
7
Spontaneous symmetry breaking and

restoration

In the standard model of particle physics, which has been thoroughly
tested to energies above 100 GeV, a central role is played by scalar fields
introduced in the Lagrangian with a negative mass-squared. These fields
are introduced to spontaneously break a gauge symmetry and so yield
the massive vector mesons W and Z, as observed in nature, in the frame-
work of a renormalizable field theory. This is the Higgs mechanism, to be
discussed in Section 7.4, and more specifically in the Glashow–Weinberg–
Salam model of electroweak interactions in Chapter 15. Spontaneous sym-
metry breaking is more general, and arises in the strong interactions too
as is elucidated in later chapters. We now turn our attention to a simple
model to illustrate the phenomenon. This will be followed by a general
statement of Goldstone’s theorem, and a consideration of loop corrections
and of the Higgs model.

7.1 Charged scalar field with negative mass-squared

Consider a complex scalar field Φ with Lagrangian

L = ∂μΦ∗∂μΦ −m2Φ∗Φ − λ(Φ∗Φ)2 (7.1)

This Lagrangian has a global U(1) symmetry Φ → Φe−iα, as discussed in
Section 2.4. What happens if m2 = −c2 < 0? First suppose that λ = 0.
Then in frequency–momentum space the action is

S0 = −1
2β

2
∑
n

∑
p

(
ω2
n + p2 − c2

)
× [φ1;n(p)φ1;−n(−p) + φ2;n(p)φ2;−n(−p)] (7.2)

where Φ = φ1 + iφ2 in the usual notation. This action is not negative
definite and therefore the functional integral is not convergent. Another
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118 Spontaneous symmetry breaking and restoration

Fig. 7.1.

way to see this is to recall the expression for the partition function, (2.40),
and simply replace m2 with −c2:

lnZ0 = 2V
∫

d3p

(2π)3
[
−1

2βω − ln
(
1 − e−βω

)]
ω =

√
p2 − c2

(7.3)

The dispersion relation indicates an instability when |p| < c.
The basic problem is that the potential is unbounded from below when

λ = 0. To stabilize the system we require λ > 0, which means a repulsive
interaction between the particles. The aforementioned instability occurs
at small momenta. This suggests that the bosons condense, or accumulate,
in the zero-momentum mode. Therefore, following the discussion of Bose–
Einstein condensation, we separate out explicitly the static infrared part
of the field as

Φ = ξ + χ

Φ∗ = ξ∗ + χ∗ (7.4)

Here ξ is a constant and χn=0(p = 0) = 0; that is, the thermal average
〈Φ〉 = ξ. Owing to the global U(1) symmetry, L depends only on the
magnitude of ξ and not on its phase, as illustrated in Figure 7.1. For
convenience we shall choose ξ real.

In terms of the shifted field, the Lagrangian is given by

L = −U(ξ) + L0 + LI (7.5)

where

U(ξ) = −c2ξ2 + λξ4

L0 = 1
2∂μχ1∂

μχ1 − 1
2

(
6λξ2 − c2

)
χ2

1

+ 1
2∂μχ2∂

μχ2 − 1
2

(
2λξ2 − c2

)
χ2

2

LI = −
√

2λξ
(
χ2

1 + χ2
2

)
χ1 − 1

4λ
(
χ2

1 + χ2
2

)2
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7.1 Charged scalar field with negative mass-squared 119

In addition, L contains terms linear in χ1 and χ2, but these contribute
nothing and may be dropped. (Using the Fourier expansion (2.30), we
see that these terms contribute to the action an amount proportional to∫ β
0 dτ

∫
d3xχ(x, τ) ∝ χn=0(p = 0).) The procedure of shifting the field in

this way and regarding χ1 and χ2 as the elementary excitations instead
of φ1 and φ2 is called the mean field expansion. The mean field potential
energy density is U(ξ), as we show below. The mean field masses can be
read off from L0 as

m̄2
1 = 6λξ2 − c2

m̄2
2 = 2λξ2 − c2

(7.6)

Finally, notice that a cubic interaction is induced if ξ 
= 0.
The mean field approximation is obtained by calculating lnZ with the

neglect of LI. One might expect this to be a good approximation if both
λ and λξ are small. At this point, it is convenient to introduce the ther-
modynamic potential density Ω. For a uniform infinite volume system we
have the relationship

Ω(T, ξ) = −P (T, ξ) = −T

V
lnZ (7.7)

We know from thermodynamical considerations (Landau and Lifshitz [1];
Reif [2]) that in thermal equilibrium Ω is a minimum with respect to
variations in ξ, when ξ is treated as a variational parameter. Intuitively,
this can be recognized by remembering that in equilibrium the pressure is
spatially uniform and that a local fluctuation to a state of lower pressure
is obviously unstable. In the mean field approximation,

Ω(T, ξ) = U(ξ) +
∫

d3p

(2π)3
[

1
2ω1 + 1

2ω2

+ T ln
(
1 − e−βω1

)
+ T ln

(
1 − e−βω2

)]
(7.8)

ωi =
√

p2 + m̄2
i

The vacuum energy density is Ω(T = 0, ξ).
The classical energy density, obtained by neglecting the zero-point

energy in the fields, is

Ωcl(T = 0, ξ) = U(ξ) = −c2ξ2 + λξ4 (7.9)

This potential has a minimum at ξ2
0 = ξ2(T = 0) = c2/2λ, as shown in

Figure 7.2. The potential energy density has a local maximum at ξ = 0.
This explains the instability encountered earlier. Instead of expanding
about this local maximum, we should expand about the global minimum
at ξ0. The mean field masses, that is, the masses of small excitations about
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Fig. 7.2

the equilibrium field configuration, are

m̄2
1(T = 0) = 2c2

m̄2
2(T = 0) = 0

(7.10)

These results are rather transparent. If we allow for complex values of
ξ then the potential would still have the shape illustrated if we rotated
the curve about the vertical axis. So we plot U along the z-axis and take
the complex ξ plane to define the x- and y- axes. Since U depends only
on |ξ|, we obtain the famous “bottom of the wine bottle” shape. Radial
excitations of the field have a mass

√
2c, while rotational excitations have

zero mass. Since the Lagrangian written in terms of Φ and Φ∗ has a
global U(1) symmetry, it is clear that if we change the phase of the field
everywhere in space at the same time there will be no change in the energy
of the system. This static, infinite-wavelength, zero-momentum excitation
circles around the bottom of the potential in the complex ξ plane. This
excitation is called a Goldstone boson. The U(1) symmetry apparent in
(7.1) is not so obvious in (7.5). It is said to be spontaneously broken, since
the vacuum exhibits a lesser symmetry than the Lagrangian. The real and
imaginary components of the field exhibit different masses. The existence
of a Goldstone boson in such a case is guaranteed by Goldstone’s theorem,
which is discussed in more detail in the next section.

There are a number of analogies with more common systems. In a
ferromagnetic metal all the spins line up at T = 0. Since there is no pre-
ferred direction in which they should point, rotational symmetry is spon-
taneously broken. Spin waves with vanishing momentum carry no energy;
their dispersion relation is ω = csk. When the ends of a rod are subjected
to sufficient force, the lowest-energy state is achieved when the rod is
bowed. Since there is no preferred direction in which the rod should bow,
rotational symmetry is spontaneously broken. The energy of a rotating
bent rod, ω = l2/2I, vanishes as the angular momentum l goes to zero.

Now we raise the temperature of the system to T > 0. When T 2 � ξ2
0 =

c2/2λ, not much of interest happens. There is an ideal gas of quasiparticles
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7.1 Charged scalar field with negative mass-squared 121

Fig. 7.3

with masses m̄1 =
√

2c and m̄2 = 0. The thermal pressure is

Pthermal = P0(T, m̄2
1) + P0(T, m̄2

2) (7.11)

where

P0(T, m̄2) = −T

∫
d3p

(2π)3
ln
(
1 − e−βω

)
=
∫

d3p

(2π)3
p2

3ω
1

eβω − 1

ω =
√

p2 + m̄2 (7.12)

When T is not small we must allow for the possibility that thermal
fluctuations may change the equilibrium value of the condensate field ξ.
If the interesting physics occurs when T 2 � c2/λ � c2, then we make a
high-temperature expansion of P (T,m2) as (see appendix Section A1.3)

P0(T,m2) =
π2

90
T 4 − 1

24
m2T 2 +

1
12π

m3T

+
m4

64π2

[
ln
(

m2

16π2T 2

)
+ 2γE − 3

2

]
+ · · · (7.13)

Then, with P = −Ω,

Ω(ξ, T ) = λξ4 +
(

1
3
λT 2 − c2

)
ξ2 − π2

45
T 4 − 1

12
c2T 2 (7.14)

Keeping only the first two terms in (7.13) yields (7.14). This is actually a
very clever termination of the series, often used in the literature, since (i)
it is correct when T = 0, (ii) it is a good approximation when T > c, and
(iii) it is a remarkably transparent function of ξ and T . The isotherms
of the thermodynamic potential are shown in Figure 7.3. The minimum
shifts to smaller values of ξ and becomes less deep, as T increases. At
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Fig. 7.4

T 2
c ≡ 3c2/λ, the coefficient of ξ2 changes sign and the potential has a

minimum at ξ = 0. The location of the minimum is

ξ2
min(T ) =

{
c2/2λ− T 2/6 T ≤ Tc

0 T ≥ Tc
(7.15)

This is shown in Figure 7.4. It can be seen that there is a phase transition
at Tc. The spontaneously broken U(1) symmetry is restored!

Using (7.15) in (7.14), the pressures in the low- and high-temperature
phases are, after normalizing the vacuum pressure and energy density to
zero,

P<(T ) =
(
π2

45
+

λ

36

)
T 4 − 1

12
c2T 2

P>(T ) =
π2

45
T 4 +

1
12

c2T 2 − c4

4λ

(7.16)

The pressure and entropy are continuous at Tc,

P<(Tc) = P>(Tc)

dP<(Tc)
dT

=
dP>(Tc)

dT

(7.17)

but the heat capacity is discontinuous,

d2P<(Tc)
dT 2

− d2P>(Tc)
dT 2

=
2
3
c2 (7.18)

Hence this is a second-order phase transition. The physical origin of this
symmetry-restoring phase transition is that the ordering inherent in the
vacuum, and represented by the accumulation of an infinite number of
particles into the zero-momentum state or condensate field ξ, is destroyed
by thermal fluctuations at high temperatures. The second-order nature of
the phase transition is expected from the general Landau theory of phase
transitions (Landau and Lifshitz [1]). A first-order transition would arise
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7.2 Goldstone’s theorem 123

if a term cubic in ξ were present in Ω, but this is not allowed by the U(1)
symmetry.

There are potential flaws in the beautiful scenario just painted. First,
the masses in the mean field approximation are

m̄2
1 = 6λξ2

min(T ) − c2 =
{

2c2 − λT 2 T ≤ Tc

−c2 T ≥ Tc
(7.19)

m̄2
2 = 2λξ2

min(T ) − c2 =

{
−1

3λT
2 T ≤ Tc

−c2 T ≥ Tc

We are burdened again by a negative mass-squared at T > 0. Also, where
is the Goldstone boson when 0 < T ≤ Tc? Finally, what about the change
in the zero-point energy in (7.8) as ξ varies with T? We shall return to
these questions after a more general discussion of Goldstone’s theorem.

7.2 Goldstone’s theorem

Goldstone’s theorem may be stated as follows:

If a continuous symmetry of the Lagrangian is spontaneously broken, and
if there are no long-range forces, then there exists a zero-frequency exci-
tation at zero momentum.

Here are some examples from nonrelativistic many-body systems [3].

� Ferromagnets. The absence of long-range forces, which may tend to
couple spins at large distances, is necessary for the existence of a mode
with ω → 0 as k → 0.

� Superconductors. In the Bardeen–Cooper-Schrieffer (BCS) theory there
is a spontaneous breaking of phase invariance associated with the con-
servation of electron number. However, there is an energy gap (equal
to the mass of the Cooper pairs), so there is no Goldstone boson. The
reason is that there are long-range electromagnetic forces.

� Superfluids. A low-temperature Bose system is a superfluid. The conden-
sate field, at T = 0, is 〈Φ〉 = ξ, which is related to the particle number
density by n = |ξ|2. The phonon spectrum is

ω2 =
k2

2m

(
k2

2m
+ 2nV (k)

)
where V (k) is the Fourier transform of the two-body potential. By def-
inition, a short-range potential has the property that V (k = 0) is finite
and positive. In that case, ω →√

nV (k = 0)/mk as k → 0. This is not
so for a long-range potential. For the Coulomb force, V (k) = e2/k2 and,
as k → 0, ω → e

√
n/m = ωP, the plasma frequency.
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124 Spontaneous symmetry breaking and restoration

We would like a nonperturbative proof of Goldstone’s theorem. How-
ever, to be concrete, we will construct such a proof in the context of the
U(1) scalar field theory discussed in the previous section.

The U(1) symmetry is Φ → Φe−iα, or δΦ = −iαΦ if |α| � 1. The con-
served current density may be recalled from (2.47). In terms of the shifted
field, it is

jμ = χ2∂μχ1 − χ1∂μχ2 −
√

2ξ∂μχ2 (7.20)

The total charge, Q =
∫
d3x j0(x), is conserved; Q̇ = 0. The change in Φ

due to an infinitesimal change in phase can also be expressed in operator
form as

δΦ = iα[Q,Φ] (7.21)

That is, the total charge is the generator of the phase transformation.
Taking the thermal, or ensemble, average of δΦ, we find 〈δΦ〉 = −iα〈Φ〉 =
−iαξ. Taking the thermal average of (7.21), we find an expression for the
condensate field,

ξ = −
∫

d3x 〈[j0(x, t), Φ(0, 0)]〉 (7.22)

Now we define the function

Fμ(k0,k) =
∫

d4x eik·x〈T [jμ(x),Φ(0)]〉 (7.23)

Since ∂μj
μ = 0 and

T [jμ(x)Φ(0)] = jμ(x)Φ(0)θ(x0) + Φ(0)jμ(x)θ(−x0) (7.24)

it follows that

kμF
μ = −i

∫
d4x ∂μ

{
eik·x〈T [jμ(x),Φ(0)]〉

}
(7.25)

+ i

∫
d3x e−ik·x〈[j0(x),Φ(0)]〉

If the surface term in (7.25) vanishes then comparison with (7.22) shows
that

lim
k→0

kμF
μ = −iξ (7.26)

If ξ 
= 0, which means that the U(1) symmetry is spontaneously broken,
then F has a pole at k = 0. This pole corresponds to a zero-frequency
excitation at zero momentum.
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It is not difficult to determine Fμ. Substituting (7.20) into (7.23) leads
to

Fμ(k) = −ξkμ
∫

d4x eik·x〈T [χ2(x)χ2(0)]〉
= −iξkμD2(k) (7.27)

where D2 is the real time Green’s function. Combining (7.26) and (7.27)
tells us that the imaginary part of the shifted field has a dispersion relation
with the property that ω(k = 0) = 0. This is the Goldstone boson.

If the surface term in (7.25) is not zero then no conclusion may be
drawn. This is often the case when there are massless spin-1 bosons in
the theory. This is a gauge theory. We will discuss what happens in this
case later on, focusing especially on the Higgs model and the Glashow–
Weinberg–Salam model of the electroweak interaction.

7.3 Loop corrections

Now let us turn our attention to Ω and also to the self-energies of the
fields.

In Section 7.1 we neglected the shift in the zero-point energy of the
vacuum. Up to an (infinite) additive constant we can write∫

d3p

(2π)3
ω =

∫
d4p

(2π)4
ln(p2 + m2) (7.28)

where p = (p, p4) is a Euclidean four-vector. Our regularization procedure
is simply to place an upper cutoff, Λc, on the integration over |p|. This is
what we did in Section 3.4 (see also Chapter 4). Then∫

d3p

(2π)3
ω =

1
64π2

[
4m2Λ2

c − 2m4 ln
(

Λ2
c

m2

)
−m4

]
+ constant (7.29)

plus terms that vanish as Λc → ∞. We may add to the Lagrangian the
counterterms

δc2Φ∗Φ − δλ(Φ∗Φ)2

In general, δc2 and δλ will depend on the other constants in the
Lagrangian, and on c2 and λ as well as Λc. The vacuum energy density is

Ω(T = 0, ξ) = −(c2 + δc2)ξ2 + (λ + δλ)ξ4

+
1

64π2

[
2(m̄2

1 + m̄2
2)Λ

2
c − m̄4

1 ln
(

Λ2
c

m̄2
1

)
− m̄4

2 ln
(

Λ2
c

m̄2
2

)
− 1

2
(m̄4

1 + m̄4
2)
]

(7.30)
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126 Spontaneous symmetry breaking and restoration

There is some freedom in choosing δc2 and δλ. However, we should insist
that Ω(T = 0, ξ) be finite (independent of Λc) and that Goldstone’s the-
orem be satisfied (m̄2 = 0). The latter will occur only if Ω(T = 0, ξ) has
its minimum at ξ2 = c2/2λ. A straightforward calculation yields

δc2 =
λΛ2

c

4π2
+

λc2

4π2
ln
(

Λ2
c

2c2

)
+ c2

δ′λ
λ

δλ =
5λ2

8π2
ln
(

Λ2
c

2c2

)
+ δ′λ

(7.31)

Here δ′λ = constant × λ2 is not determined by the above conditions. The
renormalized vacuum energy density is

Ω(T = 0, ξ) = −c2
(

1 − λ

8π2
+

δ′λ
λ

)
ξ2 + λ

(
1 − 5λ

16π2
+

δ′λ
λ

)
ξ4

+
m̄4

1

64π2
ln
(
m̄2

1

2c2

)
+

m̄4
2

64π2
ln
(
m̄2

2

2c2

)
(7.32)

There are several noteworthy points concerning (7.32). By construction
it has its minimum at the same location as the classical energy density.
Thus, in the true vacuum m̄2

1 = 2c2 and m̄2
2 = 0, the same as in the classi-

cal approximation. Goldstone’s theorem is obeyed. To (7.32) we may add
any constant. Thus, not only the location of the minimum but also its
depth can be made the same as in the classical approximation. Notice,
however, that when ξ2 < c2/2λ then m̄2

2 < 0 and Ω has an imaginary part.
This is not unreasonable since in that region the system is unstable.

In the high-temperature expansion (7.13) there is also a term of order
m4 lnm2, with a coefficient of equal magnitude but opposite sign. Thus
the order-m4 lnm2 terms in the vacuum and high-temperature contribu-
tions cancel. Adding together (7.13) and (7.32) gives an improved high-
temperature expression for the thermodynamic potential (for now we will
neglect the term −(m3

1 + m3
2)T/12):

Ω(T, ξ) = −π2

45
T 4 − c2T 2

12
+

c4

32π2
ln
(

8π2T 2

c2
e−2γE+3/2

)
− c2ξ2

[
1 +

δ′λ
λ

+
λ

4π2
ln
(

8π2T 2

c2
e−2γE+1

)
− λT 2

3c2

]
+ λξ4

[
1 +

δ′λ
λ

+
5λ
8π2

ln
(

8π2T 2

c2
e−2γE+1

)]
(7.33)

The appearance of the logarithms is all that really distinguishes this
improved potential from its predecessor. (The δ′λ/λ terms can be
absorbed into the arguments of the logarithms if desired.) Now ln(T/c)
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is a slowly varying function compared with T 2 or T 4. So the shape of
the potential is hardly affected. The critical temperature is determined as
usual by the vanishing of the coefficient of ξ2. To lowest order, T 2

c = 3c2/λ,
as before. An improved formula is obtained by substituting the lowest-
order result in the logarithm:

T 2
c =

3c2

λ

[
1 +

δ′λ
λ

+
λ

4π2
ln
(

24π2

λ
e−2γE+1

)]
(7.34)

The correction is of relative order λ lnλ. For instance, if we take δ′λ = 0
and λ = 0.1 then the correction is only about 2%. It may seem as if the
critical temperature depends on the rather arbitrary value of δ′λ but this
is not so; the numerical values of c and λ depend on the renormalization
prescription used to define them, which involves δ′λ through (7.31). In
the end, Tc must be independent of the renormalization prescription.

The next problem we face in the mean field approximation is that m̄2
2 <

0 for T > 0 and m̄2
1 < 0 for T > 2T 2

c /3. Note that the finite-temperature
corrections (7.19) to these masses are negative and proportional to λT 2

in the high-temperature limit (T > c). The one-loop contributions to the
self-energies are of the same order. Therefore, they must be computed.

From the Lagrangian (7.5) we find the two-loop contributions to lnZ
to be

3 + 3 + 2

+ 3 + (7.35)

A solid line represents the χ1 propagator and a broken line represents the
χ2 propagator. There is a factor −λ/4 at each four-point vertex and a
factor −√

2λξ at each three-point vertex. (Note that the 1PR diagrams
do not appear on account of the stipulation that χ0(0) = 0. This can be
shown by returning to the diagrammatic rules following from the func-
tional integral in Section 3.2.) The self-energies are

Π1 = −12 − 4 − 18 − 2

Π2 = −12 − 4 − 4 (7.36)

The diagrams involving a three-point vertex, the so-called exchange dia-
grams, are momentum and frequency dependent. To renormalize, we
must add the counterterms −δc2 + 6ξ2δλ and −δc2 + 2ξ2δλ to Π1 and
to Π2, respectively. In the high-temperature approximation, and at low
frequency and momentum, the exchange diagrams may be neglected. This
follows simply from power counting. Both types of diagram involve one
integration over the loop momentum, but the exchange diagrams involve
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Fig. 7.5

two propagators instead of one. Then

Πmat
1 = Πmat

2 =
1
3
λT 2 (7.37)

Adding these to (7.19), we obtain the masses

m2
1 = m̄2

1 + Πmat
1 =

⎧⎪⎨⎪⎩
2c2
(

1 − T 2

T 2
c

)
T ≤ Tc

1
3
λ
(
T 2 − T 2

c

)
T ≥ Tc

(7.38)

m2
2 = m̄2

2 + Πmat
2 =

{
0 T ≤ Tc
1
3
λ
(
T 2 − T 2

c

)
T ≥ Tc

The behaviour of the masses as a function of temperature is shown in
Figure 7.5. Thus the pathological behavior of the boson propagators has
been cured. The vanishing of the masses at the critical point is charac-
teristic of a second-order phase transition. Typically, one finds that the
correlation lengths diverge at Tc. (The last diagram for Π1 in (7.36) actu-
ally diverges if we let the external frequency and momentum go to zero
and if T < Tc, because m2 = 0. That is, the zero-mode contribution is pro-
portional to λ2ξ2T

∫
dp/p2. This is of no physical importance since the

mass is defined to be the location of the pole of the real time propagator
at zero momentum. The relevant limit in (7.36) is Π1(ω = m1, k = 0).)

The lesson learned is that the mean field approximation is not reli-
able in all respects. It turns out that it correctly predicts a second-order
symmetry-restoring phase transition at T 2

c = 3c2/λ. However, it is incor-
rect in the finer details, such as the finite-temperature behavior of the
correlation lengths (boson masses). This is a serious matter, since Gold-
stone’s theorem is violated. At the very least, one should include all loop
corrections to the same order in the coupling constants as is retained
in the mean field approximation. The reason is that a loop expansion is
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essentially an expansion in powers of the Lagrangian. In order to respect
the symmetries of the Lagrangian, one must retain all diagrams through
a fixed number of loops.

A better approximation scheme would be to consider the thermody-
namic potential Ω as function of the mean field 〈Φ〉 = ξ and as a functional
of the boson propagators D1 and D2. The mean field would be determined
by the minimization condition ∂Ω/∂ξ = 0, and the propagators would be
determined by the Schwinger–Dyson equations. To implement this idea,
we would add to the quadratic part of the action S0 the term

− 1
2β

2
∑
n

∑
p

[χ1;−n(−p)Π1(ωn,p)χ1;n(p) + χ2;−n(−p)Π2(ωn,p)χ2;n(p)]

(7.39)

and subtract the same quantity from SI. In the S0 case, (7.39) is to be
treated as a counter-term. Recalling (2.36) and the steps leading up to it,
we can write the thermodynamic potential as [4]

Ω(T, ξ,D1,D2)

= U(ξ) − 1
2T
∑
n

∫
d3p

(2π)3

[
ln(T 2D1) + ln(T 2D2) − D1

D̄0
1

− D2

D̄0
2

+ 2

]

+
∞∑
l=2

Ωl(ξ,D1,D2) + subtractions (7.40)

Here
D̄0

1 =
(
ω2
n + p2 + m̄2

1

)−1

D̄0
2 =

(
ω2
n + p2 + m̄2

2

)−1
(7.41)

These are the mean field propagators, and Ωl is the sum of all l-loop
diagrams; in these loop diagrams, the bare propagators are to be replaced
with the full propagators. Here, the potential Ω is an extremum with
respect to independent functional variations of D1 and D2, on account of
the Schwinger–Dyson equations

D−1
1 − D̄0−1

1 = 2
∞∑
l=2

δΩl

δD1

D−1
2 − D̄0−1

2 = 2
∞∑
l=2

δΩl

δD2

(7.42)

These equations determine Π1 and Π2 self-consistently, just as ξ is deter-
mined self-consistently from ∂Ω/∂ξ = 0.

As a practical matter, the loop sum must be terminated at a finite
order. Then the momentum- and frequency-dependent self-energies must
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be determined self-consistently and substituted into (7.40) to compute Ω.
The mean field is then determined by minimizing Ω. If only the two-loop
diagrams (7.35) are retained and the high-temperature approximation is
made, (7.37) and (7.38) follow. Then Ω may be computed from (7.40)
straightforwardly since the propagators are both non-negative for all fre-
quency and momentum. Minimization with respect to ξ will yield ξ as
a function of T . One finds again that at T 2

c = 3c2/λ there is a second-
order symmetry-restoring phase transition, as predicted by the mean field
approximation. This is left as an exercise.

7.4 Higgs model

The model discussed so far can be made more interesting by coupling the
charged scalar field to the electromagnetic field. The Lagrangian density
is

L = (∂μ − ieAμ)Φ∗(∂μ + ieAμ)Φ + c2Φ∗Φ − λ(Φ∗Φ)2 − 1
4F

μνFμν (7.43)

Anticipating the spontaneous breaking of the U(1) symmetry, which is
now a local symmetry, we shift the field by setting

Φ = ξ + χ (7.44)

and stipulate that 〈χ〉 = 0. Apart from terms linear in χ, we obtain

L = −U(ξ) + L0 + LI (7.45)

where

L0 = 1
2(∂μχ1) (∂μχ1) − 1

2m̄
2
1χ

2
1 + 1

2(∂μχ2)(∂μχ2) − 1
2m̄

2
2χ

2
1

− 1
4F

μνFμν + e2ξ2AμAμ −
√

2eξχ2∂μA
μ

LI = −
√

2λξ
(
χ2

1 + χ2
2

)
χ1 − 1

4λ
(
χ2

1 + χ2
2

)2
+ eAμ(χ1∂μχ2 − χ2∂μχ1)

+ e2AμAμ

[√
2ξχ1 + 1

2

(
χ2

1 + χ2
2

)]
Here m̄2

1, m̄
2
2, and U(ξ) are as defined in Section 7.1. It would appear from

L0 that the electromagnetic field has developed a mass
√

2eξ. However,
this must be carefully considered because of the mixing between χ2 and
Aμ.
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To find the spectrum of excitations at T = 0 it is useful to make the
change of variables

Φ =
(
ξ + 2−1/2φ

)
exp

(
iη√
2ξ

)
A′

μ = Aμ +
∂μη√
2eξ

(7.46)

where φ and η are two independent real fields. Substitution into (7.43)
yields

L = −U(ξ) + L′
0 + L′

I (7.47)

where

L′
0 = 1

2∂μφ ∂μφ− 1
2m̄

2
1φ

2 − 1
4F

′μνF ′
μν + e2ξ2A′μA′

μ

L′
I = −

√
2λξφ3 − 1

4λφ
4 + e2

(√
2ξ + 1

2φ
)
φA′μA′

μ

Notice that all reference to the field η has gone! Minimizing the classical
energy density U(ξ) gives an equilibrium condensate ξ2 = c2/2λ, the same
as before. Thus, at T = 0, we have a real scalar field with mass

√
2c and a

vector field with mass ec/
√
λ. Counting the number of degrees of freedom,

we have one for the former and three for the latter. This is the same as
without spontaneous symmetry breaking, namely two for the Φ field and
two for the massless Aμ field. There is no Goldstone boson; the Goldstone
theorem does not apply, because Aμ is a vector field. The generation of
mass for the vector field via spontaneous symmetry breaking is known as
the Higgs mechanism. It is a central concept in modern gauge theories.

The choice of variables in (7.46) is not very appropriate for a mean
field approximation at high temperature, because we expect ξ to decrease
with increasing T and eventually to vanish above a critical temperature.
Therefore we return to (7.45) to study the thermodynamics.

At T = 0 it can be shown that the χ2 field in (7.45) does not represent
an observable particle in scattering experiments [5]. In more picturesque
language, it is said that the vector field increases its number of polariza-
tion degrees of freedom from two to three and becomes massive by eating
the would-be Goldstone boson.

The partition function is

Z =
∫

[dAμ] [dΦ] [dΦ∗] δ(F ) det
(
∂F

∂α

)
exp

(∫ β

0
dτ

∫
d3xL

)
(7.48)

One convenient choice of gauge is the so-called Rρ-gauge,

F = ∂μAμ −
√

2eξρχ2 − f(x, τ) (7.49)
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in the limit ρ → 0. Under an infinitesimal gauge transformation

Φ → Φeieα ≈
(
ξ +

χ1 + iχ2√
2

)
(1 + ieα)

Aμ → Aμ − ∂μα

(7.50)

we have
∂F

∂α
= −∂2 − e2ξ

(
2ξ +

√
2χ1

)
ρ → −∂2 (7.51)

Furthermore, multiplying the right-hand side of (7.48) by

exp
(
− 1

2ρ

∫ β

0
dτ

∫
d3x f2

)
and functionally integrating over f gives a β-independent correction.
Hence

Z = lim
ρ→0

det
(−∂2

) ∫
[dAμ] [dΦ] [dΦ∗] exp

(∫ β

0
dτ

∫
d3xLeff

)
(7.52)

where

Leff = −U(ξ) + L0 + LI − 1
2ρ

(
∂μAμ −

√
2eξρχ2

)2

Close scrutiny of (7.52) brings out the following points. The factor
det
(−∂2

)
cancels two specious degrees of freedom. The gauge-fixing term

has a part that is independent of ρ and that, in fact, cancels the mixing
term between χ2 and Aμ in (7.45). The limit ρ → 0 ensures that only
those gauge-field configurations with ∂μAμ = 0 contribute to the partition
function.

A high-temperature mean field approximation similar to (7.13) and
(7.14) can be carried out, with the result

Ω(ξ, T ) = λξ4 +
[(

λ

3
+

e2

4

)
T 2 − c2

]
ξ2 − 2π2

45
T 4 − 1

12
c2T 2 (7.53)

This predicts a second-order symmetry-restoring phase transition at T 2
c =

12c2/(4λ + 3e2). Of course, the particle masses exhibit the pathological
behavior typical of the mean field approximation and it is necessary to
calculate the one-loop self-energies to obtain a more respectable behavior.

Since the Higgs model contains two independent dimensionless cou-
pling constants, new phenomena may occur. If λ >∼ e4 then the qualitative
behavior of the phase transition sketched above is not altered by higher-
order loop corrections. If λ <∼ e4 then the mass of the vector meson is
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comparable with or greater than Tc, and the second-order phase transition
may even become a first-order one. In fact, when λ → 3e4/32π2, quantum
corrections cause Tc to decrease to zero, and for λ < 3e4/32π2 there is no
spontaneous symmetry breaking even at T = 0. The interested reader is
referred to the review of Lindé [6].

If c = 0 then we are dealing with massless scalar electrodynamics, not
the Higgs model. Surprisingly, spontaneous symmetry breaking occurs
here also. It is driven by the one-loop quantum correction to the vacuum
energy density, the shift in the zero-point energy of the vacuum. This
phenomenon was discovered by Coleman and Weinberg [7]. The finite-
temperature behavior of the Coleman–Weinberg model is left as an exer-
cise.

7.5 Exercises

7.1 Choose δ′λ in (7.32) so that the depth of the minimum is the same as
in the classical theory. Then plot the classical and one-loop quantum
vacuum energy densities versus ξ for λ = 0.1, 0.01, 0.001.

7.2 Retaining the two-loop diagrams (7.35) and using the high-
temperature approximation, as discussed at the end of Section 7.3,
calculate Tc.

7.3 An alternative to the mean field expansion is an ordinary perturba-
tive expansion based on the T = 0 value of the condensate field ξ0.
This scheme has the disadvantage that it is not self-consistent, but
the advantage that one need not do an expansion in terms of full
propagators since no tachyons appear in the perturbative expansion.
In this case 〈χ〉 will not vanish at T > 0. Using only the one-loop
diagrams, show that 〈Φ〉 = ξ0 + 〈χ〉 vanishes at T 2

c = 3c2/λ.
7.4 Read the paper Coleman and Weinberg [7]. Verify their result that

there is spontaneous symmetry breaking at T = 0 in massless scalar
electrodynamics. Show that the symmetry is restored at high tem-
perature, and calculate Tc.
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