuration record describing the target architecture.

The end-to-end compiler. The complete compiler function takes a string and configura-
tion as input and produces, on a successful execution, a tuple consisting of a list of bytes,
a list of machine words (i.e., either 32- or 64-bit words), and a configuration record. The
bytes are machine code for the specific target architecture implementing the input pro-
gram. The machine words are assumed by the compiler to be loaded into the data section
on startup; they contain read-only liveness information that is used by the garbage collec-
tor (GC) at runtime. The configuration record contains book-keeping information about the
compilation. In particular, it contains a list of strings corresponding to the FFI entry points
the executable assumes it has access to.

Compiler failure. The compiler function is allowed to fail, i.e., return an error. It can
return an error due to parsing failure, type inference failure, or instruction encoding failure.
The parser and type inferencer have been proved sound and complete, which means that
an error there indicates a fault by the user. An instruction encoding error can happen when
a jump instruction or similar cannot be encoded at the very last step of compilation, where
we perform verified assembly. The related paper (Fox et al., 2017) discusses this problem
in detail. In brief, such an encoding error can occur when the compiler attempts to encode,
for example, a jump of l bytes where l is too large to fit within the offset field of the jump
instruction’s encoding. In practice, these encoding errors are rare: all of the benchmark
programs in Section 12 can be successfully compiled for each of our compiler’s target
architectures. One could potentially prove that instruction encoding errors are impossible
for compiler configurations that sacrifice one or two registers as temporary registers in
the encoding of unusually long jumps. At the time of writing, we have not proved such a
theorem nor constructed such defensive compiler configurations.

2.2 Semantics of ILs

The compiler’s ILs can be divided into three groups based on the values they operate
over. The first group uses abstract values that include closures; the second group uses
abstract values without closures; and the third uses machine words and memory. See the
annotations on the left in Figure 1.

Every language has a semantics at two levels: there is the detailed expression- or
program-level evaluation semantics (called evaluate), and an observational semantics for
the whole program (called semantics).

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

8 Y. K. Tan et al.

We define our semantics in functional big-step style (Owens et al., 2016). This style of
semantics means that the evaluate functions are interpreters for the abstract syntax. These
interpreter functions use a clock, which acts as fuel for the computation, to ensure that they
terminate for all inputs. A special uncatchable timeout exception is raised if the clock runs
out. An example of an evaluate function is shown in Figure 2 in Section 4.

The semantics functions return the set of terminating/diverging observable behaviours,
including FFI calls, that a program can exhibit. Below ϕ ffi_state is the type of the FFI
state which models how the environment responds to FFI calls. We use postfix notation for
type constructors, and ϕ is a type variable for the type of the state of the external world.

semantics : ϕ ffi_state → program → behaviour set

A behaviour is either divergence, termination, or failure. The first two carry a possibly
infinite stream of FFI I/O events, representing a trace of all the I/O actions that the program
has performed given the initial FFI state.

behaviour = Diverge (io_event stream) | Terminate outcome (io_event list) | Fail

outcome = Success | Resource_limit_hit | FFI_outcome final_event

If the evaluate function reaches a result for some clock value, then the program has
terminating behaviour with the resulting trace of FFI communications. If the evaluate
function hits a timeout for all clock values, then it has diverging behaviour and returns
the least upper bound of the resulting partial FFI traces in the complete partial ordering of
lazy lists with prefix ordering. We know this uniquely exists because we require our eval-
uate function to be monotone as a function from the clock to partial FFI traces. Finally, if
the evaluate function hits an error, then the program is said to Fail.

2.3 Compiler proofs

The objective of the compiler proofs is to show that the semantics functions of the source
and target produce compatible results. The semantics function is overloaded: there is a ver-
sion for each IL (including source and target). We annotate the functions with A and B for
compilation from ILA to ILB. The FFI state, ffi, includes an oracle specifying how foreign
function calls behave. For most compiler transitions, we can prove that the semantics func-
tions produce identical behaviours, if the original program does not Fail.2 These theorems
have the form:

�compile config prog = new_prog ∧
syntactic_condition prog ∧
Fail /∈ semanticsA ffi prog ⇒
semanticsB ffi new_prog = semanticsA ffi prog

However, for some compiler transformations (e.g., concretisation of data representa-
tions and stack concretisation), the output programs are allowed to bail out with an
out-of-memory error. In such cases, we prove a weaker conclusion of the form:

semanticsB ffi new_prog ⊆ extend_with_resource_limit (semanticsA ffi prog)

2 For each compiler phase, we assume that the source ILs semantics does not include Fail. At the top level, we
have a theorem which states that a type-correct CakeML program never includes Fail in its semantics.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 9

evaluate ([],env,s) = (Rval [],s)

evaluate (x::y::xs,env,s) =
case evaluate ([x],env,s) of
(Rval v1,s1) ⇒
(case evaluate (y::xs,env,s1) of

(Rval vs,s2) ⇒ (Rval (v1 ++ vs),s2)
| (Rerr e,s2) ⇒ (Rerr e,s2))

| (Rerr v10,s1) ⇒ (Rerr v10,s1)

evaluate ([Var n],env,s) =
if n < len env then (Rval [nth n env],s)
else (Rerr (Rabort Rtype_error),s)

evaluate ([Let xs x],env,s) =
case evaluate (xs,env,s) of
(Rval vs,s1) ⇒ evaluate ([x],vs ++ env,s1)

| (Rerr e,s1) ⇒ (Rerr e,s1)

evaluate ([Op op xs],env,s) =
case evaluate (xs,env,s) of
(Rval vs,s1) ⇒
(case do_app op (rev vs) s1 of
Rval (v,s2) ⇒ (Rval [v],s2)

| Rerr err ⇒ (Rerr err,s1))
| (Rerr v9,s1) ⇒ (Rerr v9,s1)

evaluate ([Raise x],env,s) =
case evaluate ([x],env,s) of
(Rval vs,s1) ⇒ (Rerr (Rraise (hd vs)),s1)

| (Rerr e,s1) ⇒ (Rerr e,s1)

evaluate ([Handle x1 x2],env,s) =
case evaluate ([x1],env,s) of
(Rval v,s1) ⇒ (Rval v,s1)

| (Rerr (Rraise v),s1) ⇒ evaluate ([x2],v::env,s1)
| (Rerr (Rabort e),s1) ⇒ (Rerr (Rabort e),s1)

evaluate ([Call ticks dest xs],env,s) =
case evaluate (xs,env,s) of
(Rval vs,s1) ⇒
(case find_code dest vs s1.code of
None ⇒ (Rerr (Rabort Rtype_error),s1)

| Some (args,exp′) ⇒
if s1.clock < ticks + 1 then
(Rerr (Rabort Rtimeout_error),s1 with clock := 0)

else
evaluate ([exp′],args,dec_clock (ticks + 1) s1))

| (Rerr v8,s1) ⇒ (Rerr v8,s1)

· · ·
do_app (Const i) [] s = Rval (Number i,s)

do_app (Cons tag) xs s = Rval (Block tag xs,s)

· · ·
Fig. 2. Extracts of BVL’s semantics.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

10 Y. K. Tan et al.

where

extend_with_resource_limit behaviours =
behaviours ∪
{ Terminate Resource_limit_hit io_list | ∃ t l. Terminate t l ∈ behaviours ∧ io_list � l } ∪
{ Terminate Resource_limit_hit io_list | ∃ ll. Diverge ll ∈ behaviours ∧ fromList io_list �∞ ll }
Note that this weaker form of correctness allows for a trivial compiler implemen-

tation that always outputs a program that immediately cause an out-of-memory error.
Users can, with simple experiments, convince themselves that the bootstrapped compiler
implementation does not default to such a trivial implementation.

We prove the semantics theorems using simulation theorems relating the respective
evaluate functions. At the level of evaluate functions, we prove correctness theorems of
the following form, where evaluation in the source IL is assumed and evaluation in the
target IL is proved.

�compile config exp = exp1 ∧
evaluateA exp state = (new_state,res) ∧
state_rel state state1 ∧ res
= Error ⇒
∃ new_state1 res1.
evaluateB exp1 state1 = (new_state1,res1) ∧
state_rel new_state new_state1 ∧ res_rel res res1

The evaluate functions are also overloaded at each IL. They return a new state, new_state,
which includes the FFI state, and a result, res, indicating a normally returned value or an
exception or an error. The state_rel and res_rel relations specify how values are related
from one IL to the next. For many of our proofs, exp and the compiled code exp1 will
consume the same amount of fuel and so the state_rel relation asserts that the clock values
for its two input states are equal. In some proofs, however, extra fuel needs to be added
to the clock in state1 because the compiled code uses (a finite number of) extra ticks. This
results in a correctness theorem of the following form:

�compile config exp = exp1 ∧
evaluateA exp state = (new_state,res) ∧
state_rel state state1 ∧ res
= Error ⇒
∃ new_state1 res1 ck.
evaluateB exp1
(state1 with clock := state.clock + ck) =
(new_state1,res1) ∧ state_rel new_state new_state1 ∧

res_rel res res1

The extra fuel ck required in the evaluation of exp1 is existentially quantified along with
new_state1 and res1.3 After exp1 consumes the extra ck fuel, the result states new_state
and new_state1 have the same final clock (as asserted by state_rel). Manipulation of this
existentially quantified fuel typically leads to additional complications in our proofs. Thus,
our compilation passes are designed to avoid needing extra fuel where possible.

The evaluate theorems are forward simulation theorems because the source seman-
tics is on the left-hand side of the implication, and the target semantics is on the right.

3 Fuel is used for evaluation of the compiled code; the compiler itself is proved to always terminate.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 11

Such theorems follow the intuition of the compiler writer. They are proved by induction
on the structure of evaluate for the source IL.

Since our ILs are fully deterministic, these forward simulation theorems for evaluate are
sufficient4 for proving the equivalence (or correspondence) of the observational seman-
tics at the semantics level, which includes the proof of divergence preservation. Our
divergence preservation proofs follow the style of Kumar et al. (2014) and Owens et al.
(2016).

It should be noted that the entire compiler verification could be done at the level of
evaluate functions, letting us only at the very end relate the semantics functions for the
source and target semantics. We opted for the approach where we relate semantics func-
tions for each major step in the compiler since the equations between semantics functions
are easier to compose.

Our overall correctness theorem (stated in Section 10) inherits the weaker conclusion
involving extend_with_resource_limit. A trivial compiler that always produces code that
runs out of memory would satisfy this kind of theorem. However, it is hard to prove
anything stronger when compiling to a machine with finite memory, without exposing
unwanted implementation details in the source semantics. Our correctness theorem is to
be complemented by observations that our compiler produces code that does not in fact
terminate prematurely.

2.4 Top-level correctness theorem

The top-level correctness theorem is formally stated in Section 10. Informally, this theorem
can be read as follows:

Any binary produced by a successful evaluation of the compiler function will either

• behave exactly according to the observable behaviour of the source semantics or
• behave the same as the source up to some point at which it terminates with an

out-of-memory error.

This theorem assumes that

• the compiler and machine configurations are well formed,
• the initial machine state is set up according to CakeML’s assumptions,
• the generated program runs in an environment where the external world only

modifies memory outside CakeML’s memory region, and
• the behaviour of the FFI in the machine semantics matches the behaviour of the

abstract FFI parameter provided to the source semantics.

The details of the formal statement are made complicated by our support for multiple
architectures and the interaction with the FFI.

Structure. The rest of the paper gives more details on how the compiler operates, in par-
ticular how it removes abstractions as it makes its way towards the concrete machine code

4 See the extensive discussion in Leroy (2009) regarding forward and backward simulations. In his terminology,
we generally use forward simulation for safe programs.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

12 Y. K. Tan et al.

of the target architectures. Along the way, we provide commentary on our invariants and
proofs. The description of the interaction between the verification of the register allocator
and our garbage collector, in Section 7, is given most space.

3 Early phases

The compiler starts by parsing the concrete syntax and by running type inference – two
verified phases that we reuse from the previous CakeML compiler (Kumar et al., 2014;
Tan et al., 2015).

The first few transformations of the input program focus solely on reducing the features
of the source language. Modules are removed, algebraic datatypes are converted to numer-
ically tagged tuples, top-level declarations are compiled to updates and lookups in a global
store, and pattern matches are made exhaustive and then compiled into nested combina-
tions of if- and let-expressions (which get optimised further down). Later on, after BVL, a
pass compiles the global store into an array in the heap.

The early stages of the compiler end in a language called CLOSLANG. This language is
the last language with explicit closure values and is designed as a place where functional
programming–specific optimisations (e.g., lambda lifting) can prepare the input programs
for closure conversion. We give a brief overview of CLOSLANG and its optimisations here,
and refer readers to Owens et al. (2017) for a complete discussion, including the in-depth
details of the techniques used to verify its various optimisations.

CLOSLANG is the first language to add a feature: it adds support for multi-argument
functions, i.e., function applications that can apply a function to multiple arguments at
once and construct closures that expect multiple simultaneous arguments. All previous
languages required either currying or tupled inputs in order to simulate multi-argument
functions. A naive implementation of curried functions causes heap-allocation overhead
which we reduce by optimising them to (true) multi-argument functions.

A value in CLOSLANG’s semantics is either a mathematical integer, a 64-bit word,5 an
immutable block of values (constructor or vector), a pointer to a reference or array, or a
closure. Through the paper, we use HOL4’s type definition syntax: each constructor name
is followed by the types of its arguments in Haskell style, but type constructors use postfix
application following ML style.

v =
Number int

| Word64 (64 word)
| Block num (v list)
| ByteVector (8 word list)
| RefPtr num
| Closure (num option) (v list) (v list) num exp
| Recclosure (num option) (v list) (v list) ((num × exp) list) num

A closure can either be a non-recursive closure (Closure) or a closure for a mutually
recursive function (Recclosure). The arguments for the Closure constructor are an optional

5 We made 64-bit words a primitive value type through the top-half of the compiler in order to aid compiler
bootstrapping, as described in Section 11. The lower half of the compiler uses the machine words, which are
either 32- or 64-bit words, as the value type. Note that the compiler implements CLOSLANG’s 64-bit words
regardless of the size of the target architecture.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 13

location for where the code for the body will be placed,6 an evaluation environment (values
for the free variables in exp), the values of the already-applied arguments, the number of
arguments this closure expects, and finally the body of the closure.

The arguments for Recclosure are similar but with a list of expressions and number of
arguments rather than just one number and expression. The final argument to Recclosure
is a list index, which indicates which body from the list should be used when this mutually
recursive closure is applied. The most significant difference between the Recclosure and
Closure values is that the evaluation of a Recclosure body has access to itself, for purposes
of recursion. Strictly speaking, each Closure can be represented as a Recclosure value, but
we decided to keep the Closure values for presentation and prototyping7 purposes.

Having (recursive) closure values as part of the language adds a layer of complication to
the compiler proofs, since program expressions (exp above) are affected by the compiler’s
transformations. There are different ways to tackle this complication in proofs.

For pragmatic reasons, most of our proofs use a simple syntactic approach. Our proofs
relate the values before a transformation with the values that will be produced by the code
after the transformation. Concretely, for a compiler function compile, we define a syntactic
relation v_rel which recursively relates each syntactic form to the equivalent form after the
transformation. For example,

v_rel (Closure loc1 env1 args1 arg_count1 exp1)
(Closure loc2 env2 args2 arg_count2 exp2)

is true if the environment and arguments are related by v_rel and the expressions are related
by the compiler function compile, i.e., exp2 = compile exp1. This style of value relation is
very simple to write but causes some dull repetition in proofs.

An alternative strategy is to use logical relations to relate the values via the seman-
tics: two values are related if they are semantically equivalent. We use an untyped logical
relation for CLOSLANG in some proofs (e.g., multi-argument introduction and dead-code
elimination), see Owens et al. (2017) for more details.

4 Closure conversion

Closures are implemented in the translation from CLOSLANG into a language called
bytecode-value language (BVL). We use this name because BVL uses almost the same
value type as the semantics for the bytecode language of the original CakeML compiler.
BVL’s value type is also almost identical to CLOSLANG’s value type; the difference being
that BVL does not have closure values, instead it has code pointers that can be used as
part of closure representations. CLOSLANG’s ByteVector values are transformed into byte
arrays when compiling into BVL.

6 The placement name acts as a name for the origin of the closure. Each closure creating expression can option-
ally be annotated with a numeric place name. These annotations cause the expression to tag each created
closure value with the name in the annotation. The name annotations are used in an optimisation that attempts
to figure out which closures flow where. The compiler optimises function applications that only apply closures
with one known name.

7 Often if a new optimisation can be proved correct for the simpler Closure values, then it can be made to work
for the more complicated Recclosure values.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

14 Y. K. Tan et al.

v =
Number int

| Word64 (64 word)
| Block num (v list)
| CodePtr num
| RefPtr num

BVL is an important language for the new CakeML compiler and is perhaps the simplest
language in the compiler. One can view CLOSLANG, which comes before, as an extension
of BVL with closures and one can view the languages after BVL as reformulations of BVL

that successively reduce BVL to machine code.
BVL is a first-order functional language with a code store, sometimes called a code table.

It uses de Bruijn indices for local variables. The abstract syntax for BVL is given below.
Tick decrements the clock in BVL’s functional big-step semantics. Call also decrements
the clock: its first argument indicates the number of ticks the call consumes; the ticks are
consumed after the arguments to the call have been evaluated but before evaluation enters
the body of the called code. Call’s second argument is the optional destination of the call,
where None means the call is to jump to a CodePtr provided as the last argument in the
argument list.

exp =
Var num

| If exp exp exp
| Let (exp list) exp
| Raise exp
| Handle exp exp
| Tick exp
| Call num (num option) (exp list)
| Op op (exp list)

Figure 2 shows an extract of BVL’s functional big-step semantics, i.e., functions in HOL
that define BVL’s big-step semantics. The evaluate function takes a list of BVL expres-
sions exp and returns a list of values v corresponding to the expressions. We could have
defined evaluate using mutual recursion and avoided the need for single list applications of
evaluate. We chose this style of definition for convenience of proofs: by avoiding mutual
recursion, we have one statement of the inductive hypothesis instead of two in each proof.

The exception mechanism shapes the look8 of the BVL semantics. Each evaluation
returns either a return-value Rval or raises an exception Rerr.

An exception Rerr (Rraise . . .) is produced by the Raise program expression. Running
out of clock ticks during evaluation results in Rerr (Rabort Rtimeout_error), while hitting
a type error in the program results in Rerr (Rabort Rtype_error). Most expressions pass on
exceptions that occur inside subexpressions, with Handle being the only construct that can
catch exceptions. Handle can only catch Rraise exceptions, i.e., both Rabort exceptions
cannot be caught and will always bubble up to the top level. We prove that well-typed
CakeML programs cannot produce Rtype_error.

8 The semantics could be made more reader friendly using monad syntax. However, in Figure 2, we opted for a
raw style in order to avoid too many auxiliary definitions: monad bind, raising an exception, exception handle,
and update and access functions for individual state components.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 15

The semantics of Call is the most interesting part of BVL. Call starts by evaluating the
argument expressions. It then finds the code for the called function from the code field of
the state. If the name of the called function is given explicitly in dest, then the values vs
are used as arguments, otherwise the last value in vs must be a CodePtr and all but the last
element of vs is returned as args. The value of the clock is checked before evaluation con-
tinues into the code of the called function; a too small clock value causes a Rtimeout_error.
The values of the passed arguments args are the initial environment for the evaluation of
the called function.

4.1 Closure representation

We use BVL’s Blocks and value arrays to represent closures in BVL. Non-recursive and
singly recursive closures are represented as Blocks with a code pointer and the argument
count followed by the values of the free variables of the body of the closure.

Block closure_tag
([CodePtr ptr; Number arg_count] ++ free_var_vals)

Mutually recursive closures are represented as Blocks, where the free-variable part is a
reference pointer to a value array.

Block closure_tag
[CodePtr ptr; Number arg_count; RefPtr ref _ptr]

Such arrays contain the closures for each of the functions in the mutual recursion and
the values of all their free variables. Arrays are used for the representation of mutually
recursive closures since such closures need to contain their own closure values. Arrays
are the only way to construct the required cyclic structures in BVL. The arrays used for
closures are only mutated as part of the closure-creation process.

The compilation of closure construction relies on a preliminary pass within CLOSLANG

that annotates each closure creation with the free variables of the closure bodies. The same
transformation shifts the de Bruijn indices to match the updated evaluation environment.

4.2 Multi-argument functions

The compilation into BVL needs to implement CLOSLANG’s function application expres-
sion. The semantics of CLOSLANG’s function application expression is far from simple,
since CLOSLANG allows multi-argument closures and multi-argument function applica-
tions. In particular, the semantics deals with the case where the argument numbers do
not match. Owens et al. (2017) explain our compilation strategy for and verification of
multi-argument function compilation; here we give an overview.

Each n-argument function application is compiled to code which first evaluates the
arguments and then the closure; it then checks if the closure happens to expect exactly the
given number of arguments; if it does, then the code calls the code pointer in the closure
(or makes a direct jump if the CLOSLANG function application expression is annotated
with a known jump target, which is the case for known functions). In all other cases, i.e., if
there is any mismatch between the number of arguments, the code makes a call to a library
function (also written in BVL), which implements CLOSLANG’s mismatch semantics.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

16 Y. K. Tan et al.

The semantics dictates that partial applications result in new closure values with additional
already-provided arguments. Applications that are given too many arguments – a valid
case – are split into a call to the expected number of arguments, followed by a call for
the remaining arguments. Jump-table-like structures are used to quickly find the right case
among all the combinations of possible cases. The BVL code for these library functions is
generated from verified generator functions; given a maximum number of arguments that
can be passed in one go, these generator functions will generate all of the required library
functions.

Our support for this kind of multi-argument semantics is similar to OCaml’s and relies
on the adoption of right-to-left evaluation order for application expressions. We expect
most well-written CakeML programs to use mutable state sparingly and that applied argu-
ments will usually be pure. Therefore, the evaluation order should not matter. This change
was necessary to keep the BVL code that implements multi-argument function applications
short and fast.

5 Going fully stateful

BVL programs are compiled via an IL to an imperative version of BVL called DATALANG.
DATALANG is the last language with functional-style abstract data. In DATALANG, local
variables are held in the state as opposed to in an environment, and there is a call stack.
On function calls, a subset of the local variables are stored onto the stack, and on return
they are restored from the stack. Subsequent languages, WORDLANG and STACKLANG,
mimic DATALANG in style and structure. The abstract syntax of DATALANG programs is
as follows:

prog =
Skip

| Move num num
| Call ((num × num_set) option) (num option)

(num list) ((num × prog) option)
| Assign num op (num list) (num_set option)
| Seq prog prog
| If num prog prog
| MakeSpace num num_set
| Raise num
| Return num
| Tick

In the abstract syntax, all numbers (of type num) are variable names with the exception of
the second argument to Call which is an optional target location for the call. As in BVL,
None indicates that a code pointer from the argument list is to be used as the target. The
first argument to Call is a return variable name, where None indicates that this is a tail
call. The last argument to Call is an optional exception handler. The exception handlers are
fused into Calls so that raising an exception can jump directly to the handler’s stack frame
and restore the values of the local variables from that stack frame. The finite sets of num-
bers (of type num_set) are cut-sets that keep track of the local variables that survive past
calls. These cut-sets specify which variables must be included in the stack frame at this

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 17

ϕ state= 〈
locals : v num_map;
stack : frame list;
global : num option;
handler : num;
refs : num �→ v ref;
clock : num;
code : (num × prog) num_map;
ffi : ϕ ffi_state;
space : num

〉
frame = Env (v num_map) | Exc (v num_map) num

α ref = ValueArray (α list) | ByteArray bool (8 word list)

Fig. 3. The definition of the DATALANG state.

point and specify that these variable names need to be marked as live for the garbage col-
lector, which is introduced later. Besides Call, the allocation primitive MakeSpace, which
is described in more detail below, also takes a cut-set argument since its implementation
may make a call to the GC. Similarly, Assign needs an (optional) cut-set argument because
the implementations of some operations, for example, bignum arithmetic, may internally
require subroutine calls in their implementation in WORDLANG.

DATALANG’s semantics uses the same value type as BVL and operates over a state that
is defined as a record type as shown in Figure 3. The state has a field for the local variables
which is a finite mapping9 from num to v. The stack is a list of frames where each frame
is either a normal value environment (Env) or an environment with an exception handler
value (Exc). When an exception is raised, the stack is reset to have the length of the state’s
handler field, the locals are restored, and the state’s handler field is set to be the number
stored in the Exc frame. There is a special optional global reference which in practice
points at an array containing all the global variables of the program. Furthermore, there are
fields for the references, the functional big-step semantics’ clock, the code, and the state of
the FFI. Finally, there is space field which is described below.

DATALANG is designed to support optimisation of memory allocation: a compiler pass
within DATALANG combines memory allocations (MakeSpace) in straight-line code so that
simple source-level expressions, such as ([x,4,5],true,[a]), call allocation only once.
The semantics of an allocation, MakeSpace n names, is to guarantee that there are at least n
units of space available: the semantics simply assigns n to the space field. Correspondingly,
operations such as Cons consume space equal to the length of the Block that is pro-
duced. The MakeSpace optimisation in DATALANG collects and combines instances of
MakeSpace in straight-line code. Some operations, such as bignum addition, consume a
statically unknown amount of space, which resets the available space to zero and obstructs
the MakeSpace optimisation.

9 This paper uses three forms of mappings where num is type of the keys: num → α (a normal total function in
HOL), num �→ α (a partial function with a finite domain) and α num_map (a different partial function with a
finite domain). For the purposes of this paper, one can read α num_map and num �→ α as the same.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

18 Y. K. Tan et al.

In DATALANG, the space measure is an abstract notion since there is no memory.
However, memory becomes very concrete when DATALANG is compiled into WORDLANG.
This compilation step is described next.

6 Concretisation of data representations

DATALANG sets the stage for the concretisation of data representations. DATALANG is com-
piled into a language called WORDLANG, which has an abstract syntax that at a glance looks
similar to DATALANG’s. The major difference is in the values of the semantics: DATALANG

values are of type v, whereas WORDLANG values are of type α word_loc, which are
machine words and labels. The type variable α indicates the length of the machine word.

α word_loc = Word (α word) | Loc num num

We keep the type parametric throughout most of the compiler in order to support archi-
tectures with different word sizes and maximise code reuse. Some of our proofs assume
that α is either 32 or 64. Labels, i.e., Loc n1 n2 values, have two parts: n1 is the name of the
function and n2 is the label name within function n1.

Compared with DATALANG, WORDLANG operates over a more complex state. The
WORDLANG state, a record as shown below, includes (in order) a local variable store,
floating-point registers (for forthcoming support for floating-point arithmetic), a global
variable store, a stack, a word-addressed memory, and the memory domain.

(α, ϕ) state= 〈
locals : α word_loc num_map;
fp_regs : num �→ 64 word;
store : store_name �→ α word_loc;
stack : α stack_frame list;
memory : α word → α word_loc;
mdomain : α word set;
permute : num → num → num;
gc_fun : α gc_fun_type;
handler : num;
clock : num;
termdep : num;
code : (num × α prog) num_map;
be : bool;
ffi : ϕ ffi_state

〉
We defer discussion of the GC primitive (gc_fun) and the permute oracle (permute) to
Sections 6.1 and 7.1, respectively. The remaining fields are in order: an exception handler
pointer, a clock (used in functional big-step semantics), a depth counter used for book-
keeping (its details are unimportant for this paper), a code table (looked up by function
calls), a flag controlling big-endianness, and a state for the FFI. Note that some state com-
ponents, namely mdomain, code, be, and gc_fun, stay constant throughout execution but
are carried around by the semantics as part of the state for convenience.10

10 In retrospect, these should probably have been carried around in a separate configuration record instead of the
state record.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 19

The stack is a list of stack frames of the type shown below. The first argument is an
association list mapping variable names to values. The second argument, i.e., the optional
triple of numbers, is a Some only if the corresponding frame in DATALANG is an Exc. The
first number in the triple is the handler value from DATALANG’s Exc, and the two other
numbers are the components of a Loc pointing to the code for the handler.

α stack_frame =
StackFrame ((num × α word_loc) list) ((num × num × num) option)

WORDLANG is set up to allow easy manipulation of local variables, including renaming
of variables, introduction of new variables, and parallel copying/movement of variables.
These kinds of manipulations are required for instruction selection and register allocation.

6.1 Garbage collection primitive

After concretising the data representation, WORDLANG programs operate over a finite,
word-addressed memory. Thus, it becomes necessary for us to model how stale mem-
ory can be reclaimed and reused along a WORDLANG program’s execution. In other words,
this is the first IL where we need to introduce a notion of garbage collection (and where
we implement arbitrary precision arithmetic).

The garbage collector is present in the WORDLANG state as a black-box primitive gc_fun
since it cannot be implemented as a WORDLANG program. There are two reasons for this:
functions in WORDLANG cannot inspect or update their callers’ stack frames and compila-
tion of WORDLANG programs passes through register allocation which can lead to spilling
of local variables onto the stack. Having part of the GC’s state spilled onto the stack would
cause complications, since the GC walks the stack as part of its execution. Our solution
is to avoid these complications by making the GC a special semantic subroutine that one
can call through execution of a WORDLANG command called Alloc. The GC primitive is
abstractly characterised in the correctness theorem from DATA-to-WORD, and it is removed,
i.e., implemented as a call to verified library code, in STACKLANG.

The semantics of executing WORDLANG’s GC primitive is shown in Figure 4. The GC
function is passed the roots extracted from the stack. It updates the stack with the new root
values when it completes.

We ensure that a stack swapping property holds of the WORDLANG semantics: for any
WORDLANG program, its local execution behaviour is unchanged when we swap the stack
component – as long as the new stack’s roots after enc_stack look the same. Intuitively,
this holds because the only semantic primitive that directly inspects the stack is the GC,
and its behaviour is unchanged when it sees the same roots.

Why is the GC primitive a component of the WORDLANG state? The semantics needs
to know what garbage collector to use as the CakeML compiler supports both a genera-
tional and non-generational versions, and each collector is parametrised by the compiler
configuration which determines how data is represented. One could bring in all the neces-
sary compiler configurations into the semantics of the WORDLANG IL. However, it seemed
cleaner to just carry around one function that is the garbage collector and let the proofs
constrain the choice of this function based on the compiler configurations.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

20 Y. K. Tan et al.

gc s =
case s.gc_fun (enc_stack s.stack,s.memory,s.mdomain,s.store) of
None ⇒ None

| Some (roots′,m′,st′) ⇒
case dec_stack roots′ s.stack of
None ⇒ None

| Some stack′ ⇒
Some (s with 〈stack := stack′; store := st′; memory := m′〉)

enc_stack [] = []
enc_stack (StackFrame l _::st) = map snd l ++ enc_stack st

Fig. 4. The semantics of invoking WORDLANG’s GC.

6.2 Value representation and heap invariant

The compiler from DATALANG to WORDLANG is set up so that the only interesting thing
it does is change the value representation. Even so, it is non-trivial to verify. The proofs
about the value representation are made complicated by the big leap in abstraction level,
the fact that WORDLANG can run a garbage collector, must implement arbitrary precision
arithmetic (bignums), and the flexibility we want in the data representation.

The details of the value representation’s definition are dictated by the presence of the
garbage collector verification. We adapted the original CakeML compiler’s verified copy-
ing collector (Myreen, 2010), which is defined at an abstract level in order to maximise
potential for reuse. The invariant relating DATALANG’s values with WORDLANG’s machine
words and memory is phrased as an instantiation of the garbage collector’s abstract
datatypes.

Unfortunately, the layered structure of this definition, which makes the proofs manage-
able, also makes the definitions too long to reasonably fit into this paper. The lengthy
definition is the topic of a forthcoming long version of our paper on CakeML’s latest
garbage collector (Ericsson et al., 2017). However, an important abstraction in the invari-
ant used for the DATA-to-WORD compiler proof is memory_rel, which relates the reference
store and space of a DATALANG state s, with the global store, memory, and big-endianness
(be) of a WORDLANG state t, as well as a list, value_pairs, of pairs (v,w) with the first
component a value from DATALANG and the second a value that fits into a local variable in
WORDLANG (i.e., a α word_loc).

memory_rel config s.refs s.space t.store t.memory
t.mdomain t.be value_pairs

Here s.space is a lower bound: memory_rel is true for space n if the heap has space for at
least n α word_loc values.

We opt for an informal description of the specifics of the representation of DATALANG’s
values in WORDLANG. Our convention is to use word values with a least-significant bit of
zero for values that the GC is not to treat as pointers (i.e., small numbers, empty Blocks,
and code pointers). We chose zero because it allows addition and subtraction of small
numbers to be performed directly on the word values. Similarly, we arrange the assembler

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 21

to two-byte align all labels so that Loc values are all represented (further down) with
zero as the least-significant bit. This way the garbage collector treats code pointers as
small integer values, and the collector naturally does not confuse11 code pointers with data
pointers.

Pointers can carry information. Each pointer has a least-significant bit of 1, followed by
a length field, a tag field, some zero padding, and finally the actual address of the pointer.

0 . . . 00110011101 00 01 010 1

length
tag

padding
address value marker

Example pointer value:

The lengths of the padding-, length-, and tag-fields are configurable and can be set to
zero, i.e., removing them from the representation. The padding helps remove extra shift
instructions. Each pointer dereference uses shifts to remove the extra information around
the pointer value. One (logical) right shift deletes the extra information. An additional left
shift is required to word align the address value in case there are not enough zero padding
bits (3 for 64-bit and 2 for 32-bit) for the first shift to leave behind.

The length and tag fields are used for storing information about the object pointed
to. These fields are used in the implementation of DATALANG primitives used by pattern
matching: if the tag and length values to be checked are small enough to fit in these fields,
then no pointer dereference is needed. Values that exceed the capacity of the small length
and tag fields of pointers are represented as a bit pattern of all ones. For example, if the tag
field is 2-bit long, then tag value 1 is represented as binary 01, tag value 2 is represented
as binary 10, and all tag values greater than 2 are represented in binary as 11. A tag field
of all ones indicates that the tag value did not fit in the field.

Currently, elements on the heap are represented by a header word followed by the pay-
load of the heap element. The header contains information indicating what kind of heap
element the payload is. For example, the header of a Block element

• tells the GC whether the payload is garbage collectable values and
• contains the tag and length of the Block.

At the time of writing, we are considering dropping the header from the memory rep-
resentation in cases where the tag and length fields of pointers carry all the necessary
information. Such an optimisation would save space for many common constructors, for
example, list-cons is likely to be represented as two words in memory as opposed to
the current three. However, the more space efficient representation might cause certain
operations to compile to slightly slower code.

11 In our set up, the GC must be able to tell the code pointers and data pointers apart because it can encounter
them in the same situations. This can be seen from the is BVL’s value type v where the CodePtr and the
Block are both present and can be mixed. At the level of WORDLANG, CodePtr values become Loc values
and each non-empty Block is accessed using a data pointer.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

22 Y. K. Tan et al.

6.3 Implementing bignum arithmetic

Arbitrary precision arithmetic is implemented in the DATA-to-WORD compilation pass. On
the DATALANG side, we have mathematical integer values, while in WORDLANG, all val-
ues must fit into machine words or memory. For efficiency, we distinguish between small
integer values that fit inside a machine word and large integer values that do not. In our
implementation, small integers are kept directly as machine words in local program vari-
ables, while large integers (bignums) are represented as pointers to a memory location
which stores the “digits” of the large integer (in this context, each “digit” is a machine
word).

The fact that a value can either be a pointer or a direct value forces the compiler to
generate code which works for any mix of these representations. Here, it is crucial that
we can make use of bit-level trickery in the implementations in order to produce code
with acceptable performance. Arithmetic on small integer values is compiled directly to
word arithmetic, except if an overflow occurs, in which case additional code produces
the corresponding in-memory bignum representation. For the cases where large integers
are involved, the generated code jumps to library code that implements general bignum
arithmetic. This library code, which has been proved correct, is attached as a WORDLANG

program to the top of the program being compiled. Subsequent compilation passes in
WORDLANG and beyond treat the library code identically to any other part of the pro-
gram. Our verified bignum library has its roots in our previous work on verified bignum
arithmetic (Myreen & Curello, 2013).

7 Low-level optimisation steps

After removing the data abstraction, we land in WORDLANG. Many of our low-level optimi-
sations and target-specific compilation steps are performed here. In this section, we discuss
three important WORDLANG compilation steps: instruction selection, a static single assign-
ment (SSA)-like variable transformation, and register allocation. Other optimisations
performed in WORDLANG can be seen in Figure 1.

In our context – a functional language with a copying garbage collector – verifying
register allocation is more complicated than usual, mostly due to our design decision D5 as
described in Section 2.1. The GC affects the situation via a combination of circumstances:

• The GC looks for roots in the stack as part of its operation.
• The order in which these roots are processed affects the output of our copying GC.

A new order can result in a different output.
• The exact order of the roots on the stack is determined by the register allocator when

it gives names to spilled variables.
• The verification proof for the register allocator does not have direct access to

invariants from the DATA-to-WORD proof, which imply that any order will do.

On the other hand, we also only want to perform register allocation after making several
low-level code optimisation steps and certainly after SSA form and its related optimi-
sations. We start by explaining a semantic device, which we call a permute oracle, to
communicate that any order picked by the register allocator will do for the overall proof.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 23

7.1 Permute oracle

The WORDLANG semantics has a component called the permute oracle which allows us to
influence the order in which the GC primitive sees its roots. Briefly speaking, we use this
oracle to control variable orderings on the stack in WORDLANG so that we can decouple
reasoning about an abstract GC function from its concrete implementation in STACKLANG

(the language after WORDLANG). Formally, a permute oracle is an infinite sequence of
bijections on the natural numbers (i.e., WORDLANG variable names). The HOL type of the
permute oracle is num → num → num, as can be seen under permute in Section 6.

Stack frames in WORDLANG are created when a caller function needs to give up control
to its callee: it saves the local variables it needs onto the stack and pops them off when
control is returned. Calls to the GC are treated similarly – this means that the GC only needs
to look at the current stack for the root set when it is called rather than all the live registers.

It is important to note that these these stack frames are still relatively abstract: they
do not yet contain the spilled variables. In WORDLANG (and DATALANG), they are simply
used to store the local variables that need to be saved across a call. The more conventional
notion of stack frames is introduced later when we enter STACKLANG.

The semantics uses the following functions to push a stack frame onto the stack.

env_to_list env permute =
let mover = permute 0;

permute = (λ n. permute (n + 1));
l = toAList env;
l = sort key_val_compare l;
l = list_rearrange mover l

in
(l,permute)

push_env env handler s =
let (l,p) = env_to_list env s.permute
in
case handler of
None ⇒ s with 〈permute := p; stack := StackFrame l None::s.stack〉

| Some (_,_,h) ⇒
s with
〈permute := p; stack := StackFrame l (Some (s.handler,h))::s.stack;
handler := len s.stack〉

To create a stack frame, the locals are first reduced down to the set of variables that need to
be saved, then they are sorted by variable name to get a list of pairs of variable names and
their values. The head of the permute oracle is popped and used to permute this sorted
list by index (using the list_rearrange function), and the resulting list is added to the
WORDLANG stack as a new stack frame. (The with keyword above denotes record update.)
If there is an exception handler, this is pushed via the second argument of StackFrame.

The presence of this oracle component in WORDLANG is best motivated by considering
the adjacent correctness theorems. For brevity, we only show the general shape of these
theorems. We also annotate each of the evaluation and compilation functions with the first
letter of the associated languages, for example, D for DATALANG.

For compilation from DATALANG into WORDLANG (DATA-to-WORD), we want to show
that it is correct regardless of the order in which the GC visits the roots. This is controlled

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

24 Y. K. Tan et al.

by the order in which values appear on the stack and, therefore, by how we permute the
values when creating stack frames. Hence, in the theorem below, we prove that DATA-to-
WORD is correct for all choices of permute oracles perm.

�evaluateD (prog,s) = (res,s1) ∧
res
= Some (Rerr (Rabort Rtype_error)) ∧
state_rel c l1 l2 s t [] locs ∧ t.termdep > 1 ⇒
let (res1,t1) =

evaluateW

(compileDtW c n l prog,t with permute := perm)
in
. . .

On the other hand, when we compile from WORDLANG into STACKLANG (WORD-to-
STACK), we need to concretely implement the stack. One critical step of this concretisation
is to give a fixed ordering to variables on the stack; this allows us to generate fixed lookups
into the stack and fixed code for the GC implementation later. Hence, we have to pick some
fixed permute oracle and prove that WORD-to-STACK is correct with respect to it. In the
following theorem, we choose the oracle to be the infinite sequence of identity functions,
i.e., K I, where K and I are the usual combinators.

�evaluateW (prog,s) = (res,s1) ∧ res
= Some Error ∧
state_rel k f f ′ s t lens ∧ s.permute = K I ∧ . . . ⇒
∃ ck.

let (res1,t1) =
evaluateS

(compileWtS prog bs (k,f ,f ′),
t with clock := t.clock + ck)

in
. . .

Finally, the oracle allows us to reason about WORDLANG to WORDLANG (WORD-to-
WORD) code transformations where variables are renamed. Without the oracle, renamed
variables may not be sorted in the same order when creating stack frames. In that case, the
GC will not see the roots in the same order, and its behaviour will be altered. By choosing
the oracle so that the values of stack frames always line up, we can avoid explicit reasoning
about the GC in our proofs for these kinds of transformations.

�. . . ⇒
∃ perm′.

let (res,rst) =
evaluateW (prog,st with permute := perm′);

(res′,rcst) =
evaluateW

(compileWtW t k a c ((name_num,n,prog),col),
st with permute := perm)

in
. . .

Given this intuition and considering the adjacent correctness theorems, we arrive at
a slightly surprising form for correctness theorems for WORDLANG transformations that
change variable names (shown above). We shall prove that for any oracle perm used to
evaluate the program after the transformation, there exists some oracle perm′ such that

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 25

the program semantics were preserved with respect to the untransformed program. This
is useful in two ways: (1) multiple transformations that have correctness theorems of this
form can be composed to give a correctness theorem with the same form and (2) it connects
with the correctness theorems for the adjacent languages.

The reasoning for the second point is as follows: for the oracle perm, we picked in
WORD-to-STACK compilation, the WORD-to-WORD correctness theorem gives us some ora-
cle perm′ such that the WORD-to-WORD transformations preserve program semantics with
respect to perm. Since the DATA-to-WORD compilation works for any oracle, this perm′

can be used to instantiate its correctness theorem when we compose all of three correctness
theorems. Note that the permute oracle is a local mechanism to connect the correctness the-
orems of these passes; after composing the theorems, the permute oracle does not appear
in our top-level correctness theorem.

At first glance, the permute oracle seems rather cumbersome to work with. Indeed, it
would be a lot of verification effort to prove the aforementioned theorem with respect to
the oracle for every WORDLANG compilation step. Fortunately, most of the optimisations
that we are interested in can be proved without the generality of the existentially quantified
oracle provides. In those cases, picking perm′ = perm in the oracle-style theorem presented
above effectively reduces it to a forward-style compilation theorem. However, we do need
the oracle for some proofs, in particular, for our register allocator whose permute oracle
proof we describe next.

7.2 Register allocation

The register allocator compiles from an infinite set of temporary variables down to the
finite set of registers available in the target machine. At a high-level, this proceeds in
two steps: we first perform liveness analysis to find variables that cannot be assigned to the
same registers, then we allocate variables to registers following those constraints. The latter
step is done heuristically using a graph colouring algorithm, with the aim of minimising
the number of spilled variables and maximising the number of coalesced moves.

Since the semantics of WORDLANG does not distinguish registers from temporaries, the
allocator implicitly adopts special naming conventions for variables, and we separately
prove that it generates syntactically correct outputs for the next phase of compilation. For
example, even variable names of the form 2n where n is less than the number of registers
refer to the nth target register. This syntactic separation also lets us easily force the alloca-
tor to set up syntactic calling conventions. We use it to ensure that all caller-save variables
are appropriately assigned to stack positions when making function calls and also that
callee arguments are passed inside the appropriate registers (some may also be passed on
the stack if there are too many of them). To prevent these conventions from degrading the
performance of the allocator, we also introduce extra temporaries and moves between them
and the appropriate registers/stack positions so that the register allocator can potentially
perform some coalescing.

There are two important simplifications in our register allocator:

1. The control flow graph of its input programs always forms a directed acyclic graph.
Control flow graphs form directed acyclic graphs in WORDLANG because all loops

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

26 Y. K. Tan et al.

in CakeML are written using recursion and control flow within functions can only
flow forward.12

2. We assume that two registers are reserved for compiling stack accesses later in the
compiler.

The first simplification allows us to use a bottom-up liveness analysis rather than
more complex fixed-point iterations, for example, Kildall’s algorithm as used by
CompCert (Leroy, 2009). A similar simplification was also used by Chlipala (2010). The
second simplification means that the compiler is not required to rewrite code to handle
spills, for example, by inserting memory loads/stores, in the middle of register allocation.
This allows us to decouple register allocation from stack allocation later in the compiler
and greatly simplifies the verification of both phases. However, it means that our alloca-
tion is sometimes less efficient because some unnecessary spills might occur due to having
fewer registers available.

Since we use a graph colouring–based allocator, we refer to the mapping from tem-
poraries to registers as a colouring function and the output after register allocation as a
coloured program. The key insight is that we can first abstractly characterise colouring
functions that satisfy the constraints generated by the liveness analysis and then separately
prove that the graph colouring algorithm generates a colouring function satisfying this
property. The main advantage here is that we only need to reason about the permute oracle
in the proof of the former.

7.2.1 Correctness of liveness analysis

Liveness analysis generates a set of live/clash sets at each program point. These sets are
exactly the variables that cannot be assigned to the same register (or stack location) since
their values might be simultaneously live. The abstract characterisation of suitable colour-
ing functions, f , thus checks that it is injective over all the live sets generated in this way.
Given such a function, we can apply it to a program by recursively colouring the pro-
gram’s temporaries with it. The full correctness theorem including the permute oracle is
shown below.

�colouring_ok f prog live ∧ state_rel st cst ∧
loc_rel f (dom (get_live prog live)) st.locals cst.locals ⇒
∃ perm′.

let (res,rst) = evaluateW (prog,st with permute := perm′)
in
if res = Some Error then true
else
let (res′,rcst) = evaluateW (apply_colour f prog,cst)
in
res = res′ ∧ state_rel rst rcst ∧
case res of
None ⇒ loc_rel f (dom live) rst.locals rcst.locals

| Some v ⇒ rst.locals = rcst.locals

12 All tail-recursive calls are optimised to direct jumps; either to a fixed-offset when the target is known or to a
register value otherwise. However, the compiler currently does not go as far as inlining tail-recursive functions
as while loops or similar.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 27

One can immediately see several features of a standard forward-style compiler correct-
ness proof. The predicate colouring_ok abstractly characterises f being injective over the
livesets of prog. The predicate loc_rel checks that the local variables of the two states
are related under the colouring function but only on the variables that are currently live.
Finally, state_rel checks that st, cst are equal on all other state components that are not
affected by the colouring. We prove, inductively, that these two state invariants are main-
tained across the program in the conclusion of the theorem, except when the original
source program had a type error (res = Some Error). Importantly, res = res′ in the con-
clusion shows that the two programs return the same result before and after colouring by
the colouring function.

The only thing different from a standard inductive proof is that we need to choose a
permute oracle, i.e., we need to show that whenever we create a stack frame during the
evaluation of the coloured program, there exists a permutation of the original stack frame
so that its values are ordered in the same way.

The crucial argument is as follows: we assumed that f is injective and, in particular,
that it is an injection between the variable names in the coloured and original stack frames.
The state invariants imply that the value associated with each variable matches up across
the colouring. Moreover, the variables kept in stack frames are determined by cut-sets,
whose cardinality is the same in both coloured and original programs. Therefore, f implies
the existence of a bijection between the positions of the two stack frames that forces their
values to line up. An illustration of such a bijection is shown by the arrows in the example
below. This bijection is precisely the permute oracle that we need to construct for the stack
frame.

x 5

y 3

z 2

Original frame

f (z) 2

f (x) 5

f (y) 3

Coloured frame

7.2.2 Extracting clash sets

Having abstractly characterised appropriate colouring functions, we next extract from the
input WORDLANG program a simple tree-like control flow structure, where each instruction
is reduced to the list of variables that it reads and writes. The tree structure is a convenient
interface for the upcoming graph colouring step. It also helps decouple our graph colouring
allocator from the rest of the CakeML development: the allocator can perform allocation
on any program specified by only its read/write and control flow structure.

Correspondingly, we define and verify a colouring function checker that checks the
aforementioned injectivity property over this tree. Unlike the abstract characterisation, this

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

28 Y. K. Tan et al.

intermediary checker is designed to evaluate efficiently in the logic. We will explain how
this intermediary is used later in Section 11. The verification of this checker shows that
any colouring function that passes this checker also satisfies colouring_ok.

7.2.3 Graph colouring register allocation

Finally, we implement a graph colouring register allocator that produces the actual colour-
ing function from a clash graph. The clash graph is extracted from the aforementioned
tree-like program structure.

A simple trick is used here to reduce the verification effort. Many classical graph colour-
ing algorithms operate in two steps. First, the vertices of the input graph are ordered
in some way, and then, a second phase colours the vertices in that order. The trick is
to observe that only the second phase needs to be verified, i.e., given any input order,
the colour selector always picks colours such that none of the vertices have clashing
colours.13

Using this trick, we verified three increasingly complex variants of graph colouring
algorithms and heuristics, including a version of IRC-based allocation (George & Appel,
1996). Since the IRC allocator is relatively slow, a flag controls which of these allocators
is used during compilation.

The correctness theorem here is connected back to our semantics theorem by showing
that all the vertices in any clique of the clash graph are given distinct colours by the colour-
ing function produced and then showing that this implies the required injectivity property
because all clash sets correspond to cliques in the graph.

7.3 SSA form and instruction selection

Register allocation performance can be further improved by reducing the live ranges of the
input program’s variables. We achieve this by performing an SSA-like pass before register
allocation. The resulting program is not strictly in SSA form because our semantics do
not have φ-functions. Instead, we implicitly perform φ-elimination (replacing φ-functions
with variable movement) directly inside the SSA pass. This retains the intended benefit
of live range splitting for our variables, without the full verification cost of specifying a
non-deterministic IL with φ-functions.

Since this transformation renames variables (like register allocation), we again have to
provide permute oracles. The insight here is, similarly, to show that the SSA mapping
defines an injective function from original variable names to variable names after SSA.
This gives us a way to construct the bijection as required in the oracle style proof.

Instruction selection is another important pass within WORDLANG. It flattens arbi-
trary depth expression trees down to a sequence of instructions implementing that tree.
The instructions need to make use of extra temporaries, but since we have an SSA
pass, it uses the same temporaries throughout and relies on the SSA pass to appro-
priately rename the temporaries. We use a greedy maximal-munch instruction selector
that is parametrised by the target architecture’s constraints, for example, whether it only

13 We also verify that it generates the syntactic properties we need.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 29

allows two-register instructions, and the bounds on allowed memory operation constants.
Additional expression-based optimisations are also performed within the phase, for exam-
ple, constant folding. Unlike the two aforementioned passes, this pass does not perform
any variable renaming. Instead, it just introduces an extra temporary and so its correctness
theorem does not need to mention the permute oracle. The correctness theorem shows that
the sequence of instructions picked for each expression correctly implements that expres-
sion and that WORDLANG programs are invariant to extra temporaries not mentioned in
the program. As we have seen, this forward simulation-style proof is just a special case
of the permute oracle-style theorem and so we can easily compose it with the other two
correctness theorems.

7.4 Compiling multiple code table entries

All of the aforementioned WORDLANG compilation passes are performed in an intra-
function manner without crossing function call boundaries, i.e., we can perform instruction
selection, SSA, and register allocation for each code table entry separately. Therefore,
the complete compilation pass in the CakeML compiler simply maps the aforementioned
passes over the entire input code table.

Here, we run into another difficulty with the permute oracle: the theorems that we have
proved show that an oracle exists when executing an individual program with respect to a
fixed code table. This oracle might well be different between different code table entries
since, for example, each entry may have a completely different colouring function. Thus,
the local theorem does not immediately tell us that a single global oracle exists when
the entire code table is transformed. An additional proof is required to construct a global
permute oracle for any program after we have transformed the code table.

The essential correctness argument is as follows. Suppose we are currently evaluating a
compiled WORDLANG program prog with its own permute oracle perm. At the point where
another compiled code table entry prog′ is called, we have used some finite prefix p of
perm = p + q. We use + here for append on infinite sequences.

Furthermore, prog′ has its own permute oracle perm′ guaranteed by its local compila-
tion correctness theorem. Now, if prog′ diverges, we simply use p + perm′ as the oracle.
Otherwise, prog′ converges, and it has used some finite prefix p′ of perm′ = p′ + q′. Then,
we can construct p + p′ + p′′, where p′′ is the oracle that we obtain from inductively
repeating this argument for the rest of the evaluation of prog.

Note that an alternative way to verify this would have been to generalise all of our
permute oracle-style theorem to account for compiling the entire code table. However,
such an approach would essentially have to repeat the above reasoning each time and so
we prefer to prove it only once globally after all the local theorems have been proved.

8 Compilation of stack and exceptions

The overall aim of STACKLANG, as its name suggests, is to support a concrete implemen-
tation of the stack. The STACKLANG transformations also implement the GC primitive as
STACKLANG code.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

30 Y. K. Tan et al.

8.1 An array-like stack

The translation from WORDLANG into STACKLANG compiles the abstract stack of
WORDLANG into an array-like stack. Here, we implement the naming conventions used
by the register allocator: WORDLANG names corresponding to stack variables are compiled
into element lookups in stack frames, and those corresponding to registers are compiled
into registers. In addition, we compile the parallel moves generated within WORDLANG

down to single move instructions in STACKLANG.14

Unlike stack frames in WORDLANG, stack frames in STACKLANG allocate enough space
for all of the stack variables that may be used inside a function body. However, not all of
these stack positions will be live at every call from the body, and, in particular, it would be
inefficient to sanitise all of the non-live positions in stack frames on every function call.
Therefore, caller functions always write a number, represented as a single word, into the
top entry of their stack frames.15 This number is used to index into a bitmap table, which
is separate from the stack, to obtain a bitmap that describes which positions in the stack
frame are live at this point in time. When the GC is called, it looks up and decodes the
bitmap for each stack frame and then uses bitmap to consider only the variables that are
live in the stack frame. These live positions correspond exactly to the original entries of
the WORDLANG stack frames; recall that these entries were saved onto the stack so that the
caller can restore them after its callee returns control.

stack

0010110101010

bitmaps

These bitmaps are designed to be as compact as possible. A bitmap can consist of multi-
ple words. Each word except the last has its most significant bit set to one; in the last word,
the most significant one bit represents the end of the frame being described. The payload
of the bitmap, consisting of the remaining bits, has the same length as the length of the
stack frame it describes. Each position in the bitmap tells the GC whether the correspond-
ing index in the stack frame contains a live variable that the GC needs to process. Bitmaps
are shared between call sites that happen to have the same bitmap layout.

The following diagram illustrates how the details of bitmaps are set up. Note that this
illustration shows the most significant bit furthest to the right. The GC walks these bitmaps
from left-to-right, from least-significant bit to most-signifiant bit. This illustration pretends
that words are 8 bits. In reality, they are 32 or 64 bits.

14 Our implementation and proof of the parallel moves compilation step is a HOL formalisation of Rideau et al.
(2008).

15 Our compiler writes such a bitmap-index number to the stack at every non-tail call. In contrast, GCs for
conventional implementations tend to use return addresses stored in the stack to find the relevant bitmaps. At
the time of writing, we are looking into switching to the conventional return-address-based indexing because
that would make function calls a bit faster.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 31

. . . | 00000101 | 00100100 | . . .

pointer live var

continues last word
end of frame

The STACKLANG semantics represents the bitmaps as a state component separate from
the array-like stack which is also separate from the data heap. The bitmaps are moved into
the state’s memory component by a later transformation (Section 8.3).

In addition to concretising stack variables, the WORD-to-STACK compiler also concre-
tises the exception mechanisms. Stack frames with exception-handling information are
converted to two stack frames: one for the variables part and one small frame for the han-
dler information. The code for raising an exception rewinds the stack by simply assigning
a stored value to the stack pointer and jumping to a stored code pointer. Installing excep-
tion handlers involves storing information about the current handler onto the stack before
making a normal call to a function that holds the body of the handler expression.

The main verification difficulty in this step is to set up the appropriate state invariant
between the abstract and concrete stacks. Our technique reconstructs an abstract stack (and
local variables) from the concrete stack and then defines a stack invariant between the two
abstract stacks.

8.2 Implementation of the GC primitive

STACKLANG’s array-like stack and separate bitmap store provide a convenient level of
abstraction for implementation and verification of the GC primitive. A simple compiler
phase replaces every call to Alloc with a call to a library function, which we prove imple-
ments the GC. The GC implementation is parametrised by the data configuration specified
in the compiler configuration.

We equip the state of the semantics with a switch which determines whether calls to
the GC primitive in STACKLANG’s state are allowed. We prove that the GC implement-
ing transformation allows us to turn the switch off, forbidding calls to Alloc thereafter.
We refer the interested reader to Ericsson et al. (2017), which describes the CakeML
generational copying garbage collector and its proof in detail.

8.3 Moving the stack and bitmaps into memory

The next transformation moves STACKLANG’s stack and global variable store into memory.
At the same time, the bitmaps are moved into a read-only data section. We assume that the
bitmaps are correctly loaded into the data section when the program is executed.

Operations that interact with each of these primitive state components are imple-
mented by one or two straightforward assembly instructions. This transformation turns off
semantic switches, like the one for the GC primitive mentioned above. The result of the
STACKLANG transformations is a structured program where only machine-instruction-like
operations are permitted.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

32 Y. K. Tan et al.

9 Compiling to multiple targets

Our compiler targets concrete machine code for multiple targets and supports a FFI. This
section explains the final phases of the compiler and how the target-specific details are fac-
tored in. For more details concerning our target models, for example, how each assembly
instruction is encoded down to bytes for a specific target, we refer the reader to Fox et al.
(2017).

9.1 Abstract machine instructions

The compilation from DATALANG to WORDLANG is the first phase that reveals details spe-
cific to the target. This phase introduces the size of the machine words (either 64 or 32 bit)
but is otherwise target independent.

The instruction selector, which runs right before register allocation, is the next phase
to be affected by the target architecture. The instruction selector compiles WORDLANG’s
expressions into instructions of the datatype shown in Figure 5. The FP constructor is part
of an ongoing effort to add floating-point support in CakeML.

The instructions that each target supports are a subset of these, for example, no real target
allows arbitrary-sized constants in the immediate operands on arithmetic instructions. It is
the job of the instruction selector to pick instructions that are acceptable for the target
architecture. Each target architecture is described by a record with information about the
target. This information is included in the compiler configuration.

After instruction selection, the register allocator picks register names and stack positions
that fit within the number of registers allowed by the target. We chose to use our own
naming schemes and calling conventions for most of the compiler in order to maintain
uniformity throughout the interesting parts of the compiler.

The target-specific renaming of registers is performed as a STACKLANG-to-STACKLANG

transformation, which occurs just before the compiler translates STACKLANG programs
into a flat labelled assembly language. This renaming is no more than an application of
a bijective renaming function to the names of the STACKLANG registers. The mapping
ensures, for example, that CakeML’s return address register (zero) gets mapped to the
corresponding register of the target, for example, register 14 on ARM. By the x86-64
calling convention, the return address is passed on the stack. The CakeML compiler ignores
this convention internally but adheres to it when calling external functions through the FFI.

9.2 Labelled assembly language

We use a flat labelled assembly language, called LABLANG, as a stepping stone between
reduced STACKLANG and concrete machine code. This assembly language has abstract syn-
tax shown in Figure 6. A LABLANG program consists of a list of sections (α sec). Each
section has a name and contains a list of assembly lines (α line). Each line is either
a label (Label), a simple assembly instruction (Asm), or a labelled assembly instruction
(LabAsm).

Each line includes fields that can hold information about the byte encoding of the line.
Label lines Label l1 l2 l mention the name of the label (l1, l2) and have a length l. This length

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 33

α inst =
Skip

| Const num (α word)
| Arith (α arith)
| Mem memop num (α addr)
| FP fp

memop = Load | Load8 | Store | Store8

α addr = Addr num (α word)

α arith =
Binop binop num num (α reg_imm)

| Shift shift num num num
| Div num num num
| LongMul num num num num
| LongDiv num num num num num
| AddCarry num num num num
| AddOverflow num num num num
| SubOverflow num num num num

cmp = Equal | Lower | Less | Test | NotEqual
| NotLower | NotLess | NotTest

binop = Add | Sub | And | Or | Xor

α reg_imm = Reg num | Imm (α word)

Fig. 5. The instruction datatype.

field is non-zero if padding is required to align the value of the label to an even machine
address. Certain labels need to be placed at even machine addresses in order for all code
pointers to have their least-significant bit set to zero so that the garbage collector does not
mistake code pointers for pointers to heap data. The simple (Asm) and labelled assembly
lines (LabAsm) have a length field that simply records the length of their concrete byte
encoding (8 word list).

9.3 Removal of tick instructions

Before LABLANG programs are converted to concrete machine code, they go through a
simple transformation that removes all skip instructions. Why are there skip instructions
in the code at this stage of the compiler? The answer is that skip instructions are the result
of compiling STACKLANG’s Tick instructions into LABLANG. Tick instructions are a side
effect of using a functional big-step semantics (Owens et al., 2016). All compiler trans-
formations thus far have produced code that ticks as much or more than the code before.
Some transformations, such as function-inlining, introduce Tick expressions that artifi-
cially ensure generated programs tick more than the programs they were generated from.
By removing the skip instructions in LABLANG, we remove the artificial ticks.

The most interesting aspect of this proof is that it is the only proof we have that
goes against the direction of compilation: we prove that adding back the removed skip
instructions cannot change the observational semantics of the transformed program.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

34 Y. K. Tan et al.

α sec = Section num (α line list)

α line =
Label num num num

| Asm (α asm_or_cbw) (8 word list) num
| LabAsm (α asm_with_lab) (α word) (8 word list) num

α asm_with_lab =
Jump lab

| JumpCmp cmp num (α reg_imm) lab
| Call lab
| LocValue num lab
| CallFFI string
| Install
| Halt
lab = Lab num num

Fig. 6. LABLANG abstract syntax.

9.4 Concrete machine code

The compiler ends with a translation of LABLANG programs into concrete machine code.
The transformation starts by encoding all instructions in the LABLANG program using an
encoding function from the target configuration. It then enters an assembly loop which
computes the location of all labels and re-encodes all jumps and other label-dependent
instructions.

The encoders may emit jump instructions of different lengths, depending on the precise
jump distances required. Increasing the length of a jump encoding can, in turn, invalidate
the jump distance for other jumps and so we perform the label computation and jump
encoding steps in a loop. In this way, our assembler effectively performs a limited form of
branch relaxation, where it optimistically starts with shorter jump encodings before moving
to longer ones if required. We note that this loop can only increase the length of jump
encodings, and thus, it terminates because every jump has a maximum encoding length.

The instruction encodings are stored in the syntax of the LABLANG program. On exit
from the loop above, the compiler checks that all instructions (jumps in particular) are
encodable with the assigned arguments (e.g., jump lengths). If they are not encodable,
then the compiler returns an error. Otherwise, the compiler returns a list of bytes that is the
concatenation of all byte-list annotations in the LABLANG program.

9.5 Target semantics

The correctness of the LABLANG-to-target compiler is proved with respect to the target
semantics. The target is given a functional big-step semantics with evaluate and semantics
functions similar to the languages above. The evaluate function for the target is split into
two layers. First, we have the target instruction-set-architecture’s next-state function and
state type. On top of this, we define a second layer which is the evaluate function that
executes the next-state function in the presence of an interference oracle and the FFI inter-
face. The definition is too long to be shown here, so we explain it informally. The evaluate
function operates as follows:

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 35

• If the clock has hit zero, exit with a timeout.
• Decrement the clock.
• Read the program counter’s value pc from the machine state.
• If pc is a memory address within the region for the generated machine code, then

execute the target’s next-state function followed by an environment interference
function (which is allowed to change any state outside of the CakeML processes
registers and memory).

• If pc is the exit address, then stop; return success if the return value is 0, otherwise
raise resource-bound-hit.

• If pc is an FFI entry point, then execute the FFI semantics according to the cur-
rent FFI state, followed by an application of an FFI interference oracle which can
arbitrarily change the state of the caller-saved registers, etc.

• In all other cases, fail.

The environment interference oracle is run in between every target machine instruction; it
can arbitrarily update parts of memory that are irrelevant to the CakeML process. We have
such an oracle to model the interference of an operating system, which can interrupt and
later restore the CakeML process’s execution at any time.

9.6 Correctness of the assembler function

We prove that all well-annotated LABLANG programs (i.e., ones that have passed the exit
condition for the loop described above, Section 9.4) will flatten to a byte list that executes
on the target machine with an equivalent observable semantics.

In order to make this proof manageable, with support for multiple targets, we decoupled
the target-specific proof from LABLANG by having another abstraction layer. We define
the following abstract syntax for non-labelled assembly instructions and prove for each
target that any target-specific encoding of these will produce a simulation of the abstract
instruction using the target machine’s next-state function and environment interference
oracle. The environment oracle comes into play here because some abstract instructions
are encoded using multiple instructions in the target architecture. For example, loading a
large constant requires some target- and constant-dependent number of instructions: 1–6
for MIPS; 1–4 for RISC-V; 1–4 for ARMv8; 1–2 for ARMv6; and just one for x86-64.
The environment interference oracle is allowed to alter the state midway through this
execution.

α asm =
Inst (α inst)

| Jump (α word)

| JumpCmp cmp num (α reg_imm) (α word)

| Call (α word)

| JumpReg num
| Loc num (α word)

The LABLANG-to-target compiler’s proof lifts per instruction simulations to a simulation
result for the entire LABLANG program.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

36 Y. K. Tan et al.

�compile cc prog = Some (code,data,cc′) ∧ ¬semantics ffi prog Fail ∧
backend_config_ok cc ∧ mc_conf_ok mc ∧ mc_init_ok cc mc ∧
installed code data cc′.ffi_names ffi (heap_regs cc.stack_conf.reg_names) mc ms ⇒
machine_sem mc ffi ms ⊆ extend_with_resource_limit (semantics ffi prog)

Fig. 7. Backend compiler correctness theorem.

10 Top-level correctness theorem

In this section, we present two compiler correctness theorems for the CakeML compiler.
The first concerns the compiler backend, i.e., the composition of all the compilation passes,
including all those we have discussed previously, that operate on abstract syntax. The
second theorem – our main result about the compiler function – concerns, in addition, our
verified frontend (lexing, parsing, and type inference) and proves semantics preservation
for the whole compiler. We end by defining the user interface for the compiler, which will
be used in the next section on bootstrapping.

10.1 Backend correctness

The compiler backend, which composes all compilation passes, is a function called
compile. Its correctness theorem is shown in Figure 7.

On success, the compiler backend returns a 3-tuple, (code,data,cc′). The first compo-
nent, code, is a list of bytes: the binary-level implementation of the input program, prog,
for the chosen architecture. The second component, data, is a list of machine words to
be loaded into the data section (see Section 8.3). The final component, cc′, consists of
additional book-keeping information about the compilation. The most important piece is
the cc′.ffi_names field, which lists the names of FFI ports that the code assumes it has
access to.

There are several assumptions made in the backend correctness theorem. After the
assumption that the input program does not Fail, which will be discharged in the top-
level theorem, the next three assumptions are essentially well-formedness conditions on
the input configurations:

• backend_config_ok checks that the initial compiler configuration cc is sound.
• mc_conf_ok and mc_init_ok check that the machine configuration is well formed

and that the compiler configuration matches the machine configuration. For exam-
ple, it would not make sense to have an ARMv8 compiler configuration producing
code to run on an x64 machine.

All three of these assumptions can be discharged by instantiating the theorem with a con-
crete choice of target and configuration. For each compilation target, we provide a default
configuration that satisfies the well-formedness conditions. One such instantiation for the
x64 backend is shown in Figure 8.

The final assumption is the installed predicate. It checks that the machine state ms and
machine configuration mc are set up correctly with respect to the output code, the data
section, and the FFI. As an example, for the theorem in Figure 8, installed assumes that
register 6 corresponds to the first heap address and that the address of the start of the

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 37

�compile x64_backend_config prog = Some (code,data,cc′) ∧
¬semantics ffi prog Fail ∧ is_x64_machine_config mc ∧
installed code data cc′.ffi_names ffi (6,1) mc ms ⇒
machine_sem mc ffi ms ⊆ extend_with_resource_limit (semantics ffi prog)

Fig. 8. Backend compiler correctness theorem instantiated for the x64 backend.

cake_heap:
... # Space allocated for CakeML’s heap

cake_stack:
... # Space allocated for CakeML’s stack

cake_bitmaps:
... # CakeML’s data section (containing

bitmaps)

main:
... # save command line arguments
pushq %rbp # push base pointer
movq %rsp, %rbp # save stack pointer
movabs $cake_main, %rdi # arg1: entry address
movabs $cake_heap, %rsi # arg2: first address of heap
movabs $cake_bitmaps, %rdx
movq %rdx, 0(%rsi) # store bitmap pointer
movabs $cake_stack, %rdx # arg3: first address of stack
movabs $cake_end, %rcx # arg4: first address past the

stack
jmp cake_main

.p2align 4

cake_ffi...:
... # FFI entry points

cake_main:
... # The generated bytes are printed

below

Fig. 9. Snippet of x64 wrapper assembly. The wrapper sets up the initial CakeML environment
according to the assumptions arising from installed.

data section is stored in the first heap address; register 1 corresponds to the first address
past the end of the stack. Each of these assumptions turns into a corresponding part of the
(unverified) wrapper assembly around our generated bytes. A code snippet for our wrapper
assembly is shown in Figure 9. Note that in the register encoding scheme for x64, rcx
and rsi correspond to registers 1 and 6, respectively. In the conclusion of the theorem,
extend_with_resource_limit adjusts the behaviours set to allow early exit on the outcome
which signals a resource-limit-hit.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

38 Y. K. Tan et al.

�inf_conf_ok cc.inferencer_config ∧ ¬cc.input_is_sexp ∧ ¬cc.exclude_prelude ∧
¬cc.skip_type_inference ∧ backend_config_ok cc.backend_config ∧
mc_conf_ok mc ∧ mc_init_ok cc.backend_config mc ⇒
case cakeml_compile cc prelude input of
Success (code,data,cc′) ⇒
∃ behaviours.
cakeml_semantics ffi prelude input = Execute behaviours ∧
∀ ms.
installed code data cc′.ffi_names ffi
(heap_regs cc.backend_config.stack_conf.reg_names) mc ms ⇒
machine_sem mc ffi ms ⊆ extend_with_resource_limit behaviours

| Failure ParseError ⇒ cakeml_semantics ffi prelude input = CannotParse
| Failure (TypeError_) ⇒ cakeml_semantics ffi prelude input = IllTyped
| Failure CompileError ⇒ true
| Failure (ConfigError_) ⇒ true

Fig. 10. Top-level compiler correctness theorem.

10.2 Top-level compiler correctness

Using the backend correctness theorem, we prove a top-level correctness theorem relating
the source semantics, the CakeML compiler, and the target semantics.

The top-level semantics of CakeML, cakeml_semantics, is defined as follows based on
the specification of the parser, the specification of what is well-typed, and the observable
semantics of executing a CakeML program. The prelude argument is for the CakeML basis
library, which is included at the start of every compiled program.

cakeml_semantics ffi prelude input =
case parse (lex input) of
None ⇒ CannotParse

| Some prog ⇒
if can_type_prog (prelude ++ prog) then
Execute (semantics ffi (prelude ++ prog))

else IllTyped

We define the CakeML compiler, cakeml_compile, correspondingly using our imple-
mentations of the parser, the type inferencer, and the compiler backend.

The final top-level correctness theorem for the compiler is shown in Figure 10. The type
system guarantees that well-typed programs do not have runtime errors, so the associated
assumption in Figure 7 is discharged.

10.3 Top-level compiler with user interface

There is still a gap between the top-level compiler, as defined above, and a usable com-
piler that runs natively on a target machine. The first step towards closing this gap is
to define the user interface of the compiler. We define a function, compiler_ui, that
wraps around cakeml_compile and adds the user interface. Here, we describe its definition
informally:

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 39

1. In addition to the input program, compiler_ui reads and parses a configuration string
for the compiler. The configuration string allows end users to, for example, choose
the compilation target.

2. If the configuration string parses successfully, then compiler_ui calls cakeml_
compile with the parsed configuration and the input program.

3. On successful compilation, compiler_ui returns a formatted string containing the
generated bytes and data section appropriately wrapped in the unverified assembly
for the chosen target, for example, as shown in Figure 9 for the x64 target.

4. On failure in any of the steps above, compiler_ui returns a formatted error string
instead.

We emphasise that compiler_ui is not verified in the same sense as the backend and top-
level compilers discussed above, and it does not have a corresponding correctness theorem.
Verifying it would require verifying the small assembly wrapper that is included in the
formatted output string. This would require formalising the linking system, which we have
not done. Instead, we view compiler_ui as a functional specification of the top-level user
interface of the compiler. In the next section, we explain how we generate machine code
that is verified to implement this functional specification.

11 Compiler bootstrapping

A unique feature of the CakeML compiler is that it is bootstrapped “in the logic” – essen-
tially, an application of the compiler function with the compiler’s source implementation
as argument is evaluated via logical inference. This bootstrapping method produces a
machine code implementation of the compiler and also proves a theorem stating functional
correctness of that machine code. Bootstrapping removes the need to trust an unverified
code generation process. By contrast, CompCert first relies on Coq’s extraction mechanism
to produce OCaml and then relies on the OCaml compiler to produce machine code.

The original bootstrapping process described in Kumar et al. (2014) and Kumar (2016)
takes most of the CakeML compiler from its definition in HOL down to a bytecode imple-
mentation. Then, the verified bytecode-to-x64 compilation pass is evaluated in the logic on
the bytecode implementation to produce machine code for most of the compiler. However,
the bytecode-to-x64 pass itself is not bootstrapped along with the rest of the compiler.
Instead, its x64 implementation is manually verified via decompilation into logic (Myreen
et al., 2012).

For the new compiler, we have extended the bootstrapping process down to the machine
code level, i.e., the full compiler now compiles and assembles itself, in the logic, down
to machine bytes. We have also improved the description of the I/O interface using our
mechanisation of characteristic formulae for CakeML (Guéneau et al., 2017). The char-
acteristic formulae framework provides a separation logic that supports reasoning about
(among other things) FFI models. This allows us to verify CakeML code that makes FFI
calls against the specification of the relevant FFI models. The bootstrapped CakeML com-
piler, for example, uses FFI calls to access its command line arguments and to read/write
to the standard input, output, and error streams.

In this section, we review the verified bootstrapping technique before describing the
challenges faced in bootstrapping the new compiler.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

40 Y. K. Tan et al.

11.1 Verified bootstrapping

Our bootstrapping technique consists of two steps: proof-producing translation and sym-
bolic evaluation. The first involves creating a CakeML program whose semantics is proved
to implement the compiler function. The second involves applying the compiler function
to that CakeML program to produce a verified machine-code implementation.

11.1.1 Proof-producing translation

We use proof-producing translation (Myreen & Owens, 2014) to convert the compiler def-
inition in HOL into an implementation in CakeML source code. In particular, we translate
the compiler_ui function from Section 10.3 (including all its dependencies). As we will
see in Section 11.2, the generated CakeML program differs depending on whether we are
translating the compiler for 64-bit targets or for 32-bit targets, so we translate two versions
of compile_ui. We shall focus on the 64-bit version, which we label as compile_ui_64. The
translation is mostly automatic and produces a certificate theorem that relates the semantics
of the generated CakeML implementation with the input HOL function (compile_ui_64).

HOL functions are mathematical functions, so it makes no sense for them to obtain
their arguments from I/O operations or to print their return values. But, we want an I/O
interface for the compiler, so we write an effectful wrapper directly in CakeML code:
main_64, shown below (the version for 32-bit targets is similar). It reads command line
arguments using our CommandLine library and then calls the translated implementation of
the compiler user interface (compiler_ui_64) with the input program read from standard
input. It prints the formatted bytes (print_app_list ls) to standard output and any
compiler errors to standard error (print_err e).

fun main_64 u =
let

val args = CommandLine.arguments ()
in

case compiler_ui_64 args
(String.explode (TextIO.inputAll TextIO.stdIn)) of

(ls, e) => (print_app_list ls; TextIO.output TextIO.stdErr e)
end

We can now define a whole CakeML program, main_64_prog, that consists of declara-
tions up to the main_64 function above followed by a call to main_64 (applied to unit).
Using characteristic formulae for CakeML for results about the I/O wrapper and the results
generated by the proof-producing translation process for the rest, we can prove a theorem
about this whole CakeML program:

�wfcl cl ∧ stdFS fs ⇒
∃ io_events.
semantics_prog (init_state (basis_ffi cl fs)) init_env main_64_prog
(Terminate Success io_events) ∧

extract_fs fs io_events =
Some (compiler_ui_64_spec (tl cl) (get_stdin fs) fs)

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 41

The theorem states that running main_64_prog in CakeML’s source semantics from an
appropriate initial state always terminates successfully with a list of I/O events. Moreover,
examining these I/O events gives us exactly the output of compiler_ui_64_spec called with
the command line arguments and input from standard input. This compiler_ui_64_spec
function simply describes the effect of printing the return values of compiler_ui_64 on
standard output and standard error. Thus, we now have a CakeML program that is verified
to have the desired I/O behaviour of the CakeML compiler.

11.1.2 Symbolic evaluation

For the second step, we make use of HOL4’s symbolic evaluation mechanism to evalu-
ate the CakeML compiler backend, i.e., the HOL function compile, on the input program
main_64_prog. Importantly, this mechanism for evaluation in the logic produces a
theorem, which is of the following form:

�compile x64_bootstrap_config main_64_prog =
Some (cake_code,cake_data,cake_config)

For ease of presentation, we have defined constants cake_code, cake_data, and cake_
config for each component of the result of symbolic evaluation. For example, the cake_
code constant abbreviates the list of bytes comprising the machine-code implementation
of the compiler. The input compiler configuration, x64_bootstrap_config, is a slight mod-
ification of our default configuration, x64_backend_config, with some options (such as
the inlining size limit) tweaked. Observe that for bootstrapping, we evaluate the com-
piler backend (compile), but not the top-level compiler (cakeml_compile) that has parsing
and type inference. Parsing is unnecessary because the input, main_64_prog, is already
CakeML abstract syntax produced by translation. Type inference is unnecessary because
the characteristic formulae theorem shown earlier guarantees that main_64_prog does not
have runtime errors.

11.1.3 The bootstrapping result

Composing the two aforementioned theorems together with our backend compiler correct-
ness theorem from Figure 7 yields the overall correctness theorem, shown in Figure 11,
about the machine-code implementation of the CakeML compiler.

The composition is straightforward, except we need to slightly tweak the input com-
piler configuration to account for our bootstrapping x64 compiler configuration. Note, also,
that the installed predicate now has concrete instantiations for its code, data, cc′, and ffi
arguments.

At a high level, the theorem in Figure 11 states that running the machine code implemen-
tation of the compiler produces the same output as would a run of the compiler in the logic.
We have used our compiler correctness theorem once to obtain this result. One might con-
sider using the compiler correctness theorem again, to prove that the machine semantics
of the output of the bootstrapped compiler is constrained by CakeML’s source semantics.
Specifically, this would involve reading the filled-in assembly wrapper from standard out-
put, processing it so it can be fed back into installed and considering the machine_sem of
that machine configuration. We have not proved such a result yet, mainly because the gains

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

42 Y. K. Tan et al.

�wfcl cl ∧ stdFS fs ∧ is_x64_machine_config mc ∧
installed cake_code cake_data cake_config.ffi_names (basis_ffi cl fs) (6,1)
mc ms ⇒
∃ io_events.
machine_sem mc (basis_ffi cl fs) ms ⊆
extend_with_resource_limit { Terminate Success io_events } ∧
extract_fs fs io_events =
Some (compiler_ui_64_spec (tl cl) (get_stdin fs) fs)

Fig. 11. Bootstrapped compiler correctness theorem.

do not seem high without a formalisation of linking and loading. The original CakeML
compiler involved this kind of result, however, because its read–eval–print loop ran the
compiler at runtime.

11.2 Extending the translator

The first step of bootstrapping involves proof-producing translation of HOL definitions to
CakeML implementations. In this section, we describe an extension to the tool that does
this job, the translator, that was motivated by the new multi-target compiler backend. We
updated the translator to include primitive support for machine words (of all sizes up to
64 bits, implemented by CakeML’s 64-bit words). This change was necessary for efficient
translation of the compiler because all of our ILs from WORDLANG onwards require a
word type. Furthermore, many of the compilation steps, for example, DATA-to-WORD and
the target encoding phase, utilise word operations.

The difficulties we faced here mostly revolved around sufficiently extending the trans-
lator automation to cover all the required cases. For example, to reduce the complexity
of implementation, we only added a subset of standard word operations to the CakeML
source language.16 As a result, some of the word operations in our HOL implementation
do not have a natural target in CakeML itself. We supplied manual rewriting theorems in
order to turn these operations into ones that are actually in the source language.

As an example, consider the following definition of e_imm8. It conditionally extracts
the last 8 bits from a 64-bit input, and it is used in the x64 encoder.

�e_imm8 imm =
if 0xFFFFFFFFFFFFFF80w ≤ imm ∧ imm ≤ 127w then
[(7 >< 0) imm]

else []

However, the extraction operation (><) does not have a natural target in CakeML. Instead,
the rewritten theorem below only targets standard word operations.

�e_imm8 imm =
if 18446744073709551488w ≤ imm ∧ imm ≤ 127w then
[w2w (imm && 255w)]

else []

16 Any new word operations would have to be propagated and supported throughout the compiler.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 43

A more insidious example arises because we kept the word size parametric – we sometimes
used definitions that are dependent in the word size type parameter such as the following
in the DATA-to-WORD compiler:

�shift (: α) = if dimindex (: α) = 32 then 2 else 3

Neither HOL4 nor CakeML is dependently typed, so these do not fit naturally into the
translation procedure. Fortunately, these definitions are mostly for convenience when writ-
ing the definition and proofs of the compiler in HOL4. We in-lined them wherever they
occurred after instantiating the type parameter appropriately.

11.3 Evaluation in the logic

The new compiler has more optimisations and phases than the first CakeML compiler, and
it has become much harder for us to achieve a reasonable time for compiling the compiler
in the logic. The increased difficulty comes from two directions: any new pass that we add
to the compiler increases the number of translated definitions that have to be compiled,
and the pass itself needs to be run during in-logic compilation. Yet, having a reasonable
bootstrapping mechanism is necessary – we do not want bootstrap times to be a major
stumbling block when we implement new compiler optimisations in the future.

A trivial option is to simply turn off or reduce the aggressiveness of some optimisa-
tions during the bootstrapping process. Of course, turning everything off would lead to
an extremely slow bootstrapped compiler. We currently do this rather judiciously, for
example, we in-line slightly less aggressively during the bootstrap process.

We used three other techniques, and an improvement to the compiler, in order to reduce
bootstrap compilation times.

11.3.1 Translation validation

Following the terminology of Leroy (2009), translation validation is a process where the
output of an untrusted compilation step is verified by a validator. This can reduce the
verification effort because one only has to verify that the validator is sound, i.e., that it
only accepts correctly compiled programs. But, translation validation can also be used for
runtime efficiency: untrusted steps can be run separately using a more efficient implemen-
tation. The CompCert compiler, for example, performs register allocation with unverified
OCaml code before checking the result.

For bootstrapping the CakeML compiler, we found constructing the clash graph and
running the full IRC algorithm during the symbolic evaluation part of bootstrapping to be
infeasible. So, we set up our register allocator and its correctness theorems to support a
validation procedure.

More precisely, our register allocator takes an optional list of oracle colouring functions.
Whenever it is called with such a list of oracles, it validates that they correctly colour the
program being allocated. If validation succeeds, then the allocator uses those colourings.
Otherwise, it calls the graph colouring algorithm that we have proved always produces a
correct colouring.

A pleasing consequence of our bootstrapping procedure is that the translation step
produces CakeML code that can be used independently of its verification. In particular,

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

44 Y. K. Tan et al.

our register allocator is translated into CakeML during bootstrapping. We pretty printed
this implementation to Standard ML (SML) concrete syntax17 for use as the external
efficient implementation to be validated in the evaluation step of bootstrapping.

We only use translation validation for efficiency when evaluating the compiler in the
logic – the bootstrapped compiler calls the allocator with no oracle functions, so it runs the
verified graph colouring algorithm directly. Furthermore, the use of the external register
allocator during bootstrapping has no impact, apart from the time required, on the result of
symbolically evaluating the compiler. In other words, the result is a proven theorem with
no extra assumptions.

11.3.2 Parallel compilation

Following the compilation into BVL and closure conversion, the program is represented as
a list of code table entries. Many of the subsequent compilation phases work independently
on each code table entry – their definition simply maps some inner auxiliary function over
the code table.

For all such phases, we run the in-logic compilation of code table entries in parallel. The
compilation theorems for each code table entry are then lifted back up to a compilation
theorem for the entire phase. To be able to do this, we need a result such as

�f x1 = v1 ∧ . . . ∧ f xn = vn ⇒ map f [x1; . . . ; xn] = [v1; . . . ; vn]

We cannot apply this technique when there are dependencies between subcomputations
since we cannot join their results using a theorem like the one above.

11.3.3 Encoder memoisation

The most expensive phase in the entire bootstrap process is the assembly phase of the com-
piler. Each assembly instruction has to be encoded down into a list of bytes, and the encod-
ing steps are directly evaluated in the logic. Here, a speed up was achieved by memoising
the encodings of common instructions and the use of specialised evaluation theorems.

Note also that our assembler is inherently sequential because it needs to look at the
entire code table in order to properly adjust jump labels. This makes it difficult to properly
parallelise the process.

11.3.4 Improved assembly loop

In the conference version of this publication (Tan et al., 2016), we stated that the assem-
bler makes several syntactic checks on its output assembly. These syntactic conditions are
necessary for the assembler’s correctness, for example, they might check that none of the
instructions mention a reserved register or that the immediate constants are within bounds
for each target.

We have since proved that many of these conditions are guaranteed by our compiler, for
example, the instruction selector never introduces illegal immediate constants and so they
do not need to be explicitly checked by the assembler. The remaining checks are done after
assembly, where we check that the generated jump offsets are within range for the target

17 This is convenient since SML is the implementation language for HOL4.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 45

architecture. This check is difficult to avoid because the jump offsets are only known at
assembly time.

12 Benchmarks

We evaluated our new compiler backend’s performance with a series of performance tests
based on a subset of MLton’s benchmark suite obtained from the MLton repository.18 We
excluded the benchmarks that

• use records since they are not currently supported in CakeML, or
• perform system calls, since CakeML uses its own FFI implementations for these

system calls, or
• use the basis libraries for machine words and floating point.

The remaining 16 benchmarks were slightly modified to fit CakeML’s requirements. The
changes are summarized as follows:

• Minor syntactic changes, for example, CakeML does not allow capitalised variable
names.

• Curried instead of tupled functions, since CakeML currently optimises heavily for
curried functions, but not for tupled functions.

We roughly split the benchmarks into four categories, depending on the size of the
benchmark and whether it uses any imperative features (e.g., references, arrays, and
vectors):

• (Small, Pure) even-odd, fib, merge, tailfib, tak
• (Small, Imperative) flat-array, imp-for, vector-concat, vector-rev
• (Large, Pure) knuth-bendix, life, pidigits
• (Large, Imperative) logic, mpuz, ratio-regions, smith-normal-form

All tests were executed on a laptop running Ubuntu 16.04, with an Intel R© CoreTM i7-
6820HQ at 2.70 GHz CPU, and 16 GBs of RAM. Additional details relevant to each set of
tests are provided in their respective subsections. Our versions of the benchmarks can be
found in the CakeML repository.19

The compiler bootstrapping process discussed in Section 11 requires roughly 9 h for
the translation step, and between 24 and 30 h for evaluation in the logic. The resulting
bootstrapped compiler is used to compile all of the benchmarks in this section.

12.1 Comparison with other ML implementations

We benchmarked the CakeML compiler (with all optimisations enabled) against other ML
compilers. The compilers and their corresponding versions are as follows:

• (MLton) Version 20171211 (MLton Developers, 2017).
• (Poly/ML) Version 5.7 (Matthews, 2017).

18 https://github.com/MLton/mlton/tree/master/benchmark.
19 https://code.cakeml.org/tree/version2/compiler/benchmarks/mlton_benchmarks.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://github.com/MLton/mlton/tree/master/benchmark
https://code.cakeml.org/tree/version2/compiler/benchmarks/mlton_benchmarks
https://doi.org/10.1017/S0956796818000229

46 Y. K. Tan et al.

Fig. 12. Average execution times over 20 executions of the benchmarks for ML implementations
with default unbounded integers, relative to CakeML.

• (SML/NJ) Version 110.78 (SML/NJ Developers, 2017).
• (Moscow ML) Version 2.10 (Romanenko et al., 2013).
• (CakeML) Our compiler with all optimisations enabled.

CakeML does not currently support a distinguished small integer type, i.e., all of
CakeML’s integers are unbounded. The implementation switches to bignum arithmetic
when the integers involved no longer fit within a single word. We could only configure
the Poly/ML and MLton compilers to use a default unbounded integer type. In Figure 12,
we compare the performance of CakeML against these two compilers configured to use
unbounded integers. We emphasise that Figure 12 provides a fairer comparison against
CakeML’s default integer type. For completeness, we have also included the benchmark
performance against all the ML compilers (without unbounded integers) in Figure 13.

For the small, purely functional benchmarks, our new compiler’s performance is rel-
atively close to the other compilers. It is, in fact, the fastest on the fib and tailfib
benchmarks with unbounded integers. These two benchmarks both compute Fibonacci

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 47

Fig. 13. Average execution time over 20 executions of the benchmarks for different ML implemen-
tations, relative to CakeML. Missing bars for SML/NJ and Moscow ML indicate that the benchmark
either failed to compile, or did not terminate within 200 s. The filled part of each bar for MLton and
Poly/ML indicate extra time taken using unbounded integers.

numbers; however, the integers involved all fit within CakeML’s small integer width and
so our compiler uses efficient small integer arithmetic instead of bignum arithmetic.

In contrast, the pidigits and smith-normal-form benchmarks make essential use
of the unbounded integer type.20 In this case, MLton performs far better than any other
compiler because it uses GMP (Granlund et al., 2017) directly for its bignum computations.
Note that Moscow ML failed to compile these benchmarks, while SML/NJ was killed after
executing for >200 s. Our compiler successfully compiles and runs these benchmarks, but
its performance can be improved by connecting to verified bignum library implementations
directly at the assembly level for a specific architecture.

On the other hand, there is clearly room for improvement on both small and large
imperative benchmarks. Our compiler does not currently optimise heavily in these cases.

20 They use the IntInf structure in SMLs basis.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

48 Y. K. Tan et al.

Fig. 14. Average execution time in seconds over 20 executions of the benchmarks for different heap
sizes. The solidly filled part of each bar indicates time spent in the garbage collector. In the 10 MB
case, missing bars indicates that CakeML ran out of memory for that benchmark.

For example, we do not currently have any optimisations to remove bounds checks on
arrays and vectors.

Finally, all of the three large, purely functional benchmarks make use of tupling
and tupled constructors which we could not simply remove by currying functions. Our
CLOSLANG optimisations are mainly focused on curried functions and so these cases are
not well supported.

12.2 Garbage collection

Although the benchmarks are not meant to stress test the GC, CakeML’s (verified) GC
could also cause some slowdown compared to the highly tuned GCs available in other
compilers. Thus, we instrumented the CakeML compiler to record GC times for these
benchmarks. The default CakeML heap size is 1,000 MB, and we progressively reduced
it to 100 and 10 MB. The results are shown in Figure 14. Note that we have removed
logarithmic scaling for the plot in order to better illustrate the GC times.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 49

We first note that at the default heap size (1,000 MB), none of the benchmarks spend a
significant amount of time running CakeML’s GC. Thus, the results in the previous sub-
section are mainly due to compiler performance, rather than the GC. In particular, since
we use a direct-style compiler, we do not incur as much heap allocation even on the bench-
marks that make deeply nested non-tail-recursive function calls. This is to be contrasted
with CPS compilation where such function calls incur additional GC costs.

The results for smaller heap sizes are mostly as expected: CakeML progressively spends
more time in the GC as heap sizes are decreased. On three of the benchmarks (merge,
vector-rev, ratio-regions), CakeML runs out of memory when started with only
10 MB of heap. It is important to note that this is allowed to happen by our compiler
correctness theorem because we are compiling from source CakeML, which does not have
a notion of finite machine memory, down to a target with limited resources.

The default CakeML garbage collector we used for all benchmarks is a copying
collector (Myreen, 2010). We have recently verified a new, generational garbage collec-
tor (Ericsson et al., 2017), at the point of writing; however, we have not yet tuned its
performance heavily and so we have not included it in these benchmarks.

12.3 Comparison across compiler optimisations

We study the utility of our compiler optimisations by selectively disabling groups of opti-
misations and examining the impact on benchmark performance. The four configurations
are as follows:

• (CO) The CLOSLANG optimisations are disabled.
• (BO) The BVL optimisations are disabled.
• (RA) The register allocation algorithm uses a simple heuristic rather than IRC.
• (All) The default compiler with all optimisations enabled.

The benchmark results for each configuration are shown in Figure 15. Across all the
benchmarks, our CLOSLANG optimisations clearly provide the most significant improve-
ments. We note that the improvements are significant even for small benchmarks because
they also help to optimise parts of the CakeML basis libraries that get used in the
benchmarks.

This is perhaps unsurprising because the optimisations performed in CLOSLANG are
important optimisations for functional languages. In addition, because they happen
relatively early in the compilation process, they also help improve key follow-up opti-
misations. For example, the register allocator may face less register pressure around
call sites after multi-argument functions get introduced. In Owens et al. (2017), we also
observed that the multi-argument introduction optimisation provided the most significant
improvements over the other CLOSLANG optimisations.

The BVL optimisations and register allocator provide slightly more modest improve-
ments, but they also clearly have important roles to play. In particular, the inlining
optimisations yield significant improvements for many of the small benchmarks.

Finally, we observe that the pidigits and smith-normal-form benchmarks see very
little improvement from any compiler optimisations. This is, again, due to the fact that
these benchmarks being dominated by bignum computations.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

50 Y. K. Tan et al.

Fig. 15. Average executions over 20 executions of the benchmarks for different CakeML compiler
configurations, relative to the (All) configuration.

12.4 Register allocation

To further validate the need for a good register allocation heuristic, we compared our
implementation of the IRC algorithm (labelled IRC) against a simple colouring heuris-
tic (labelled SIMPLE) that only makes local coalescing optimisations when it is about
to colour a node.21 The evaluation was performed by comparing these two allocators on
the clash graphs generated during the x64 bootstrap compilation process of the CakeML
compiler.

At the point of writing, this process generates a total of 5,110 clash graphs. Of these,
we removed 2,072 entries on which both allocators perfectly coalesce all available move
instructions. These typically correspond to very small code table entries, which are not
very interesting from a register allocation perspective. We further categorize the remaining

21 For each node SIMPLE is about to colour, it checks all the nodes that it has a move instruction with and then
tries to pick a colour that results in a move being coalesced.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 51

Table 1. Performance of our IRC and SIMPLE allocators on the clash graphs generated during

the CakeML compiler’s bootstrap process. Note that the last two columns indicate the percentage of

coalesced moves by the respective allocators out of the coalesceable moves

Category No. of clash graphs
Avg. % of

coalesceable
Avg. % of
coal. IRC

Avg. % of
coal. SIMPLE

Small (1–100 moves) 1,214 88.9 78.2 46.9
Medium (101–1,000 moves) 1,278 84.3 72.4 44.4
Large (>1,000 moves) 546 71.9 77.3 51.5

3,038 clash graphs into those with a small number of moves (1–100), those with a medium
number of moves (101–1,000), and those with a large number of moves (>1, 000).

These boundaries are rather arbitrarily chosen, but they serve to illustrate the different
types of clash graphs that the register allocator might encounter in practice; we use the
number of moves as a proxy for the complexity of the clash graphs. Indeed, it can be
seen that the percentage of coalesceable moves, i.e., those moves that do not already clash
noticeably drops as we increase the number of moves. Nevertheless, a large percentage of
the remaining moves are available for coalescing by our allocators.

The results are summarized in Table 1; for each category, we show the average per-
centage of coalesceable moves followed by the average percentage of moves coalesced
out of the coalesceable moves by each register allocator. Note that these results are col-
lected on the x64 target, so nine registers are available for register allocation in both cases.
Unsurprisingly, IRC manages to coalesce between 25% and 30% more of the coalesceable
moves than SIMPLE.

There are several possible directions for improving these results. Firstly, our characteri-
sation of suitable colouring functions is rather strict; as suggested by one of our reviewers,
we have not considered the special case where two temporaries that always hold the same
value can, in fact, be assigned the same register even though they might be simultaneously
live. This could explain the drop in the number of coalesceable moves as we consider
larger clash graphs. Nevertheless, we note that a significant portion of the moves remains
coalesceable. Secondly, our register allocator is a textbook implementation of IRC, which
can certainly be improved with further heuristics. As we have mentioned, this would have
little impact on our correctness proofs since the allocator is treated purely as a heuristic.
Lastly, the structure of our compiler currently requires registers to be reserved for spills
at a later stage in the compiler. This was a necessary simplification for verification, but
it would be interesting to explore the full power of the IRC algorithm, which explicitly
rewrites the input program when spills are encountered.

13 Discussion of related work

There has been much interest in verified compilation and optimisation; CompCert, a ver-
ified optimising compiler for C, is perhaps the most well-known project. Like CompCert,
our work focuses on verifying an entire compiler, rather than specific verified optimisa-
tions. In this section, we first give a comparison with the previous CakeML compiler, then
we discuss related work for various parts of our new compiler.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

52 Y. K. Tan et al.

Detailed comparison with previous compiler. Our source language (CakeML) has been
extended with an FFI, allowing for I/O within CakeML programs. We also added support
for new primitive datatypes: strings, bytes, words, immutable vectors, and mutable arrays.
We have improved the source semantics by removing the pre-type-checking elaboration
step; closure values now include the lexically scoped top-level environments (containing
data constructor and top-level/module-top-level definitions).

The product of the previous compiler was a verified read-eval-print-loop since our focus
there was on end-to-end verification. We have not yet constructed a similar read–eval–print
loop for the new compiler. The previous compiler compiled from source to a single IL, then
to stack-machine-based bytecode and finally to x86-64. The bytecode was designed so that
each operation mapped to a fixed sequence of x86 instructions, and it was also designed to
make verification of the GC as easy as possible. Unfortunately, the ease of verification also
meant that the compiler had poor performance – we found the bytecode IL too low level for
functional programming optimisations (multi-argument functions, lambda lifting, etc.) and
too high level for backend optimisations. For example, it naively followed the semantics
and allocated a closure on each additional argument to a function, pattern matches were not
compiled efficiently (even for exhaustive, non-nested patterns), and the bytecode compiler
only used registers as temporary storage within single bytecode instructions. The new ver-
sion addresses all of these problems and splits each improvement into its own phase and
IL in order to keep the verification of different parts as separate and as understandable as
possible.

Optimisations. The CompCert project has investigated a variety of verified optimisations,
and some of our optimisations, for example, compilation of parallel moves (Rideau et al.,
2008) is based on work done in Coq for CompCert. Coalescing register allocation was also
verified for CompCert (Blazy et al., 2010). However, CompCert still uses a translation vali-
dation approach for its register allocation phase (Rideau & Leroy, 2010). We have the same
setup in our compiler, although we only use the translation validation approach when we
need to evaluate the compiler in the logic; the main reason, like in CompCert, is for speed
of evaluation. Our proof technique for the coalescing allocator also differs in that we do not
prove correctness with respect to a full specification of the IRC algorithm. We are confi-
dent that our proof decoupling allows for other types of allocators, for example, linear scan,
to be verified on top of the intricate liveness analysis theorem. There has also been much
interest in formally verified SSA-form middle ends: the CompCertSSA project (Barthe
et al., 2014) extended CompCert with a formally specified SSA form middle-end and also
investigated formal verification of optimisations in their semantics (Demange et al., 2015).
Similarly, SSA-based optimisations were verified in the Vellvm project (Zhao et al., 2013).
Other work (Buchwald et al., 2016) has focused on finding minimal SSA representations
that are more efficient for these optimisations.

Garbage collection. GCMinor (McCreight et al., 2010) is an IL with GC primitives,
which can be compiled down to CMinor with calls to a verified GC. They do not run into
the same problem as we do because register allocation occurs in CompCert after CMinor.
The main difference between our approaches is that they need to use an explicit shadow
stack to track and modify live roots in the GC. Instead, our GC is implemented at a lower
level, where it is allowed to directly inspect and modify the entire stack. This necessarily

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 53

makes our proofs more complicated, as evidenced by the need for the permute oracle, but
it is important because we need to minimise (stack-related) function call overhead in a
functional language such as CakeML.

Both GCMinor and our work focus on compilation for single processors and so our GC
algorithm and its related proofs work only for the non-concurrent setting. State-of-the-art,
concurrent GCs have also been verified (Gammie et al., 2015), although that work was not
done in the context of verified compilation.

Compilers for functional languages. The LambdaTamer project (Chlipala, 2010)
focuses on proof and tactic engineering for efficient verification of compilers. The end
product is a verified compiler for a functional language down to idealised assembly with
register allocation but without garbage collection.

The Cogent (O’Connor et al., 2016) language has a proof-producing compiler down to
C, which can be further compiled with CompCert, or via translation validation (Sewell
et al., 2013). It is a pure, functional and total language, aimed at reasoning for systems
programming. Unlike our work, Cogent leaves the optimisation up to the C compiler, and
it does not need a garbage collector since their focus is on producing efficient snippets of
systems code.

The verified Lisp implementation of Myreen & Davis (2011) is a precursor to the
CakeML compilers and read–eval–print loop.

Compositional compilers. Compositional compilers have also received much atten-
tion recently; among other advantages, they allow for separate (modular) compilation
and hence modular verification of large-scale programs. In this space, Compositional
CompCert (Stewart et al., 2015) extends CompCert to the compositional setting. More
closely related to our work, Pilsner (Neis et al., 2015) is a compositional compiler for an
imperative, functional programming language – while our work has focused on realistic,
end-to-end compilation, combining this with compositionality is certainly a task that war-
rants further work. More recently, Kang et al. (2016) describe a technique for verifying
separate compilation in CompCert, in the case where only a single, verified compiler is
used. Their technique has since been integrated into the CompCert development, and we
believe it is applicable to our development as well.

Modelling memory usage. High-level source semantics, such as CakeML’s, typically do
not have a notion of memory usage. In contrast, the amount of memory that can be accessed
on the physical target machine is finite. For our compiler, we resolve this mismatch by
allowing the compiled program to terminate early with an out-of-memory error.

CompCert instead uses an infinitely addressable memory in its target semantics and
proves correctness against this semantics. The Peek framework (Mullen et al., 2016)
extends CompCert’s x86 semantics with a fixed-size, 32-bit integer indexed memory. This
is used to provide a target in which assembly level peephole optimisations can be easily
verified. Their correctness theorem assumes that all pointers generated by CompCert fit
within 32-bit integers. Going further, Quantitative CompCert (Carbonneaux et al., 2014)
modifies the target semantics to add an explicit notion of stack overflow. They also provide
(automated) tools with which quantitative stack space bounds can be proved at the source
level and refined down to the target, hence removing the possibility of stack overflow at
the target.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

54 Y. K. Tan et al.

The CerCo project (Amadio et al., 2013) developed a verified C compiler that allows
precise source-level proofs about the time and space consumption of the generate object
code. Their method for formal reasoning about time and space consumption has also been
adapted to apply to higher-order functional languages (Amadio & Régis-Gianas, 2011).

14 Conclusions

This paper has presented the structure of the latest verified compiler backend for CakeML.
The design of the compiler attempts to mimic mainstream compilers while still keeping
the verification understandable and, most importantly, extensible. The entire development
is approximately 100,000 lines of HOL4 proof scripts.

This latest version of the compiler backend is designed as a platform for future research,
experimentation, and student projects. We expect the compiler to evolve as the CakeML
language evolves and as we add new features to the compiler. We believe there is plenty
of room for improvement particularly in the lower part of the compiler, which is currently
lacking common-subexpression elimination and peephole optimisations.

As a platform for student projects, the compiler has worked well: masters and bachelors-
level students have thus far contributed a verified generational version of the garbage
collector (Ericsson et al., 2017); a new verified optimisation that turns non-tail-recursive
functions into tail-recursive functions (Abrahamsson & Myreen, 2017); and a tool for
visualising the internals of the compiler (Hjort et al., 2017).

In the broader context, the new compiler backend fits into an ecosystem of tools built
around the formal definition of the CakeML language and might have applications sepa-
rately from CakeML. In the CakeML ecosystem, the compiler backend is a vital part in a
proof-producing code extraction mechanism that allows verified binaries to be produced
automatically from shallowly embedded HOL functions. We believe parts of the CakeML
compiler backend could be used as components in implementations of compilers for other
languages, for example, Scheme or some cut-down version of Java.

Acknowledgments

We thank the anonymous reviewers for their helpful comments on drafts of this paper
and are grateful for good comments by Mike Gordon and Konrad Slind on the conference
version of this paper. The first author was supported by A*STAR, Singapore; the sec-
ond author was partially supported by the Swedish Research Council, Sweden; the fourth
author was partially supported by EPSRC Programme Grant EP/K008528/1, UK; and the
fifth author was partially supported by EPSRC Grant EP/N028759/1, UK.

References

Abrahamsson, O. & Myreen, M. O. (2017) Automatically introducing tail recursion in CakeML.
In Trends in Functional Programming - 18th International Symposium, (TFP) 2017, Canterbury,
UK, June 19–21, 2017, Revised Selected Papers, Wang, M. & Owens, S. (eds), Lecture Notes in
Computer Science, vol. 10788. Springer, pp. 118–134.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 55

Amadio, R. M., Ayache, N., Bobot, F., Boender, J., Campbell, B., Garnier, I., Madet, A.,
McKinna, J., Mulligan, D. P., Piccolo, M., Pollack, R., Régis-Gianas, Y., Coen, C. S., Stark, I.
& Tranquilli, P. (2013) Certified complexity (CerCo). In Foundational and Practical Aspects of
Resource Analysis - Third International Workshop, FOPARA 2013, Bertinoro, Italy, August
29–31, 2013, Revised Selected Papers, Lago, U. D. & Peña, R. (eds). Lecture Notes in Computer
Science, vol. 8552. Springer, pp. 1–18.

Amadio, R. M. & Régis-Gianas, Y. (2011) Certifying and reasoning on cost annotations of functional
programs. In Foundational and Practical Aspects of Resource Analysis - Second International
Workshop, FOPARA 2011, Madrid, Spain, May 19, 2011, Revised Selected Papers, Peña, R.,
van Eekelen, M. C. J. D. & Shkaravska, O. (eds). Lecture Notes in Computer Science, vol. 7177.
Springer, pp. 72–89.

Appel, A. W. (1992) Compiling with Continuations. Cambridge University Press.
Barthe, G., Demange, D. & Pichardie, D. (2014). Formal verification of an SSA-based middle-end

for CompCert. ACM Trans. Program. Lang. Syst. 36(1), 4:1–4:35.
Blazy, S., Robillard, B. & Appel, A. W. (2010) Formal verification of coalescing graph-coloring

register allocation. In Programming Languages and Systems, 19th European Symposium on
Programming, ESOP 2010, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2010, Paphos, Cyprus, March 20–28, 2010, Proceedings, Gordon, A. D. (ed).
Lecture Notes in Computer Science, vol. 6012. Springer, pp. 145–164.

Buchwald, S., Lohner, D. & Ullrich, S. (2016) Verified construction of static single assignment
form. In Proceedings of the 25th International Conference on Compiler Construction, CC 2016,
Barcelona, Spain, March 12–18, 2016, Zaks, A. & Hermenegildo, M. V. (eds). ACM, pp. 67–76.

Carbonneaux, Q., Hoffmann, J., Ramananandro, T. & Shao, Z. (2014) End-to-end verification of
stack-space bounds for C programs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, Edinburgh, UK, June 09–11, 2014, O’Boyle, M. F. P. &
Pingali, K. (eds). ACM, pp. 270–281.

Chlipala, A. (2010) A verified compiler for an impure functional language. In Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17–23, 2010, Hermenegildo, M. V. & Palsberg, J. (eds). ACM, pp. 93–106.

Demange, D., Pichardie, D. & Stefanesco, L. (2015) Verifying fast and sparse SSA-based optimiza-
tions in Coq. In Compiler Construction - 24th International Conference, CC 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11–18, 2015, Proceedings, Franke, B. (ed). Lecture Notes in Computer Science, vol. 9031.
Springer, pp. 233–252.

Ericsson, A. S., Myreen, M. O. & Pohjola, J. Å. (2017) A verified generational garbage collector
for CakeML. In Interactive Theorem Proving - 8th International Conference, ITP 2017, Brasília,
Brazil, September 26–29, 2017, Proceedings, Ayala-Rincón, M. & Muñoz, C. A. (eds). Lecture
Notes in Computer Science, vol. 10499. Springer, pp. 444–461.

Fox, A. C. J., Myreen, M. O., Tan, Y. K. & Kumar, R. (2017) Verified compilation of CakeML to
multiple machine-code targets. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, Paris, France, January 16–17, 2017, Bertot, Y. & Vafeiadis, V.
(eds). ACM, pp. 125–137.

Gammie, P., Hosking, A. L. & Engelhardt, K. (2015) Relaxing safely: verified on-the-fly garbage
collection for x86-TSO. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15–17, 2015, Grove, D. &
Blackburn, S. (eds). ACM, pp. 99–109.

George, L. & Appel, A. W. (1996) Iterated register coalescing. ACM Trans. Program. Lang. Syst.
18(3), 300–324.

Granlund, T., et al. (2017) GNU MP: The GNU Multiple Precision Arithmetic Library, 6.1.2 edn.
http://gmplib.org/.

Guéneau, A., Myreen, M. O., Kumar, R. & Norrish, M. (2017) Verified characteristic formulae for
CakeML. In Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

http://gmplib.org/
https://doi.org/10.1017/S0956796818000229

56 Y. K. Tan et al.

ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings, Yang, H. (ed). Lecture Notes in
Computer Science, vol. 10201. Springer, pp. 584–610.

Hjort, R., Holmgren, J. & Persson, C. (2017) The CakeML compiler explorer – Tracking intermediate
representations in a verified compiler. In Trends in Functional Programming - 18th International
Symposium, (TFP) 2017, Canterbury, UK, June 19–21, 2017, Revised Selected Papers, Wang, M.
& Owens, S. (eds), Lecture Notes in Computer Science, vol. 10788. Springer, pp. 135–148.

Kang, J., Kim, Y., Hur, C.-K., Dreyer, D. & Vafeiadis, V. (2016) Lightweight verification of sep-
arate compilation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22,
2016, Bodík, R. & Majumdar, R. (eds). ACM, pp. 178–190.

Kumar, R. 2016 Self-compilation and Self-verification. Technical report, UCAM-CL-TR-879,
Computer Laboratory, University of Cambridge.

Kumar, R., Myreen, M. O., Norrish, M. & Owens, S. (2014) CakeML: a verified implementation of
ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014, San Diego, CA, USA, January 20–21, 2014, Jagannathan, S. & Sewell,
P. (eds). ACM, pp. 179–192.

Leroy, X. (2009) A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–446.
Matthews, D. (2017) Poly/ML, 5.7 edn. http://www.polyml.org/.
McCreight, A., Chevalier, T. & Tolmach, A. P. (2010) A certified framework for compiling and

executing garbage-collected languages. In Proceeding of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2010, Baltimore, Maryland, USA, September
27–29, 2010, Hudak, P. & Weirich, S. (eds). ACM, pp. 273–284.

MLton Developers (2017). MLton. http://mlton.org/.
Mullen, E., Zuniga, D., Tatlock, Z. & Grossman, D. (2016) Verified peephole optimizations for

CompCert. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13–17, 2016, Krintz, C.
& Berger, E. (eds). ACM, pp. 448–461.

Myreen, M. O. (2010). Reusable verification of a copying collector. In Verified Software: Theories,
Tools, Experiments, Third International Conference, VSTTE 2010, Edinburgh, UK, August
16–19, 2010, Proceedings, Leavens, G. T., O’Hearn, P. W. & Rajamani, S. K. (eds). Lecture
Notes in Computer Science, vol. 6217. Springer, pp. 142–156.

Myreen, M. O. & Curello, G. (2013) Proof pearl: a verified bignum implementation in x86-64
machine code. In Certified Programs and Proofs (CPP), Gonthier, G. & Norrish, M. (eds). Lecture
Notes in Computer Science, vol. 8307. Springer, pp. 66–81.

Myreen, M. O., & Davis, J. (2011) A verified runtime for a verified theorem prover. In Interactive
Theorem Proving - Second International Conference, ITP 2011, Berg en Dal, The Netherlands,
August 22–25, 2011, Proceedings, van Eekelen, M. C. J. D., Geuvers, H., Schmaltz, J. & Wiedijk,
F. (eds). Lecture Notes in Computer Science, vol. 6898. Springer, pp. 265–280.

Myreen, M. O., Gordon, M. J. C. & Slind, K. (2012) Decompilation into logic – improved. In
Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, October 22–25,
2012, Cabodi, G. & Singh, S. (eds). IEEE, pp. 78–81.

Myreen, M. O. & Owens, S. (2014) Proof-producing translation of higher-order logic into pure and
stateful ML. J. Funct. Program. 24(2–3), 284–315.

Neis, G., Hur, C.-K., Kaiser, J.-O., McLaughlin, C., Dreyer, D. & Vafeiadis, V. (2015) Pilsner:
a compositionally verified compiler for a higher-order imperative language. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP 2015,
Vancouver, BC, Canada, September 1–3, 2015, Fisher, K. & Reppy, J. H. (eds). ACM,
pp. 166–178.

O’Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T. C., Nagashima, Y., Sewell,
T. & Klein, G. (2016) Refinement through restraint: bringing down the cost of verification. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18–22, 2016, Garrigue, J., Keller, G. & Sumii, E. (eds). ACM,
pp. 89–102.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

http://www.polyml.org/
http://mlton.org/
https://doi.org/10.1017/S0956796818000229

The verified CakeML compiler backend 57

Owens, S., Myreen, M. O., Kumar, R. & Tan, Y. K. (2016) Functional big-step semantics. In
Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2–8, 2016, Proceedings, Thiemann, P. (ed). Lecture Notes in
Computer Science, vol. 9632. Springer, pp. 589–615.

Owens, S., Norrish, M., Kumar, R., Myreen, M. O. & Tan, Y. K. (2017) Verifying efficient function
calls in CakeML. PACMPL 1, 18:1–18:27.

Rideau, S. & Leroy, X. (2010) Validating register allocation and spilling. In Compiler Construction,
19th International Conference, CC 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20–28, 2010, Proceedings,
Gupta, R. (ed). Lecture Notes in Computer Science, vol. 6011. Springer, pp. 224–243.

Rideau, L., Serpette, B. P. & Leroy, X. (2008) Tilting at windmills with Coq: formal verification of
a compilation algorithm for parallel moves. J. Autom. Reasoning 40(4), 307–326.

Romanenko, S., Russo, C. & Sestoft, P. (2013) Moscow ML owner’s manual, version 2.10. 06.
Sevcík, J., Vafeiadis, V., Nardelli, F. Z., Jagannathan, S. & Sewell, P. (2013) CompCertTSO: a

verified compiler for relaxed-memory concurrency. J. ACM 60(3), 22:1–22:50.
Sewell, T. A. L., Myreen, M. O. & Klein, G. (2013) Translation validation for a verified OS kernel. In

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013,
Seattle, WA, USA, June 16–19, 2013, Boehm, H.-J. & Flanagan, C. (eds). ACM, pp. 471–482.

Slind, K. & Norrish, M. (2008) A brief overview of HOL4. In Theorem Proving in Higher Order
Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18–21, 2008,
Proceedings, Mohamed, O. A., Muñoz, C. A. & Tahar, S. (eds). Lecture Notes in Computer
Science, vol. 5170. Springer, pp. 28–32.

SML/NJ Developers (2017). SML/NJ. http://www.smlnj.org/.
Stewart, G., Beringer, L., Cuellar, S. & Appel, A. W. (2015) Compositional CompCert. In

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15–17, 2015, Rajamani, S. K.
& Walker, D. (eds). ACM, pp. 275–287.

Tan, Y. K., Myreen, M. O., Kumar, R., Fox, A. C. J., Owens, S. & Norrish, M. (2016) A new ver-
ified compiler backend for CakeML. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18–22, 2016,
Garrigue, J., Keller, G. & Sumii, E. (eds). ACM, pp. 60–73.

Tan, Y. K., Owens, S. & Kumar, R. (2015) A verified type system for CakeML. In Proceedings of the
27th Symposium on the Implementation and Application of Functional Programming Languages,
IFL 2015, Koblenz, Germany, September 14–16, 2015, Lämmel, R. (ed). ACM, pp. 7:1–7:12.

Yang, X., Chen, Y., Eide, E. & Regehr, J. (2011) Finding and understanding bugs in C compilers.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4–8, 2011, Hall, M. W. & Padua, D. A.
(eds). ACM, pp. 283–294.

Zhao, J., Nagarakatte, S., Martin, M. M. K. & Zdancewic, S. (2013) Formal verification of SSA-
based optimizations for LLVM. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013, Seattle, WA, USA, June 16–19, 2013, Boehm, H.-J.
& Flanagan, C. (eds). ACM, pp. 175–186.

https://doi.org/10.1017/S0956796818000229 Published online by Cambridge University Press

http://www.smlnj.org/
https://doi.org/10.1017/S0956796818000229

	The verified CakeML compiler backend
	Introduction
	Approach
	Compiler implementation and major design decisions
	Semantics of ILs
	Compiler proofs
	Top-level correctness theorem

	Early phases
	Closure conversion
	Closure representation
	Multi-argument functions

	Going fully stateful
	Concretisation of data representations
	Garbage collection primitive
	Value representation and heap invariant
	Implementing bignum arithmetic

	Low-level optimisation steps
	Permute oracle
	Register allocation
	Correctness of liveness analysis
	Extracting clash sets
	Graph colouring register allocation

	SSA form and instruction selection
	Compiling multiple code table entries

	Compilation of stack and exceptions
	An array-like stack
	Implementation of the GC primitive
	Moving the stack and bitmaps into memory

	Compiling to multiple targets
	Abstract machine instructions
	Labelled assembly language
	Removal of tick instructions
	Concrete machine code
	Target semantics
	Correctness of the assembler function

	Top-level correctness theorem
	Backend correctness
	Top-level compiler correctness
	Top-level compiler with user interface

	Compiler bootstrapping
	Verified bootstrapping
	Proof-producing translation
	Symbolic evaluation
	The bootstrapping result

	Extending the translator
	Evaluation in the logic
	Translation validation
	Parallel compilation
	Encoder memoisation
	Improved assembly loop

	Benchmarks
	Comparison with other ML implementations
	Garbage collection
	Comparison across compiler optimisations
	Register allocation

	Discussion of related work
	Conclusions

