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The aim of this paper is to generalize Theorem 2.10 (i) of [2]. As stated
in [2] this theorem deals with the semigroup of all selfmaps on a discrete space
and provides a characterization of #-classes which contain an idempotent.
We will generalize this theorem to the case of other semigroups of functions on
a discrete space, some semigroups of continuous functions on non-discrete
topological spaces, and one semigroup of binary relations. The results in this
paper form the main part of chapter 3 of [1]. Some results will be quoted from
[1] without proof; the required proofs can easily be supplied by the reader.

Notation for composition of functions will be written in topological-
analytic order: (fg)(x) = f(g(x)). Thus the concepts of left and right in this paper
will be the mirror images of left and right in [2]. Juxtaposition will always denote
ordinary composition. Definition 4 will be concerned with a semigroup multiplica-
tion which is not ordinary composition.

We will let Dom(f) denote the domain of a function f, and Im(f)will denote
the image. The equivalence class of f under a Green’s relation, say %, will be
called an ZP-class and will be written L.

DEFINITION 1. a. n, = m, means that Dom(f) = Dom(g) and that for
arbitrary x and y in Dom(f) = Dom(g) we have f(x) = f(y) if and only if
g(x) = g(»).

b. A semigroup T is said to be L, if for arbitrary f and g in T we have
L;=1L, if and only if n, ==,

c. A semigroup T is said to be R;, if for arbitrary f and g in T we have
R; = R, if and only if Im(f) = Im(g).

DEerINITION 2. Let X be a topological space.

a. S(X) is the semigroup of all continuous functions from all of X into
X under ordinary composition.

b. Sy(X) is the subsemigroup of one-to-one functions in S(X).

c. Q(X) is the semigroup of all continuous functions from X into X whose
domains are open subsets of X. Multiplication is ordinary composition.
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d. Q,(X) is the subsemigroup of one-to-one functions in Q(X).

From the above definition we see that S,;(X) = S(X) N Q,(X), while Q(X)
can be thought of as the smallest semigroup containing S(X) and Q,(X). We
note that S(X) with X discrete is an L, and R;,, semigroup according to Lemmas
2.5 and 2.6 of [2]. It is easy to see that for X discrete the semigroups Q(X) and
Q,(X) are also L, and R;,; however, S;(X) is R;, but not L, for infinite
discrete X.

In the following three lemmas we assume that Dom( f) and Im(f) are subsets
of a topological space X.

LEMMA 1. The following conditions are equivalent:
i) Im(ff) = Im(f);
i) f71(f(x)) NIm(f) % & for each x e Dom(f).

PROOF. i ii. For each x e Dom(f) we have f(x) = ff(z) for some z. Since
f@ef 1(ff(2) =f1(f(x)
we see that f(2)e f '(f(x)) NIm(f) # &.
ii = i. Clearly Im(ff) < Im(f). Let ye Im(f) be arbitrary; y = f(x). Let
ze f7I(f(x)) NIm(f).
Then z = f(t) for some ¢, and hence y = f(x) = f(z) = ff(t) e Im(ff).
LEMMA 2. The following conditions are equivalent:

1) Im(ff) = Im(f) andfl,mm is one-to-one;
it) f7Y(f(x)) NIm(f) is a single point for each xe Dom(f).

PROOF. i) — ii). By the previous lemma we know that f ~1(f(x)) N Im(f) # .
Let y and z be in f~!(f(x)) N Im(f). Then f(y) = f(x) and y = f(s) for some s;
also f(z) = f(x) and z = f(t) for some t. Therefore f(y) = f(z), and thus
ff(s) = ff(®). Since f is one-to-one on Im(f) we have f(s) = f(1), that is, y = z.

ii) = i). By the previous lemma we know that Im( ff) = Im(f). Suppose
that y and z are in Im(f) with f(y) = f(z). Then y and z are in £~ (f(»)) N Im(f),
and thus y = z.

We note that in condition i) of the preceding lemma we do not assume
that Im(f) = Dom(f). If in fact we have Im(f) < Dom(f), then condition i) says

precisely that fis a permutation on Im(f). Condition ii) of the lemma enables us
to define a function

g9(x) =f~1(f(x) N Im(f) on Dom(f).
This function is examined in the following lemma.

LemMA 3. Suppose Im(f) < Dom(f) where f is a function which satisfies
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the equivalent conditions in the preceding lemma. Define g(x) = f ~'(f(x)) N Im({)
Jor each xe Dom(f). Then n; = n,; Im(f) = Im(g); and gg = g.

ProoF. It is clear that Dom(f) = Dom(g). Suppose f(x) = f(y). Then
g(x) = g(y) by inspection. On the other hand, suppose f(x) # f(y). Then

TSNNSO = D
and therefore g(x) # g(»). Hence n, = n,. Now let ye Im(f). Then
9 =71 NIm(f) = y.

Therefore gl,m(f) = il,m(‘,).‘ Thus Im(f) = Im(g), but by definition we have
Im(g) = Im(f). Consequently Im(f) = Im(g) and g],m(g) = illm(g)’ that is,
g9 = 4.

In view of Lemmas 2 and 3 we now define pseudo-idempotency in S(X),
S1(X), Q(X), and Q,(X).

DerINITION 3. Let T be a semigroup of the form S(X), S,(X), Q(X), or
Q.(X) for some topological space X. We say that a function fe T is pseudo-
idempotent if Im(ff) = Im(f) € Dom(f) and fl,m(,) 1s one-to-one, that is,
f is a permutation on Im(f).

We remark that in S;(X) the only idempotent is the identity function, and
the pseudo-idempotents are precisely the onto functions. In S(X) and S,(X)
the condition Im(f) < Dom(f) is superfluous. In Q,(X) it is easy to see that
Im(f) = Dom(f) for a pseudo-idempotent f. On the the basis of Definition
3 we can state the central theorem of this paper.

THEOREM 1. Let H be an #-class in S(X), S{(X), Q(X), or Q(X) with
X discrete. The following conditions are equivalent:

1) H contains a pseudo-idempotent,

2) H contains an idempotent (unique);

3) H consists of pseudo-idempotents.

PrOOF. 1) - 2). This follows from Lemma 3 together with the remarks
preceding Lemma 1 and following Definition 3. Uniqueness of the idempotent
follows from Lemma 2.15 of [2].

2) > 3). Let f be the idempotent in H, and let ge H be arbitrary. Then
n; = m, and Im(f) = Im(g), and it is easy to check therefore that the conditions
in Lemma 2 hold for g and that Im(g) = Dom(g).

3) - 1). Trivial.

We will now establish the results of Theorem 1 for some semigroups of the
form S(X) and S,(X) where X is a non-discrete topological space. Similar results
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can be obtained for Q(X) and Q,(X). In order to establish Theorem 1 with X
non-discrete we only have to verify the implication 1 — 2. To do this we must
show that the idempotent

g(x) = f~1(f(x)) N Im(f)

is continuous and belongs to the #-class of f.

Suppose, for instance, that X is a compact Hausdorff space for which S(X)
is an L, and R;, semigroup. These assumptions hold, for example, for X finite
discrete or X equal to {0} U {1/n},~, ,.. with the usual metric topology (see
[1], Propositions 2.16 and 2.17). Then for each pseudo-idempotent fe S(X) the
corresponding idempotent g is continuous because X is compact Hausdorff
(see [1], Lemma 3.8), and ge H, by Lemma 3 above. Therefore Theorem 1
holds for S(X) in this case.

Let I be the closed unit interval, and consider S(I). By Lemma 3.8 of [1]
we know that the idempotent g is continuous. Since S(I) is an L, semigroup
(see [1], Proposition 2.23) we know that ge L, by Lemma 3 above. S(I) is not
an R,, semigroup, but it is shown in Corollary 3 of Theorem 3.2 of [1] that
g € R,. Hence Theorem 1 holds for S(I). We can also show that Theorem 1 holds
for S(R) where R is the real line (see [1], Corollary 4 of Theorem 3.2).

For semigroups of the form S;(X) the situation depends on whether any
onto functions f e §,(X) fail to be invertible in S,(X). As we remarked after
Definition 3, the semigroup S,(X) contains only one idempotent, the identity
function i; and therefore Theorem 1 is concerned with H,. Clearly H; in S,(X)
for any X consists of the continuously invertible onto functions. The pseudo-
idempotents are the onto functions. We conclude that Theorem 1 holds for
S1(X) if and only if each onto function in S,(X) is continuously invertible. It is
then clear that Theorem 1 holds, for instance, for S,(X) with X equal to an
interval of the real line or equal to the space p = {0} U {1/n} with the metric
topology. For PN = {0} U {1/n} U {n} we can see that Theorem 1 is false for
both S,(PN) and S(PN). _

Finally we will establish the results of Theorem 1 for some semigroups which
are not included in Definition 2.

DErFNITION 4. a. Let Y be a subspace of X. Then S(X,Y) is the subsemi-
group of functions fe S(X) such that f(Y)c Y.

b. Let X and Y be arbitrary topological spaces. Let p te a contintous
function which maps all of Y into X. Then S(X, p, Y) is the semigroup of all
continuous functions which map all of X into Y under the multiplication
fog=fpg.

c. Let X be an arbitrary set. For a binary relation T on X we let T(x)
= {y|xTy}. Then B;(X) denotes the semigroup of all binary relations T on
X such that x # y implies T(x) NT(y) = .
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The semigroups S(X,Y) were called restrictive semigroups by Magill in
[3], and the semigroups S(X, p, Y) were discussed by Magill in [4].

First we will establish Theorem 1 for S(X, Y) with X discrete. The main
task is to relate the definition of pseudo-idempotency in S(X, Y) to the subspace
Y. To this end we observe that if fe S(X, Y) is idempotent, then each of the
functions f,,m(,), f|Yn,m(,), and f|f(Y) is the identity on its domain. We define a
function fe S(X, Y) to be pseudo-idempotent if each of the functions f ],m( 1
f IYn,m( 7y and f ] 7(v) is a permutation. Given a pseudo-idempotent, we then define
the corresponding idempotent exactly as we did in Lemma 3. In order to show
that the idempotent g is in the S#-class of the pseudo-idempotent f we first have
to characterize s#-classes in S(X, Y) with X discrete. We define the symbol
fYg to mean that for each xe X we have f(x)e Y if and only if g(x)e Y. Then
we can show that L; = L, if and only if n, = n, and fYg (see [1], Proposition
2.40), and R, = R, if and only if Im(f) = Im(g) and f(Y) = g(Y) (see [1],
Proposition 2.41). With the resulting characterization of s#-classes it is easy
to show that Theorem 1 is valid for S(X,Y).

We will now consider S(X, p, Y) for the case of X and Y discrete. Clearly
a function fe S(X, p, Y) is idempotent if and only if fp[lmm = i|,mm. We then
say that fe S(X, p, Y) is pseudo-idempotent if fpl,mm is 2 permutation. Given
a pseudo-idempotent f we construct the corresponding idempotent g by the
formula

g(x) = (fp)”'(f(x)) N Im(f).

With the help of the following lemma, which is Lemma 3.26 of [1}, it can be
shown that ge H, and that Theorem 1 is valid for S(X,p,Y).

LEMMA 4. Let X and Y be discrete and let f and g be pseudo-idempotents
in S(X,p,Y). If L,, = L,, in S(X), then L, = L, in 8(X,p,Y). If R;, = Ry,
in S(Y), R, =R, in S(X,p,Y).

We will conclude by considering the semigroup of relations B,(X). For T and
V in B,(X) we can show that Ly = L if and only if Dom(T) = Dom(V), and
Ry = Ry if and only if each T(x) equals V(y) for some y and each V(u) equals
T(w) for some w (see |1}, Propositions 5.1 and 5.2).

The definition of pseudo-idempotency in B,(X) will be based on the following
lemma.

LEMMA 5. Arelation T € B{(X) is idempotent if and only if T(x) " Dom(T)
= {x} for each xe Dom(T).

By means of this lemma we have found an identity function, namely,
T(x) NDom(T) on Dom(T). We then define a relation T € B,(X) to be pseudo-
idempotent if T(x) N Dom(T) is a singleton for each x e Dom(T) and the resulting
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function f(x) = T(x) "Dom(T) is a permutation on Dom(T). For T € B,(X)
let T7Y(y) = {xIxTy}, which is either a singleton or the empty set.

LEMMA 6. Let T € B{(X) be pseudo-idempotent. Define V on Dom(T)
by the formula V(x)= T(T " '(x)). Then VeB(X); V is idempotent, and
HT = Hy.

PROOF. To see that V € B,(X) we suppose that V(x) NV (y) # . Then
T')NT () # &

Since T ™' is a permutation on Dom(T), it follows that x = y, which completes
the first part of the proof.

To see that V is idempotent we consider the expression T 'TT ~'(x).
Since T is in B,(X) we have

TITT Y(x) = T }(x).

Theretore VV(x) = T(T'TT '(x)) = TT '(x) = V(x).

We will now show that H; = H,. By the definition of ¥V we have Dom(T)
= Dom(V), and thus L; = L,. Since T~ ! is a permutation on Dom(T), we
see from the definition of V that each V(x) equals T(y) for some y, and each
T(z) equals V(w) for some w. Therefore Ry = R,, and the proof is done.

From this lemma it now follows easily that Theorem 1 is true for B,(X).
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