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The aim of this paper is to generalize Theorem 2.10 (i) of [2]. As stated
in [2] this theorem deals with the semigroup of all selfmaps on a discrete space
and provides a characterization of Jf-classes which contain an idempotent.
We will generalize this theorem to the case of other semigroups of functions on
a discrete space, some semigroups of continuous functions on non-discrete
topological spaces, and one semigroup of binary relations. The results in this
paper form the main part of chapter 3 of [1]. Some results will be quoted from
[1] without proof; the required proofs can easily be supplied by the reader.

Notation for composition of functions will be written in topological-
analytic order: (fg)(x) = /(#(*)). Thus the concepts of left and right in this paper
will be the mirror images of left and right in [2]. Juxtaposition will always denote
ordinary composition. Definition 4 will be concerned with a semigroup multiplica-
tion which is not ordinary composition.

We will let Dom(/) denote the domain of a function /, and Im(/) will denote
the image. The equivalence class of/ under a Green's relation, say if, will be
called an .Sf-class and will be written Lf.

DEFINITION 1. a. nf = ng means that Dom(/) = Dom(0) and that for
arbitrary x and y in Dom(/) = Dom{g) we have f(x) = f(y) if and only if
000 = 000-

b. A semigroup T is said to be L, if for arbitrary / and g in T we have
Lf = Lg if and only if nf = ng.

c. A semigroup T is said to be Rim if for arbitrary / and g in T we have
Rf = Rg if and only if Im(/) = Im(g).

DEFINITION 2. Let I b e a topological space.
a. S(X) is the semigroup of all continuous functions from all of X into

X under ordinary composition.
b. St(X) is the subsemigroup of one-to-one functions in S(X).
c. Q(X) is the semigroup of all continuous functions from X into X whose

domains are open subsets of X. Multiplication is ordinary composition.
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d. Qi(X) is the subsemigroup of one-to-one functions in Q(X).

From the above definition we see that St(X) = S(X) n Q^X), while Q(X)
can be thought of as the smallest semigroup containing S(X) and Qx(X). We
note that S(X) with X discrete is an Ln and Rlm semigroup according to Lemmas
2.5 and 2.6 of [2]. It is easy to see that for X discrete the semigroups Q(X) and
Qi{X) are also Ln and Rim; however, St(X) is Rim but not Ln for infinite
discrete X.

In the following three lemmas we assume that Dom(/) and Im(/) are subsets
of a topological space X.

LEMMA 1. The following conditions are equivalent:

ii) f~\f(x)) n Im(/) # 0 for each x e Dom(/).

PROOF, i -> ii. For each x e Dom(/) we have/(x) = //(z) for some z. Since

/(Z)6/-1(//(Z)) = /"'(/(*))

we see that / (z)e/-1( / (x)) n lm( / ) # 0 .
ii -»i. Clearly Im(//) <= Im(/). Let y e Im(/) be arbitrary; y = /(x). Let

Then z = f(t) for some f, and hence y = /(x) = /(z) = //(() e Im(//).

LEMMA 2. T/ie following conditions are equivalent:
i) Im(//) = Im(/) andf\lm{f) is one-to-one;
ii) f~1(f(x))C\lm(f) is a single point for each xeDom(f).

PROOF, i) -• ii). By the previous lemma we know that/" 1(f(x)) O Im(/) # 0.
Let y and z be ^ / " ' ( / ( x ) ) n lm(/ ) . Then/(y) = f(x) and y = /(s) for some s;
also /(z) = /(x) and z = /(f) for some t. Therefore /(y) = /(z), and thus
//( s) = / / (0- Since / is one-to-one on Im(/) we have /(s) = f(t), that is, y = z.

ii) -»i). By the previous lemma we know that Im(//) = Im(/). Suppose
that y and z are in Im(/) with/(y) =/(z). Then y and z are in/~'(/(y)) nlm(/),
and thus y = z.

We note that in condition i) of the preceding lemma we do not assume
that Im(/) c Dom(/). If in fact we have Im(/) c Dom(/), then condition i) says
precisely that/is a permutation on Im(/). Condition ii) of the lemma enables us
to define a function

on Dom(/).

This function is examined in the following lemma.

LEMMA 3. Suppose Im(/) c Dom(/) where f is a function which satisfies
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the equivalent conditions in the preceding lemma. Define g(x) = f~1(f(x)) nlm(/)
for each xe Dom(/). Then nf = ng; Im(/) = Im(gf); and gg = g.

PROOF. It is clear that Dom(/) = Dom(0). Suppose /(x) = f(y). Then
g(x) = g(y) by inspection. On the other hand, suppose /(x) / f(y). Then

and therefore g(x) # g(y). Hence nf = ng. Now let y e Im(/). Then

Therefore 3 | im ( / )= i|im(/)- Thus Im(/) c Im(g), but by definition we have
Im(g) <= Im(/). Consequently Im(/) = Im(#) and fif|/ro(9) = i|Im(s), that is,
99 = 9-

In view of Lemmas 2 and 3 we now define pseudo-idempotency in S(X),
S,{X), Q(X), and Q^X).

DEFINITION 3. Let T be a semigroup of the form S(X), S^X), Q(X), or
Qx{X) for some topological space X. We say that a function f e T is pseudo-
idempotent if Im(//) = Im(/) c Dom(/) and /|/m(/) is one-to-one, that is,
/ is a permutation on Im(/).

We remark that in St(X) the only idempotent is the identity function, and
the pseudo-idempotents are precisely the onto functions. In S(X) and S^X)
the condition Im(/) c Dom(/) is superfluous. In Q^{X) it is easy to see that
Im(/) = Dom(/) for a pseudo-idempotent / . On the the basis of Definition
3 we can state the central theorem of this paper.

THEOREM 1. Let H be an Jf-class in S(X), St(X), Q(X), or Qi(X) with
X discrete. The following conditions are equivalent:

1) H contains a pseudo-idempotent;
2) H contains an idempotent (unique);
3) H consists of pseudo-idempotents.

PROOF. 1) -> 2). This follows from Lemma 3 together with the remarks
preceding Lemma 1 and following Definition 3. Uniqueness of the idempotent
follows from Lemma 2.15 of [2].

2) -»3). Let / be the idempotent in H, and let g e H be arbitrary. Then
Uf = Ttg and Im(/) = lm(g), and it is easy to check therefore that the conditions
in Lemma 2 hold for g and that Im(gf) c Dom(<7).

3)->l). Trivial.
We will now establish the results of Theorem 1 for some semigroups of the

form S(X) and S^X) where AT is a non-discrete topological space. Similar results
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can be obtained for Q(X) and Qt(X). In order to establish Theorem 1 with X
non-discrete we only have to verify the implication 1 -> 2. To do this we must
show that the idempotent

g(x)=f-1(f(x))nlm(f)

is continuous and belongs to the Jf-class of / .
Suppose, for instance, that X is a compact Hausdorff space for which S(X)

is an LK and Rim semigroup. These assumptions hold, for example, for X finite
discrete or X equal to {0} ̂  {!/«}„ = 12,...

 w i t n the usual metric topology (see
[1], Propositions 2.16 and 2.17). Then for each pseudo-idempotent/eS(X) the
corresponding idempotent g is continuous because X is compact Hausdorff
(see [1], Lemma 3.8), and geHf by Lemma 3 above. Therefore Theorem 1
holds for S(X) in this case.

Let / be the closed unit interval, and consider S(I). By Lemma 3.8 of [1]
we know that the idempotent g is continuous. Since S(I) is an L% semigroup
(see [1], Proposition 2.23) we know that g e Lf by Lemma 3 above. S(I) is not
an Rim semigroup, but it is shown in Corollary 3 of Theorem 3.2 of [1] that
g e Rf. Hence Theorem 1 holds for S(/). We can also show that Theorem 1 holds
for S(R) where R is the real line (see [1], Corollary 4 of Theorem 3.2).

For semigroups of the form St(X) the situation depends on whether any
onto functions / e S^X) fail to be invertible in S^X). As we remarked after
Definition 3, the semigroup S^X) contains only one idempotent, the identity
function i; and therefore Theorem 1 is concerned with //,. Clearly H{ in St(X)
for any X consists of the continuously invertible onto functions. The pseudo-
idempotents are the onto functions. We conclude that Theorem 1 holds for
Sj(Z) if and only if each onto function in St(X) is continuously invertible. It is
then clear that Theorem 1 holds, for instance, for Si(X) with X equal to an
interval of the real line or equal to the space p = {0} u{l/n} with the metric
topology. For PN = {0} u{l/n} U {n} we can see that Theorem 1 is false for
both S^PN) and S(PN).

Finally we will establish the results of Theorem 1 for some semigroups which
are not included in Definition 2.

DEFINITION 4. a. Let Y be a subspace of X. Then S(X,Y) is the subsemi-
group of functions feS(X) such that f(Y) c Y.

b. Let X and Y be arbitrary topological spaces. Let p be a continuous
function which maps all of Y into X. Then S(X, p, Y) is the semigroup of all
continuous functions which map all of X into Y under the multiplication
f°9=fP9-

c. Let X be an arbitrary set. For a binary relation T on X we let T(x)
= {y\xTy}. Then B%{X) denotes the semigroup of all binary relations T on
X such that x ̂  y implies T(x) n T(y) = 0.
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The semigroups S(X,Y) were called restrictive semigroups by Magill in
[3], and the semigroups S(X, p, Y) were discussed by Magill in [4].

First we will establish Theorem 1 for S(X, Y) with X discrete. The main
task is to relate the definition of pseudo-idempotency in S(X, Y) to the subspace
Y. To this end we observe that if feS(X, Y) is idempotent, then each of the
functions /[jm(/), /|yoim(/)> and/|/(y> is the identity on its domain. We define a
function feS(X, Y) to be pseudo-idempotent if each of the functions /|im(/),
/|yr,Im(/ ), and/ | / ( y ) is a permutation. Given a pseudo-idempotent, we then define
the corresponding idempotent exactly as we did in Lemma 3. In order to show
that the idempotent g is in the ^f-class of the pseudo-idempotent / we first have
to characterize ^f-classes in S(X, Y) with X discrete. We define the symbol
/Yg to mean that for each l e l w e have f(x)e Y if and only if g(x)e Y. Then
we can show that Lf = Lg if and only if nf = ng and fYg (see [1], Proposition
2.40), and Rf = Rg if and only if Im(/) = Im(^) and f(Y) = g(Y) (see [1],
Proposition 2.41). With the resulting characterization of 2F-classes it is easy
to show that Theorem 1 is valid for S(X,Y).

We will now consider S(X, p, Y) for the case of X and Y discrete. Clearly
a function feS(X,p, Y) is idempotent if and only if fp\im(f) = »|im(/)- We then
say that feS(X, p, Y) is pseudo-idempotent if /p|jm(/) is a permutation. Given
a pseudo-idempotent / we construct the corresponding idempotent g by the
formula

g(x) = (fp)'HKx))nlm(f).

With the help of the following lemma, which is Lemma 3.26 of [1], it can be
shown that geHf and that Theorem 1 is valid for S(X,p, Y).

LEMMA 4. Let X and Y be discrete and let f and g be pseudo-idempotents
in S(X, p, Y). If Lpf = Lpg in S(X), then Lf = Lg in S(X, p, Y). If Rfp = Rfp

in S(Y), Rf = Rg in S(X,p,Y).

We will conclude by considering the semigroup of relations B^X). For T and
V in BX{X) we can show that LT = Lv if and only if Dom(T) = Dom(F), and
RT = Rv if and only if each T(x) equals V(y) for some y and each V(u) equals
T(w) for some w (see [1], Propositions 5.1 and 5.2).

The definition of pseudo-idempotency in Bt(X) will be based on the following
lemma.

LEMMA 5. A relation T e B^X) is idempotent if and only ifT(x) O Dom(T)
= {x} for each x e Dom(T).

By means of this lemma we have found an identity function, namely,
T(x) n Dom(T) on Dom(T). We then define a relation T e B^X) to be pseudo-
idempotent if T(x) n Dom(T) is a singleton for each x e Dom(T) and the resulting
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function f(x) = T(x)nDom(T) is a permutation on Dom(T). For TeB^X)
let T"1^) = {x|xT>>}, which is either a singleton or the empty set.

LEMMA 6. Let TeBt(X) be pseudo-idempotent. Define V on Dom(T)
by the formula V(x) = T(T~\x)). Then VeB^X); V is idempotent, and
HT = Hv.

PROOF. TO see that V e Bt(X) we suppose that V(x) n V{y) ̂  0 . Then

Since T~l is a permutation on Dom(r), it follows that x = y, which completes
the first part of the proof.

To see that V is idempotent we consider the expression T~1TT~\x).
Since T is in Bt(X) we have

T-lTT~\x) = T'\x).

Therefore VV{x) = T(T~lTT-\x)) = TT'x{x) = V(x).
We will now show that HT = Hv. By the definition of V we have Dom(T)

= Dom(F), and thus LT = Lv. Since T~l is a permutation on Dom(T), we
see from the definition of V that each V(x) equals T(y) for some y, and each
T(z) equals V(w) for some w. Therefore RT = R^, and the proof is done.

From this lemma it now follows easily that Theorem 1 is true for B^X).
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