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1. Introduction

One of the best known classes of non-Desarguesian planes is the class of
Hall planes (see Hall [2]). In[6] Hanna Neumann showed that the finite Hall planes
of odd order possess subplanes of order two (i.e., Fano subplanes)!. Kirkpatrick
[5] has considered a type of plane which is a generalization of the Hall planes and
which he calls generalized Hall planes. In this paper we will give a sufficient
condition that a finite generalized Hall plane possesses Fano subplanes. Some
examples of odd order planes to which the condition applies shall be exhibited.

We shall assume that the reader is familiar with the elements of projective
plane theory and particularly with finite translation planes and Veblen-Wed-
derburn systems. The reader is referred to Hall [2] and André [1] for this. We note
that the method of choosing coordinates used in this paper is that due to Hall.

2. The kernel of a generalized Hall system

A projective plane = is said to be a generalized Hall plane with respect to the
line I, and the Baer subplane 7, if # is a translation plane with respect to I, I,
is a line of 7, and there exists a collineation group G of = such that G is sharply
transitive on the set of points I, \ (zoN 1,).

Kirkpatrick [5] shows that a generalized Hall plane of odd order’ may be
coordinatized by a Veblen-Wedderburn system F with the properties

(1) F is a right vector space of dimension two over a subfield F,

1 In [6] it is shown that there is a Hall plane of each possible finite odd order possessing

Fano subplanes. Hughes (see [3]) has shown that there is a unique Hall plane of each possible
finite order.

2 The result is true for even order planes as well.
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(2) There exist two mappings P, Q of F,x F, onto F, such that
(za + )z = zP(2, B) + O(«, B) for all o, fe Fy and ze F \ F,,, where

(i) P and Q are additive homomorphisms with P(0, 1) = 1 and Q(0, 1) = 0,

(i1) for any given y and d in F,, the equation (P(a, B), Q(2, B)) = (y, ) has
exactly one solution (¢, B), and

(iii) for any given y and d in F,, the equation (P(a, ), Q(%, B)) = (ay, By + 9)
has exactly one solution (o, f); also, for this solution, « = 0 if and only if § = 0,

It can be shown that a finite system satisfying (1) and (2) is a Veblen-Wed-
derburn system which coordinatizes a generalized Hall plane. Such a system is
called a generalized Hall system.

The functions P and @ being additive may be written P(«, ) = f(«) + h(B)
and Q(x, B) = g() + k(B) for all «, fe F, where f, g, h, k are additive endomor-
phisms of Fy which we shall the defining functions of F. We note that the Hall
systems are the special case where f(a) = ra, g(o) = sa, h(e) = o and k() = 0
for all a € F,, where x? — rx — s is an irreducible polynomial over F,.

LemMA 1. Theonly generalized Hall system which is a field is GF(4).

Proor. Suppose F is a generalized Hall system which is a field. Then
z? = z f(1) + g(1) for all ze F\F,. So F \F, contains less than three elements
and it readily follows that F, = GF(2) and F = GF(4).

It is easy to verify that GF(4) is, in fact, a generalized Hall system with de-
fining functions f(«) = a, h(2) = «, g(a) = o and k(a) = O for all x € GF(2).

THEOREM 1. The kernel Ker(F) of a generalized Hall system F # GF(4)
is the set

K = {eF, | f(2a) = iM(®), g(A) = Ag(),
h(Ao) = Ah(o), k(Aet) = Ak(x) for all ae Fy}.

Proor. If zeF \F, belongs to Ker(F) then z(w,w,) = (zw,)w, and
z(w, + w,) = zw, + zw, for all w;, w, € F. Suppose we F \ F,. There is an auto-
morphism 8 of F such that z® = w. So w(w,w,) = (ww)w, and w(w; + w,)
= ww, + ww, for all w;, w,eF. Thus we Ker(F) and so F \F, < Ker(F). It
follows that F is a field and by Lemma 1, F=GF(4). Hence, if F+# GF(4) then
Ker(F) € Fy.

Suppose AeKer(F). Then A(za + B) = A(za) + Af = (Az)a + AB for all «,
BeFq,. So (za+ ) h(A) + k(L) = (zh(L) + k(A))x + Ap for all a, fe F,, whence
(h(A) — DB = k(1) (¢ — 1) for all a, f e Fy which implies (1) = A and k(1) = 0.
Thus Ax = xA for all xeF.
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Now A(za + B)z) = (Mzax + B))z for all o, BeF, and therefore [z(f(x)
+ h(B)) + g(o) + K(B)]L = (zad + Bz = z(flad) + h(BA)) + g(ak) + k(B4) for all
a, B€Fo. So (f(@)+ h(BNA = flad) + h(BA) and (g(a) + k(B))A= g(ad) + k()
for all «, B € F,,. It readily follows that f(a)A = f(ad), g(a)A = g(ad), h(e)A = h(al)
and k(«)A = k(xA) for all a € F,,.

Suppose Ae K. Then A = h(1)A = h(4) and 0 = k(1)A = k(1). So Ix = x4
for all xeF. It is easy to verify that A(x + y) = Ax + Ay for all x, ye F. Now
(Ao + Bz = 2(f(ad) + h(BA) + glad) + k(BY) = [=(f () + h(B) + g()
+ k(B)]L = ((zo + B)z)A = H(zo + P)z) for all «, BeFy and zeF \F,. Clearly
Mxu) = (Ax)u for all xe F and ue F, and so A€ Ker(F).

COROLLARY. If A€ Ker(F), where F is a generalized Hall system, Ax = xA
for all xeF.

3. Fano subplanes

LEMMA 2. Let F be a generalized Hall system with defining functions
£, 9, h, k on the field F,. Denote f(1) and g(1) by r and s respectively. If r and
seKer(F),r+2s—1=0and I=r+s—1 then

G TYu+s)uw+1)—u=0 and

@MU u+s))u—u—1"Yu+s)=0
for all ue F \F,.

PrOOF. Firstly, [ # 0 since r+s—1=r+42s—1 implies s =0 and so
z? = zr for all ze F \ F, which implies z = 0 or r for all ze F \ Fy, a contradic-
tion.
We note also that | € Ker(F) since r and s € Ker(F).

o TYu+s))u+D)—u=1"Y u+s)u+1)~—u
N4 L s =D+ 1) —u
P+ D2+ (- Du+1)—u

= I"Y(lu + r + 2s — 1) — u (using the cor-
ollary to Theorem 1)

= 0,
G ' wu+shu—u—1"Yu+5s)

=" u+s ) —u—1"Yu+ys)

=17 ((u+s)u—(u+s)—u

= 17'(lu) — u (using the corollary to Theorem 1 again)

= 0.
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THEOREM 2. Let m be a generalized Hall plane coordinatized by the
generalized Hall system F with defining functions f, g, h, k on the field
F,. Suppose f(1) = r and g(1) = s belong to Ker(F) and r +2s —1 = 0. Then
the quadrangle Y = (), 0 =(0,0), I=(1,1), R=("Yu+5s),0), where
I=r + s~ 1, generates a Fano subplane of n for all u in F \ F,.

Proor. Clearly YI N OR = (1,0) and OI N YR = (I"Y(u +5), I Y(u + 5)).
The line IR has equation y = x(u + 1) —u since the coordinates of R satisfy 1t (by
Lemma 2 (i)) and those of I clearly do. Thus IRN OY = (0, — u).

The line (0, — u)(1,0) has equation y = xu — u. Now (I"u +5s), I *(u + s))
lies on this line (by Lemma 2(ii)). So the quadrangle Y, 0, I, R generates a Fano
subplane of m.

4. Examples

In this section we shall give some examples of odd order generalized Hall
planes to which Theorem 2 applies.

1. Hall planes. If F, is a finite field of odd order r and s may be chosen such
that r +2s — 1 = 0 and x* — rx — s is irreducible over F, (see [6], p. 39). The
kernel of the Hall system with defining functions f(a) = ra, g(a) = sa, h(x)
= o and k(a) = 013 F,. So we see by Theorem 2 that the planes over such systems
possess Fano subplanes. These planes, in fact, constitute the entire class of odd
order Hall planes. The Fano subplanes just given are those discovered by
Hanna Neumann [6].

2.  Let Fy = GF(p*") where p is an odd prime.
(a) fl) = r* o, g(a) = sa® h(ax) = a®~ ! and k(x) = 0 and
®) fl@) = r ', g(x) = sa®" !, h(x) = a®! and k(a) = 0,
where 0 is an automorphism of F,, are sets of defining functions giving rise to two
classes of generalized Hall systems provided that x°x —rx —s is irreducible
over F,. These systems appear in Johnson [4] in another form. The planes they
coordinatize are the planes derived from some well known semifield planes using
Ostrom’s derivation process.>
Suppose in (a) and (b) we choose 0 as the involutory automorphism ¢ of F,
se GF(p") = F' such that x* — (1 — 2s)x — s is irreducible over F’ ([6] p. 39)
and r = 1 — 2s. Then p(x) = x®x — rx — s is irreducible over Fy. If r # 0, p(x)
is irreducible over F, since x®x € F' for all xe Fy \F’. If r = 0,p(x) is reducible
over F,. However the restriction r s 0 is not a serious one.
The generalized Hall systems defined by this choice of r, s and 8 have f(1)
=(1-25)°=1— 25 and g(1) = s and so f(1) + 2g(1) — 1 = 0. Also it is easy
to show by applying Theorem 1 that Ker(F) = F’. From Theorem 2 we see that

3 Ostrom [7] is a good reference for the process of derivation of planes.
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the planes coordinatized by these generalized Hall systems possess Fano sub-
planzs.
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