A Determinantal Expansion for a Class of Definite Integral
Part 3. GENERALISED CONTINUED FRACTIONS
By L. R. SHENTON
(Received 2nd March 1953.)

1. We have shown in [1] that under certain conditions the

b 42

-definite integra.lj 4—%)(:”)@: may be approximated by a deter-
a X

minantal ratio. It is our object now to develop the theory when

C(x) is a polynomial, showing the relation to the continued fraction
b

form fOl‘j Z)L)xdt In particular we shall give various forms for the
. Z— )

approximants, and an integral form for the numerator.

2. From [1] we have the expansion
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where!?

b b n
a=| a@u@dn  y.=[ 0@ 6@ -2 d,
a a 1

Ay= D, 4(2) = | Yoos Y115 « -+ Yes I ’
wx) =0fora=z= b (a, b finite),

b
j w(z) dz exists and is positive,
a

1 Ny(z,, %2, ..., zn)and Dy (z , 2,,...2n) ete. will be abbreviated to Ns(z) and Ds (2)
when ambiguity is unlikely.

https://doi.org/10.1017/50013091500021556 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500021556

DETERMINANTAL EXPANSION FOR A CLASS OF DEFINITE INTEGRAL 135

fI(zj —z)=(2; —2) (23 — x) ... (2, — ) > 0and the 2’s are distinct,.
1

6,(x) is an arbitrary polynomial of precise degree s with highest.
coeflicient A,.

We shall refer to (1) and (2) as continued fractions (C.F.’s) of the

nth order, and R, (z,, 2,, ..., 2,) = N,/D, as the sth approximant or

convergent.
The expansions (1) and (2) arise from a consideration of the

minimum value of
b 1 r—1 2
S3 — j w(x) H(Z —.’t) {ﬁ(—z-:—;) — X o A,q,(x)} dx (4)
Where QB(x) = ] oo(x)z Yorr Yizs ++ s 'Vs—l,a I /{(—)'/\sAa—l}- (5)

and {g,(x)} is an orthogonal system with respect to the weight function
w(z)ll(z — z), the highest coefficient in g¢,(z) being unity. 1ndeed if

we write

8, = [ wiz tle — 2 g2w) dz (©)
then A, = J ’ g (2)w(z) dz ' (7)
and 82 =I;(z) _ >05 ' 44, (8)

It may be remarked in passing that a consideration of the

. - b
minimum value of j (z—2)w(z) {(z—2) ' — Z4,9,(x)}’dx and of
b

Lx(z —2)w(z){(z —z) =1 — T4l g} (N dz leads to continued fractions

4
forf (z — z) " *w(z) dz related to the ‘even’ and ‘odd’ parts of a

Stieltjes type of continucd fraction. The present approach shows
immediately the central part played by orthogonal polynomials,
and although in cssence both these expressions were considered by
Stieltjes [2], it is only at a later stage that the orthogonality property

emerges.

3. We shall now consider various forms for N,(z) and D,(z).
These arise by taking (a) 0,(z) = (v — z)°;
(b) b,(z) = p,(x),

where {p,{z)} is an orthonormal system with respeet to w(x), and p,(x}
has highest_coefficient %,;
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(c) 6, (z) = 2:(z) = | Ps(%)s Ps 4 1(21), Ps+ 2(22)see -y Dy + n{2n) I
k, + 1z — x) I PAZ1)s Do +1(22)s e Ds 40 — 1(2y) | (%)
and the system {g,(z)} is orthogonal with respeet to w(z)[I(z — z).
(4
(a) Here a,=J (v — 7)*w(x) dz = m, say, (10)
b
Vo= (v — 2yt (2 —2)do = Myyy o say. (1)

For particular choices of w{x), m, is an Appell polynomial.
Further, if 2z, =2, = ... =2z,=v theny, ,=m, _, ;.
From (6) we have, in the notation of persymmetric determinants,

¢ =Pr+](Mm M"+].....M"+2,) (12)
r Pf(Mm Mn+1)"'l Mn+2r—2)

r—1
and T AZ4,

8=0

0 ™M, my... m, _,
mg M, Myiqoee My oy
my Mn+l Mn+2--' Mn+r—2

mr-an+r—1Mn+r e Mn+2r—2

If the roots z; arc equal and z; =v, M, is to be replaced by m,.
(b) The polynomials p,(x) follow a rccurrence relation
pe(z) = (A2 + B,) po—1(x) — Cips — o(%), §=2, 3,_ .
Pi(z) = (4,2 + Bi)po, Po = ko (14)
A =kJjk,_1>0, C,=4,/]4,_1>0,
which may be written
(x - Z!)ps - l(x) = As— lpx(x)— (:1 + BsAg_ 1)p‘s - 1(:5) +Aa——1]p3 —2(-‘:)' (15)
We require the following generalisation of (15):

I a

(x — :j)ps—-l(x) =€ _1,nPs+n~-1 +ée-1n —1P:yn—2 +...
1

+ e, - 1,0173_1+€s_2,1ps—2+es—3,2ps—3+- te _n—1,0Ps-n-1 (16)
where e, _; , =k, _1/k; . n_1, and ¢, ,is to be taken as zero if s<0,
The notation is justified by the identity

[ tps @1 & = 21 pr (2 0 @) 00 = [ [2e) Tz — s - s(2) w0 (2) i

i

For example,
(g —2) (x — 2,) Ps - 1(Z) = [e—1Ps1 + o —1Ps + Ry _1Ds 1
+ Gs-oDs—2+ [s—sps—3 (s=1,2,...), (17)
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where fn—1=A,-1A;+i's=1’2’ e
— A9, 1=B, 1 A7+t + B4, s=1,2, ...
by = A7 @ FBAT) 22+ BAT) 4 472 6= 2.3,
he =AT24(z+ B ATY) (2,4 BATY).

From (6) and (7) we find, after using (16),

(=) K, 1(eq €o1s Cops - -+1 €n)

_ L r=0,1,... (18
¢’ k? Kr(enos €o1s €o2> -+ eon) ’ ( )

and
Kr —l(elov env ey eln)
K (e, Co1s - -5 €an)s

r=1,2,...,K,=1, " (19)

f-:l 2 g
,5‘0 As ?Sal: (—) ko

where we have introduced the notation K, (eg, €o1s --+» €3a) fOr a
generalised continuant determinant of order r, symmetric, with
clements egg, €10, €90y - - - in the diagonal through (1, 1), €gy, €54, €5y, - -+
in the diagonal through (1, 2), and so on. We shall refer to thesc as
continuants of the nth kind. Thus the ratio of continuants of the
1st kind is related to C.F’s of the first order, the determinants
concerned consisting of clements in threc diagonals only. Similarly
C.F.’s of the second order are associated with the ratio of continuants
of the 2nd kind which in turn have elements in five diagohals only.

(c) Writing for simplicity
| ps(x)’ Ps + l(zl)u LRXT ps+n(zn) i = As(x’ 21y Zgy ooy 2’,,)

As(xy Zyr o ey zn)

we have gs(x) = p
ks v ul}(""i — ) Ay(21,22) + -1 %)

1 8
= Tz ) Eol DA2.), Per1(22)s Pora(2a)s « « o Posn—1(2a) | Pr(2) (20)

by a generalisation of a theorem of Darboux quoted in (1], (17).
Hence from (6) and (7) we find

1 A, (21, 250 o= 7)

r = 2]

¢ Kky pn Afz1, 29y -y 2a) ( )

and

'il A;_) d),=r£1 k8+ﬂ I 2(1) ’pk +](22)’ px-{-f’.(zfl)) ey pc+n-—1(zn) l 2. (22)
0 P kyAy(2), 25 -0y 20) Ay 1 1(20) 20y ooy 2p)
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r—1 .
4. If we now consider the value of I14;, we have from (18) and (21)
0

D, (2,, 2,,. .., 22) = (—)"K (g9, €015 - -+ €on)

_ A2y 25, ..., 2,)
- nyr—1 23
| 22,20, o2t | TR (23)
r

n -1
since Az, ...,2,) = Il &; | 2,2}, ..., 227! |, and from (12) and (21)
0

r—1
Dr(zlv 22y v ey Z”) = Hok]2 Pr(Mn’Mn+]v ey Mn+2r—2) (24)
J =
and as a consequence

N (2, 29 o0y 2) = ( — )"'ko— 2K, _1(e10s €115 - --» €11)

__'a el 0 M mi.. m, _,
= F]
i=0 me Mn Mﬂ+1"' Mn+r—l
my Mn+1 (25)‘
My_y Myppy Mn+2r—2
Ar(zp .eey zn)
=rtnot 0 L1 1
n e
I;Ik,-lzl,z2,...,zn |
_ 0 2
L ks+n I z] ’ p3+1(2’2), DX ps+n—l(zn) ' , (250’)

8=0 k A2y, -..y 2) A8+1(z,, ceey Z4)
r=1,2, ...
When the roots z; are equal, the only change required in (23) is.

A2qy 29y oo ey 24)
0 1 n—1
|zl,z2,...zn |

to replace

1 (n—1
by | plz). f'(rll(zr)- ?’ﬁt 22y)s oo Pran - 1{zn) | .
(n—11"1

where superscripts refer to derivatives and

(n—D11=(n—-11(n—-2)..110L

A similar modification is required in (25a).
As an illustration we take w(x) = 1/4/(1 — z%),a = —1,b =1,
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n
M(zj —2)=(z — 2), z>1,
1
with () = \/gcos sf, cos 0 =z, s=12,...
w

po(x)=\/£=ko; ka=28_1\/'2‘, s=12,..
- 7

1 (z—x) ef2 s z
&nd m, j . W—-_——dx—n(zz—l)/l)(m))

where P,(x) is Legendre’s polynomial. With ¢ = z/\/(22 — 1) we find

from the modified form of (23), and (24),

br br+l .o br+n—1
re, (r+1)c,p ..(4+n—1)cCpny ox(n — 1311
sz,. (1'+1)2br+1 . (r+n—1)2b,+,,,1 =WS— Pr{Pm Pn+l, LRXT] pﬂ+2r—2}

rie, (r+ 1),y .. (r+n—1%¢ ., ,

(n) n,r=l, 2,

by=(+ 1)+ (¢t—1)
where {c¢,=(+ 1) —(t—1)

Sy =(n+r)(ntr—1)+(—1)(—2)
and P, stands for P,(), The result for » =1 has been given by

Geronimus [3].
5. A formula for the numerators. Consider the identity

n r—1
l xosp(zl)’ pr+1(22)’ sy pr+n—-1(zn) l =I;I (zj — ) z_oBs'Ia(x) (27)

l 2(1) 4 ps-x-l(zz)r c pc+n—-1(:n) I Ar(zv . ..,Z,,)
where B¢, =
8¢8 k& As(zli ey zn)
§=0,1,...,r—1.

Then
1 ks+n| 2(; s Pe1(Z2)s o ooy Poyn—1(20) l 2.

ks AR(ZZ, ey Zp) As-i—l(zl’ <vy Zy)

J’b |x° P,(Zl) eos Pryn— 1(z") I w(x)dx— _2-
Je H(z,—x}A,(zl, e 2n) e

Hence from (22) it follows that
) .
n) — S ‘.To, 7),(2’1).7),.4_1(22), FEIEEY P,.;.n—l(an w(x)dx (28)

r+n—1
a 11 ]Ll’LoZl,z .,2:‘
r

N(z,29 00052
2’ "
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”
since II (5 —=) | 29,2}, ... 287 | = | 2% 2,22, .., 2" |.
N 2

When 2z, =2z,= ... = 2z, = z, the determinant in the numecrator
of (28)is to be replaced by | 2°, p(2), p:‘i 2y p(r";."_l(z) |, and

that in the denominator by (z — z)?(n — 1)!1.
In tho particular case n = 1 we have the well-known formula

Nio) =k 2D =P (@)
x

. po— w(z) dz,

and from (23) D,(z) = Ir,_l p(2), the ratio of these being the rth
convergent of the C.I.

Ak, 2 C, C,y

A+ By, —Apz+ By, — 42+ B, — ...

We shall consider the recurrence relations for tho numerators
and denominators of generalised C.F.’s, and some special properties
of second order C.F.’s in Part 4.
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