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1. Introduction 

Once, we numerically integrated the precession and nutation of a spheroidal 
rigid Earth (Kubo and Fukushima 1987). As a natural extension, we tried 
to integrate the rotation of a triaxial rigid Earth numerically and faced a 
problem: a loss of precision in long-term integration. This is due to the 
smallness of the characteristic period of the problem: 1 day. Of course, one 
can integrate the rotational motion in higher precision arithmetics with a 
smaller stepsize. However, the quadruple precision integration is roughly 
30 times more time-consuming than the double precision integration. See 
Table 1. Therefore, it is desirable if there is a formulation 1) reducing the 
overall integration error, 2) being independent on the choice of the integra-
tor and 3) requiring no extra computations. The key points to achieve this 
goal will be to find a set of variables which 1) are efficiently convertible 
to the physical quantities required finally, say, the orientation matrix in 
the case of the rotational dynamics, and 2) vary with time as smoothly as 
possible. In this note, we report a discovery of such an example. 

2. Scheme 

As the basic variables describing the rotational motion of a rigid body, 

we adopt (L, Σχ, Ly, L A , ZB> / ) ; the magnitude and Χ-, Υ - , Α-, B- com-

ponents of the rotational angular momentum vector L, and the angle / 

measured from the plane containing L and the X-axis to the plane con-

taining L and the Α-axis. The orientation matrix S is expressed in terms 
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T A B L E 1. Comparison of CPU time 

Scheme Precision CPU time 

Evaluation of S Eq. of Motion 

New Double 117 195 

Euler 117 206 

Serret-Andoyer 147 250 

Euler Quadruple 3378 7195 

Note: The unit of CPU time is μβ in HP/9000 715/50MHz. 

of these variables as 

ε = ( e A , é B , é c ) = β » ( τ ' τ ) ( τ · τ ) ' ( 1 ) 

Here, ëj is the unit column vector defining the j - t h axis, and 

Qu(x, y) = Ui( + tan" 1 - J TZ2 ( - sin" 1 = j -xy/w z/w y J , 
^ ζ ' \ —xz/w —y/w ζ J 

where w = y/l — x2 and ζ = y/1 — (x2 + y2). Thus, S is generated by the 
five successive rotations in the sense of 1-2-3-2-1. In the actual integration, 
we integrate not these basic variables but their departures from nominal 
constants, their initial values for the first five and a linear function of time 
for / . In the language of the Earth rotation, these departures correspond 
to the variation of LOD, the nutation in obliquity and in declination, the 
polar motion and the variation of UT1. The equation of motion is simple. 
Those for the first five are just the translation of the conservation law of L 
in the inertial and body-fixed coordinate systems. That for / is 

dAf _ AL ( 1 1\ LL% 

dt C ' \B C) V - L\ 

LA(LCNB - LBNC) _ Lx(LzNY - LYNZ) 

where Lz = ^L* - {L\ + L\), Lc = yjl2 - (L\ + L%), and Nj — Ν · ej 

is the j-th. component of the torque N. 

3 . Comparisons with Other Schemes 

Figure 1 illustrates the growth of integration errors in « 90 years of the 
rotational motion of a rigid Earth perturbed by Moon and Sun in model 
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Figure 1. Growth of Integration Error of Earth Rotation 

orbits for the new and two other schemes: the well-known Eulerian and the 

Serret-Andoyer canonical ones. The lines (dE) and (de) denote the errors in 

£ , the total orientation, and in e c , the figure axis, respectively. We obtained 

similar results for the Moon's rotation also. The integrations were done by 

the 12th order Adams method in 53-bits mantissa arithmetics with the 

stepsize of 1/128 nominal rotational period. It is clear that the integration 

error of the new scheme is drastically smaller, say, by 7-9 digits for the 

overall orientation, and 3-10 digits for the figure axis. The observed large 

differences in the errors are due to the large differences in the magnitude 

of the integrated variables, especially those related to the rotation angle. 

All the integrated variables remain very small in the new scheme, namely 

less than 10", which is the magnitude of nutation. Also, the growth of error 

seems smaller, with an almost linear growth for the first 10 4 revolutions. 

The reason is not clarified yet. On the other hand, Table 1 shows the 

averaged CPU times for the three formulations. As is seen, there is no 

actual difference between the Euler and new schemes. 
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4. Conclusion 

A new numerical scheme to integrate the orientation of a rigid body was 

presented. The adopted basic variables are the magnitude, the X - , Y-, A-

and 5-components of the angular momentum vector, and the longitude of 

the Α-axis measured from the X-axis along the great circle perpendicular 

to the angular momentum. Not these basic variables, but the correction 

to their nominal constants and/or linear motion are integrated. Numerical 

simulations showed that the new scheme integrates the orientation matrices 

of the Earth and the Moon 5-9 digits more precisely than the ordinary 

Eulerian approach or the alternative Serret-Andoyer one does while the 

required computational time does not change significantly. 

We will make two comments on the new variables themselves. First, they 

are translated to the set of canonical variables (L,LX,LA;/,—σ,ξ) where 

the auxiliary angles σ and ξ are defined in Fukushima (1994). This indicates 

the possibility to develop another symplectic integrator for the rotational 

motion as was done for the Serret-Andoyer set by Tourna and Wisdom 

(1994). Next, the new variables are closely connected to the concept of the 

Non Rotating Origin (Guinot 1981). For example, the angle / looks similar 

to the sidereal angle based on NROs, although the rigorous relation between 

them remains an open problem. These two facts may imply the possibility 

to develop an analytical theory of the Earth rotation based on NROs. 
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