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Abstract

The last 15 years have seen an explosion in work on explicit substitution, most of which

is done in the style of the λσ-calculus. In Kamareddine and Rı́os (1995a), we extended

the λ-calculus with explicit substitutions by turning de Bruijn’s meta-operators into object-

operators offering a style of explicit substitution that differs from that of λσ. The resulting

calculus, λs, remains as close as possible to the λ-calculus from an intuitive point of view

and, while preserving strong normalisation (Kamareddine and Rı́os, 1995a), is extended in

this paper to a confluent calculus on open terms: the λse-caculus. Since the establishment of

these results, another calculus, λζ, came into being in Muñoz Hurtado (1996) which preserves

strong normalisation and is itself confluent on open terms. However, we believe that λse still

deserves attention because, while offering a new style to work with explicit substitutions, it

is able to simulate one step of classical β-reduction, whereas λζ is not. To prove confluence

we introduce a generalisation of the interpretation method (cf. Hardin, 1989; Curien et al.,

1992) to a technique which uses weak normal forms (instead of strong ones). We consider

that this extended method is a useful tool to obtain confluence when strong normalisation

of the subcalculus of substitutions is not available. In our case, strong normalisation of the

corresponding subcalculus of substitutions se, is still a challenging open problem to the rewrite

community, but its weak normalisation is established here via an effective strategy.

Capsule Review

Explicit substitution in the lambda calculus is of interest to both theoreticians and practition-

ers, since substitution is a key meta-process in the lambda calculus and a critical component

of most programming language implementations. This theoretical paper establishes the con-

fluence of a formal system of explicit substitutions know as λse. The method for proving

confluence is itself of some interest, since it may be applicable to other systems.

† We are grateful to the anonymous referees for their comments and suggestions. We are
also grateful to Hans Zantema for his interest in the strong normalisation property of
our calculus and for his proof of termination of our σ-σ-transition rule. Kamareddine is
grateful to Boston University and, in particular, to Assaf Kfoury and Joe Wells for their
hospitality during work on this article. This work was carried out under EPSRC grant
GR/K25014.
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Introduction

Most literature on the λ-calculus considers substitution as an implicit operation.

It means that the computations to perform substitution are usually described with

operators which do not belong to the language of the λ-calculus. There has, however,

been an interest in formalising substitution explicitly to provide a theoretical frame-

work for the implementation of functional programming languages. Various calculi

including new operators to denote substitution have been proposed. Amongst these

calculi we mention Cλξφ (cf. de Bruijn, 1978); the calculi of categorical combinators

(cf. Curien, 1993); λσ, λσ⇑, λσSP (cf. Abadi et al., 1991; Curien et al., 1992; Rı́os,

1993) referred to as the λσ-family; ϕσBLT (cf. Karareddine and Nederpelt, 1993);

λυ (cf. Benaissa et al., 1995), a descendant of the λσ-family; λs (cf. Kamareddine

and A. Rı́os, 1995a); λexp (cf. Bloo, 1995) and λζ (cf. Muñoz Hurtado, 1996).

These calculi (except λexp) are described in a de Bruijn setting where natural

numbers play the role of the classical variables. Classical terms are coded as closed

terms in these calculi and called pure terms. A natural question concerning these

calculi is the preservation of strong normalisation: are strongly normalising terms in

the classical λ-calculus still strongly normalising when considered as pure terms of

these new calculi? This question is obviously important. However, various calculi of

explicit substitutions do not possess this property.

It is possible to consider, besides the classical variables (now numbers), real

variables (which correspond to meta-variables in the classical setting). The terms

obtained with this extended syntax are called open terms and they can be considered

as contexts, the new variables corresponding to holes. Hence the interest in studying

the calculi on open terms, since they allow contexts as first class citizens.

The main interest in introducing the λs-calculus (cf. Kamareddine and A. Rı́os,

1995a) was to provide a calculus of explicit substitutions which would both preserve

strong normalisation and have a confluent extension on open terms. There are

calculi of explicit substitutions which are confluent on open terms: the λσ⇑-calculus

(cf. Hardin and Lévy, 1989; Curien et al., 1992), but the non-preservation of strong

normalisation for λσ⇑, as well as for the rest of the λσ-family and for the categorical

combinators, has recently been proved (cf. Melliès, 1995). There are also calculi

which satisfy the preservation property: the λυ-calculus (cf. Benaissa et al., 1995),

but this calculus is not confluent on open terms and the existence of a confluent

extension of λυ is still unknown.

We proved (Kamareddine and A. Rı́os, 1995a) that λs preserves strong normali-

sation and proposed the extension λse in Kamareddine and Rı́os (1995b), where we

proved its local confluence on open terms and the weak normalisation (every term

has at least one normal form) of the corresponding subcalculus of substitutions

se (the calculus obtained from λse by removing the rule that starts β-reduction).

Confluence of λse and strong normalisation (all derivations terminate) of se were

left open.

This paper establishes the confluence of λse making λs a calculus which preserves

strong normalisation and admits a confluent extension on open terms. Preservation

of strong normalisation of λse and strong normalisation of se remain open. As far
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as we know, at the time of writing this paper, no other calculus which had these

two properties existed. Since then, the λζ-calculus (cf. Muñoz Hurtado, 1996) came

into being which preserves strong normalisation, is itself confluent on open terms

and possesses a strongly normalising subcalculus of substitutions. The λζ-calculus

is obtained by a clever introduction of two new applications that allows the passage

of substitutions within the classical application only if the latter has a head variable.

This is done to cut the branch of the critical pair which is responsible of the

non-confluence of λυ on open terms. Unfortunately, λζ is not able to simulate one

step of clasical β-reduction as shown in Muñoz Hurtado (1996), it simulates only

a ‘big step’ beta reduction. Furthermore, this lack of the simulation property is an

uncommon feature among calculi of explicit substitutions.

As the strong normalisation of se remains open, the interpretation method (cf.

Hardin, 1989; Curien et al., 1992), which is usually used to prove the confluence

of a λ-calculus with explicit substitutions is not applicable to λse. In Section 1 we

propose a generalisation of the interpretation method which enables us to prove

the confluence of λse with just weak normal forms. The method is general enough

to be applied to any reduction systems satisfying the hypotheses (not necessarily a

calculus of explicit substitutions) and therefore we consider it a new tool to prove

confluence.

Section 2 is devoted to the syntax and rules of the calculi we are going to deal

with: the λ-calculus à la de Bruijn, the λs-calculus and its extension the λse-calculus

together with a summary of the results obtained so far (cf. Kamareddine and Rı́os,

1995a, b) for these calculi. At the end of the section we provide motivation for the

new rules of λse, and finally we compare λse with λσ, λυ, λσ⇑ and λζ.

In section 3 we recall the description of the se-normal forms, define a strategy

for computing them and establish the weak normalisation of se. We also prove that

se-normal forms are preserved by se-reductions and that the se-calculus is confluent

on open terms.

In section 4 we introduce the calculus of the interpretation, whose only rule we

call β′, and prove that the σ-generation rule (the rule that starts β-reduction) can be

simulated on the corresponding weak normal forms by β′.

In section 5 we prove the confluence of β′ à la Tait-Martin-Löf to apply the

generalised interpretation method to show the confluence of the λse-calculus. We

also show that the λse-calculus is correct/sound with respect to the λ-calculus in

that, all λse-derivations beginning and ending with pure terms can also be obtained

in the λ-calculus.

We conclude by stating the problems which remain still open and we include a

result by Hans Zantema showing the termination of the rule of λse which enables

the transition of a substitution operator over another one.

This article is an abridged version of Kamareddine and Rı́os (1996), where the

proofs are presented in more detail.
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1 The generalised interpretation method

We begin by introducing the notation we use and some essential definitions and

properties.

Definition 1

Let A be a set and R a binary relation on A . We denote the fact (a, b) ∈ R by

a→R b or a→ b when the context is clear enough. We call reduction this relation

and reduction system, the pair (A,R) . R∗ or →→R or just →→ denote the reflexive

and transitive closure of R . R+ or →→+
R or just →→+ denote the transitive closure

of R . When a→→ b we say there exists a derivation from a to b .

Definition 2

Let R be a reduction on A . For R, we define local confluence (WCR), confluence

(CR) and strong confluence (SCR) respectively as follows:

1. WCR: ∀a, b, c ∈ A ∃d ∈ A : (a → b ∧ a → c)⇒ (b →→ d ∧ c →→ d) .

2. CR: ∀a, b, c ∈ A ∃d ∈ A : (a →→ b ∧ a →→ c)⇒ (b →→ d ∧ c →→ d) .

3. SCR: ∀a, b, c ∈ A ∃d ∈ A : (a → b ∧ a → c)⇒ (b → d ∧ c → d) .

Definition 3

Let R be a reduction on A . We say that a ∈ A is an R-normal form (R-nf for

short) if there exists no b ∈ A such that a → b and we say that b has a normal

form if there exists a normal form a such that b →→ a . R is weakly normalising

(WN) if every a ∈ A has an R-normal form. R is strongly normalising (SN) if there

is no infinite sequence (ai)i≥0 in A such that ai → ai+1 for all i ≥ 0 .

Note that confluence of R guarantees unicity of R-normal forms. In that case, the

R-normal form of a , if it exists, is denoted by R(a) . Strong normalisation implies

weak normalisation and therefore the existence of normal forms.

At some point we shall need the following lemmas (cf. Barendregt, 1984).

Lemma 1

Let R be a reduction, if R is SCR then R∗ is also SCR.

Lemma 2 (Newman)

Every strongly normalising, locally confluent reduction is confluent.

We state now the interpretation method we wish to generalise. This method was

first identified in Hardin (1989), where it was used for the categorical combinators.

In Curien et al. (1992), it is used to prove the confluence of the weak λσ-calculus,

of the λσ-calculus on closed terms and the non-confluence of the λσSP -calculus on

open terms. In Rı́os (1993), it was used to prove the confluence of the λσSP -calculus

on semi-closed terms. Finally, in Benaissa et al. (1995) and Kamareddine and Rı́os

(1995a), it was used to prove the confluence of λυ and λs, respectively.

Lemma 3 (Interpretation method)

Let R = R1 ∪ R2 where R1 is a confluent and SN reduction on A and R2 an

arbitrary reduction. If there exists a reduction R′ on the set of R1-normal forms

satisfying R′ ⊆ R∗ and (a→R2
b ⇒ R1(a)→→R′ R1(b)) , then R′ is confluent iff R

is confluent.
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Fig. 1. Generalised interpretation method.

Lemma 4 (Generalised Interpretation Method (GIM))

Let B ⊆ A, R and R′ reduction relations on A and B respectively and f : A → B

such that:

1. R′ ⊆ R∗
2. ∀a ∈ A : a→→R f(a)

3. ∀a, b ∈ A : a→R b ⇒ f(a)→→R′ f(b)

then, if R′ is confluent, R is also confluent. Moreover, if we also have:

4. ∀b ∈ B : b→→R′ f(b)

then R′ is confluent iff R is confluent.

Proof

(⇒) Assume a →→R b and a →→R c. By 2, x →→R f(x) for x ∈ {a, b, c}. By 3,

f(a) →→R′ f(b) and f(a) →→R′ f(c). Now, confluence of R′ gives d such that

f(b) →→R′ d and f(c) →→R′ d. 1 implies f(b) →→R d and f(c) →→R d. Therefore,

b→→R d and c→→R d (see figure 1).

(⇐) Let a, b, c ∈ B, a→→R′ b and a→→R′ c. By 1, a→→R b and a→→R c. By confluence

of R, there exists d such that b →→R d and b →→R d. By 4, x →→R′ f(x) for

x ∈ {b, c, d}. By 3, f(b)→→R′ f(d) and f(c)→→R′ f(d) and we are done.

A particular case of the GIM that is useful for calculi of explicit substitutions is

the following:

Corollary 1 (GIM for Explicit Substitutions (GIMES))

Let R = R1 ∪ R2 where R1 and R2 are arbitrary reductions on A . Let B be the

set of R1-normal forms and let f : A → B be a function (strategy) such that f(a)

is an R1-normal form of a . If there exists a reduction R′ on the set of R1-normal

forms satisfying

1. R′ ⊆ R∗
2. ∀a, b : a→R1

b ⇒ f(a)→→R′ f(b)

3. ∀a, b : a→R2
b ⇒ f(a)→→R′ f(b)

then R′ is confluent iff R is confluent.
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Proof

Note that 1,2,3 of GIMES imply 1,2,3,4 of GIM. In particular, 2,3 of GIMES imply

3 of GIM, 2 of GIM holds as f(a) is an R1-nf of a and hence a→→R f(a). Moreover,

4 of GIM holds because for b ∈ B, b is in R1-nf and hence b = f(b).

In the context of the GIM lemma and its corollary GIMES, the function f is

called the interpretation function; B, the set of the interpretation and (B,→R′), the

calculus of the interpretation. A generalization in the lines of the GIMES has been

suggested in 1992 by Hardin (personal communication) but, as far as we know,

this is the first time that such a generalization is applied to prove confluence of a

concrete calculus.

We use a particular case of the GIMES where 2 is strengthened to: a→R1
b ⇒

f(a) = f(b) (syntactic identity). Having established that GIM =⇒ GIMES, we

comment now that even the GIMES generalises the interpretation method. In fact,

when R1 is confluent and SN, R1-normal forms exist and are unique. Hence there is

only one f (f(a) = R1(a)) such that f(a) is a normal form of a. Note that in this

case hypothesis 2. of the GIMES is obviously satisfied.

2 The calculi

2.1 The classical λ-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation (cf. de Bruijn, 1972; Ka-

mareddine and Rı́os, 1996). We define Λ, the set of terms with de Bruijn indices, as

follows:

Λ ::= IN | (ΛΛ) | (λΛ)

We use a, b, . . . to range over Λ and m, n, . . . to range over IN (positive natural

numbers). Furthermore, we assume the usual conventions about parentheses and

avoid them when no confusion occurs. Throughout the whole article, a = b is used

to mean that a and b are syntactically identical. We say that a reduction → is

compatible on Λ when for all a, b, c ∈ Λ, we have a→ b implies a c→ b c, c a→ c b

and λa→ λb.

To define β-reduction à la de Bruijn, we must define the substitution of a variable

n for a term b in a term a. Therefore, we need to update the term b:

Definition 4

The updating functions Ui
k : Λ→ Λ for k ≥ 0 and i ≥ 1 are defined inductively:

Ui
k(ab) = Ui

k(a)U
i
k(b)

Ui
k(λa) = λ(Ui

k+1(a))
Ui
k(n) =

{
n + i− 1 if n > k

n if n ≤ k .

Now we define the family of meta-substitution functions:

Definition 5

The meta-substitution at level j,, for j ≥ 1 , of a term b ∈ Λ in a term a ∈ Λ ,
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denoted a{{j← b}} , is defined inductively on a as follows:

(a1a2){{j← b}} = (a1{{j← b}}) (a2{{j← b}})

(λa){{j← b}} = λ(a{{j + 1← b}})
n{{j← b}} =


n− 1 if n > j

U
j
0(b) if n = j

n if n < j .

The following lemmas establish the properties of meta-substitution and updating

(cf. Kamareddine and Rı́os, 1996).

Lemma 5

For k < n < k + i we have: Ui−1
k (a) = Ui

k(a){{n← b}} .

Lemma 6

For l ≤ k < l + j we have: Ui
k(U

j
l (a)) = U

j+i−1
l (a) .

Lemma 7

For k + i ≤ n we have: Ui
k(a){{n← b}} = Ui

k(a{{n− i + 1← b}}) .

Lemma 8 (Meta-substitution Lemma)

For i ≤ n we have:

a{{i← b}}{{n← c}} = a{{n + 1← c}}{{i← b{{n− i + 1← c}}}}

Lemma 9

For l + j ≤ k + 1 we have: Ui
k(U

j
l (a)) = U

j
l (U

i
k+1−j(a)) .

Lemma 10 (Distribution Lemma)

For n ≤ k + 1 we have:

Ui
k(a{{n← b}}) = Ui

k+1(a){{n← Ui
k−n+1(b)}} .

Definition 6

β-reduction is the least compatible reduction on Λ generated by:

(β-rule) (λa) b→β a{{1← b}}
The λ-calculus (à la de Bruijn), is the reduction system whose only rewriting rule is

β.

Theorem 1

The λ-calculus à la de Bruijn is confluent.

2.2 The λs-calculus

The subjacent idea in the mechanism of λs is the explicit handling of the meta-

operators given in Definitions 4 and 5. Therefore, the syntax of the λs-calculus is

obtained by adding two families of operators:

• { σj}j≥1, which denotes the explicit substitution operators. Each σj is an infix

operator of arity 2 and a σjb has as intuitive meaning the term a where all

free occurrences of the variable corresponding to the de Bruijn index j are to

be substituted by the term b.

• {ϕik}k≥0 i≥1, which denotes the updating functions necessary when working

with de Bruijn numbers to fix the variables of the term to be substituted.
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Fig. 2. The λs-calculus.

Definition 7

The set of terms, noted Λs , of the λs-calculus is given as follows:

Λs ::= IN | ΛsΛs | λΛs | Λs σjΛs | ϕikΛs where j, i ≥ 1 , k ≥ 0 .

We take a, b, c to range over Λs. A term containing neither σ’s nor ϕ’s is called a

pure term. Λ denotes the set of pure terms.

A compatible reduction → on Λs is such that for all a, b, c ∈ Λs, if a → b then

a c→ b c, c a→ c b, λa→ λb, a σjc→ b σjc, c σja→ c σjb and ϕika→ ϕikb.

We include, besides the rule mimicking the β-rule (σ-generation), a set of rules

which are the equations in Definitions 4 and 5 orientated from left to right.

Definition 8

The λs-calculus is the reduction system (Λs,→λs), where →λs is the least compatible

reduction on Λs generated by the rules given in figure 2.

We use λs to denote this set of rules. The subcalculus of substitutions associated

with the λs-calculus is the reduction system generated by the set of rules s =

λs− {σ-generation} and we call it the s-calculus.

The σ-generation rule starts β-reduction by generating a substitution operator at

the first level (σ1). The σ-app and σ-λ rules allow this operator to travel throughout

the term until its arrival to the variables. If a variable should be affected by the

substitution, the σ-destruction rules (case j = n) carry out the substitution of the

variable by the updated term, thus introducing the updating operators. Finally, the

other rules compute the updating.

We state now the main properties of the λs-calculus (cf. Kamareddine and Rı́os,

1995a, b).
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Theorem 2 (SN and confluence of s)

The s-calculus is strongly normalising and confluent on Λs. Hence, every term a has

a unique s-normal form denoted s(a).

Lemma 11

The set of s-normal forms is exactly Λ.

Lemma 12

For all a, b ∈ Λs we have:

s(a b) = s(a)s(b) , s(λa) = λ(s(a)) , s(ϕika) = Ui
k(s(a)) , s(a σjb) = s(a){{j← s(b)}} .

Lemma 13

Let a, b ∈ Λs , if a→σ−gen b then s(a)→→β s(b) .

Corollary 2

Let a, b ∈ Λs , if a→→λs b then s(a)→→β s(b) .

Corollary 3 (Soundness)

Let a, b ∈ Λ , if a→→λs b then a→→β b .

Lemma 14 (Simulation of β-reduction)

Let a, b ∈ Λ, if a→β b then a→→λs b .

Theorem 3 (Confluence of λs)

The λs-calculus is confluent on Λs.

Theorem 4 (Preservation of SN)

Pure terms which are strongly normalising in the λ-calculus are also strongly nor-

malising in the λs-calculus.

Theorem 5 (SN of typed terms)

Every well typed term is strongly normalising in the simply typed λs-calculus.

2.3 The λse-calculus

We introduce the open terms and the rules added to λs to obtain the λse-calculus.

Definition 9

The set of open terms, noted Λsop is given as follows:

Λsop ::= V | IN | ΛsopΛsop | λΛsop | Λsop σ
jΛsop | ϕikΛsop where j, i ≥ 1 , k ≥ 0

and where V stands for a set of variables, over which X, Y , ... range. We take a, b, c

to range over Λsop. Furthermore, pure terms and compatibility are defined as for Λs.

Working with open terms one loses confluence as shown by the following coun-

terexample:

((λX)Y )σ11→ (Xσ1Y )σ11 ((λX)Y )σ11→ ((λX)σ11)(Y σ11)

and (Xσ1Y )σ11 and ((λX)σ11)(Y σ11) have no common reduct. Moreover, the above

example shows that even local confluence is lost. But as ((λX)σ11)(Y σ11) →
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Fig. 3. The new rules of the λse-calculus.

→ (Xσ21)σ1(Y σ11), the solution to the problem seems at hand if one has in

mind the properties of meta-substitutions and updating functions of the λ-calculus

in the Bruijn notation (cf. Lemmas 5–10). These properties are equalities which

can be given a suitable orientation and the new rules, thus obtained, added to

λs give origin to a rewriting system which happens to be locally confluent (cf.

Kamareddine and Rı́os, 1995b). For instance, the rule corresponding to the Meta-

substitution Lemma (Lemma 8) is the σ-σ-transition rule given in figure 3. The

addition of this rule solves the critical pair in our counterexample, since now we

have (Xσ1Y )σ11→ (Xσ21)σ1(Y σ11).

Definition 10

The set of rules λse is obtained by adding the rules in figure 3 to the rules of the

λs-calculus (figure 2). The λse-calculus is the reduction system (Λsop,→λse ) where

→λse is the least compatible reduction on Λsop generated by the set of rules λse.

The subcalculus of substitutions associated with the λse-calculus is the rewriting

system generated by the set of rules se = λse − {σ-generation} and we call it se-

calculus.

We call the rules whose name start with σ, σ-rules. We define similarly the ϕ-rules.

Note that when transcribing Lemmas 5–10 as rewriting rules, instead of keeping

the condition l+ j ≤ k+ 1 for rule ϕ-ϕ-transition 1, we restricted it to l+ j ≤ k. The

reason for this is that for the extreme case i = 1, j = 1 and l + j = k + 1 we would

have:

ϕik(ϕ
j
l (a))→ ϕ

j
l (ϕ

i
k+1−j(a))→ ϕik+1−j(ϕ

j
l+1−i(a) = ϕik(ϕ

j
l (a)) ,

giving an infinite loop which would destroy strong normalisation. Furthermore, for

l + j = k + 1 we have ϕ-ϕ-transition 2 that allows us to reduce ϕik(ϕ
j
l (a)). Note also

that for a, b ∈ Λsop:

1. (ϕika) σ
jb has a redex at the root iff j > k.

2. ϕik(ϕ
j
l a) has a redex at the root iff k ≥ l.

Finally, local confluence for λse is obtained by analysis of critical pairs (cf. Ka-

mareddine and Rı́os, 1995b):

Theorem 6 (Local confluence)

The se- and λse-calculi are locally confluent on Λsop.
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We give now further motivation for the rules of λse. Motivation behind the rules

of figure 2 was given in Kamareddine and Rı́os (1995b) and motivation for explicit

substitution rules that belong to the same family can be found in Kamareddine and

Nederpelt (1995). Hence, we concentrate on the rules of figure 3.

We gave already some motivation for the σ-σ-transition rule where we said that

such a rule helps to re-establish confluence. The other rules were also introduced as

a necessity to close critical pairs. Note now the following symetries. There are:

• two ‘simplification’ rules: σ-ϕ-tr.1 and ϕ-ϕ-tr.2;

• two ‘distribution’ rules: σ-σ-tr. and ϕ-σ-tr.;

• two ‘commutation’ rules: σ-ϕ-tr.2 and ϕ-ϕ-tr.1.

The intuitive interpretation of ϕik , as for Ui
k , is the updating of the free variables

greater than k with an increment of i − 1. In this informal context one must be

careful: if a de Bruijn number corresponds to a free variable, the ‘real’ number of

such a variable may not be its value. For instance, in 1 λ2, the index 2 corresponds

to the ‘real’ free variable 1. One may check this fact by translating 1 λ2 to classical

notation: the result is x λy.x where x is the first variable in the free variable list.

Note that ϕi1(1 λ2)→→s 1 λ2 whereas ϕ4
0(1 λ2)→→s 4 λ5.

The intuitive interpretation of a σjb, like a{{j ← b}}, is the substitution of the free

variables (whose ‘real’ number is j) by the updating (ϕj0) of b in a. In the same way

that the occurences of the ‘real’ variable j in λa are the occurrences of the ‘real’

variable j+1 in a, it is easy to check (for the meta-substitutions) that the occurrences

of the ‘real’ variable j in a σib (i ≤ j and i free in a) are the occurrences of j+1 in

a and the occurrences of j-i+1 in b.

Now we explain each type of rule:

• The intuitive interpretations given above of ϕik and a σjb explain the distribu-

tion rules: the σj operator in the LHS of σ-σ-tr. must become, on the RHS,

σj+1 when acting on a and σj−i+1 when acting on b. In the same way, the

transition of ϕik into ϕik+1 and ϕik+1−j is explained for the rule ϕ-σ-tr..

• The simplification rules are also easy to grasp:

To understand the rule ϕ-ϕ-transition 2, let us consider n > k. Since n > l

and l + j > k implies n + j − 1 > k, we get ϕik(ϕ
j
l n) →s ϕ

i
k(n + j− 1) →s

n + j + i− 2. Now this double process of updating can be achieved by a

single updating: ϕi+j−1
k n→s n + j + i− 2, hence our ϕ-ϕ-transition 2 rule.

The rule σ-ϕ-tr.1 may be explained as a void substitution (the variable to

be replaced does not occur free). In fact, it is also easy to check (for the

meta-updatings) that the occurrences of the ‘real’ variable j in ϕika are the

occurrences of j-i+1 in a when j − i+ 1 > k. Hence, if j < k + i, the variable

j cannot occur free in ϕika and therefore the substitution in the LHS of the

rule is void. Furthermore the dissapearance of the σj operator is the reason

why the upper index of the ϕ operator is decreased by 1.

• Finally, both commutation rules postpone an updating: σ-ϕ-tr.2 postpones the

updating ϕik , whereas ϕ-ϕ-tr.1 postpones the updating ϕjl . The transition of σj

into σj−i+1 can be explained by the fact that the occurrences of j in ϕika are
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the occurrences of j-i+1 in a. Analogously, the transition of ϕik into ϕik+1−j
can be understood.

We believe that further intuition, from the point of view of normalisation, can be

gained in the next section where we describe the se-normal forms. We define there

the skeletons as certain structures of ϕ and σ operators. The rules can be viewed

as acting on skeletons to ‘order’ them (what we call normal skeletons should be

seen as completely ‘ordered’ structures). This point of view helps to understand the

interaction between the indices of the σ operators and the lower indices of the ϕ

operators.

From a computational point of view these new rules offer the possibility of

interaction between σ- and ϕ-operators, whereas in λs the interaction of these

operators was restricted to de Bruijn numbers, applications and abstractions. This

restriction is also present in λυ and enables the preservation of strong normalisation,

whereas this property does not hold in λσ, where interaction of substitutions is

available through the composition operator. We believe that the interaction we

propose in λse is more controlled than the interaction allowed in λσ, because of

the restriction on indices and therefore this stratified interaction would not be

harmful from the point of view of preservation. However, the preservation of strong

normalisation of λse is still an open problem.

We note that Lemmas 5–10 were all the knowledge required about meta-

substitutions and meta-updatings to prove confluence of λs (cf. Kamareddine and

Rı́os, 1995a). This knowledge must become available within the calculus if we ex-

pect to obtain nice confluence properties. Therefore the new rules about σ- and

ϕ-operators internalise the knowledge in the meta-level about the meta-operators

they represent.

We end this section by comparing λs and λse with λσ, λσ⇑, λυ and λζ. Since the

interpretations1 T and S of λs into λσ and λυ, respectively, were already presented

in Kamareddine and Rı́os (1995a); we highlight here the translation into λσ⇑.

Definition 11

The translation R of λs-terms into λσ⇑-terms is defined inductively by:

R(n) = n R(ab) = R(a)R(b) R(a σi+1b) = R(a)[⇑i (R(b) · id)]
R(λa) = λR(a) R(ϕika) = R(a)[⇑k (↑i−1)]

where ↑0= id, ↑n+1= ↑ ◦ ↑n and ⇑0 (s) = s, ⇑n+1 (s) =⇑ (⇑n (s)).

The following theorem summarizes the properties of these translations:

Theorem 7

For a, b ∈ Λs we have:

1 T and S are defined on numbers, abstractions and applications like R in Definition 11. We
just recall here the translations of substitutions and updatings:

T (a σi+1b) = T (a)[1 · 2 · . . . · i · T (b)[↑i] · ↑i] S(a σi+1b) = S(a)[⇑i (S(b)/)]
T (ϕika) = T (a)[1 · 2 · . . . · k· ↑k+i−1] S(ϕika) = S(a)[⇑k (↑)]i−1

where ↑n and ⇑n are as in Definition 11 and a[s]0 = a, a[s]n+1 = (a[s])[s]n.
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1. If a→s b then T (a)→→+
σ T (b)

2. If a→λs b then S(a)→→+
λυ S(b) and R(a)→→+

λσ⇑
R(b).

3. If a→λse b then T (a) =λσ T (b), S(a) =λυ S(b) and R(a) =λσ⇑ R(b).

Proof

By induction on a, using the classical equalities of λσ, λυ and λσ⇑.

Note that, since λζ only differs from λυ in the treatment of applications, the

‘natural’ translation of λse into λζ is also S . But, as expected, a→λse b does not imply

S(a) =λζ S(b). The reason for this is that λζ is unable to prove (a b)[s] = a[s]b[s],

in fact (λ.11)(λ.11)[s] 6=λζ (λ.11)[s](λ.11)[s] because substitutions may be introduced

into applications only if the application has a head variable. Therefore, no translation

of λse into λζ preserving equalities seems possible.

Finally, we compare the amount of reduction steps needed to perform some β-

reductions of pure terms in the different calculi. We just give two examples to show

that for certain terms λσ and λυ are more efficient than λs whereas there are terms

for which λs is the most efficient. For instance, the term (λ.1)a reduces in two steps

to a in λσ and λυ but 2 + n steps are needed in λs, where n is the length of ϕ1
0a→→ a.

On the other hand, terms of the form (λ · · · λ.n)a, with m λ’s and n > m > 1, can be

reduced more efficiently in λs beacuse the single step nσma→s n− 1 requires 2m− 1

steps in λυ and much more in λσ. Remark that λζ is less efficient than λυ every time

the new mechanism of application is started.

3 The weak normal forms

The following theorem classifies se-normal forms (cf. Kamareddine and Rı́os, 1995b).

Theorem 8

A term a ∈ Λsop is an se-normal form iff one of the following holds:

• a ∈ V ∪ IN, i.e. a is a variable or a de Bruijn number.

• a = b c, where b and c are se-normal forms.

• a = λb, where b is an se-normal form.

• a = b σjc, where c is an se-nf and b is an se-nf of the form X, or d σie with

j < i, or ϕikd with j ≤ k.
• a = ϕikb, where b is an se-nf of the form X, or c σjd with j > k + 1, or ϕjl c

with k < l.

There is a simple way to describe the se-nf’s using item notation (Kamareddine and

Nederpelt, 1995). In this notation one writes a b = (b δ)a, λa = (λ)a, a σib = (b σi)a

and ϕika = (ϕik)a. (b δ), (λ), (c σi), (ϕik) are called items (δ-, λ-, σ- and ϕ-items,

respectively) and b and c the bodies of the respective items. A sequence of items is

called a segment. Note that every term in Λsop can be written as s n or sX for some

segment s.

A normal σϕ-segment s is a sequence of σ- and ϕ-items such that every pair of

adjacent items in s has one of the following forms:

(ϕik)(ϕ
j
l ) and k < l (ϕik)(b σ

j) and k < j − 1 (b σi)(c σj) and i < j

(b σj)(ϕik) and j ≤ k.

https://doi.org/10.1017/S0956796897002785 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002785


408 F. Kamareddine and A. Ŕıos

Two examples of normal σϕ-segments are: (ϕ2
3)(ϕ1

4)(ϕ6
7)(bσ9)(cσ11)(ϕ2

11)(ϕ5
16) and

(bσ1)(cσ3)(dσ4)(ϕ2
5)(ϕ1

6)(ϕ4
7)(aσ10).

Finally, to make the dependence of a normal σϕ-segment on the bodies of the

σ-items explicit, we define the skeleton of a σϕ-segment as the pseudo-segment

obtained by removing the bodies of the σ-items. We call it pseudo-segment because

it is not a segment as defined above. We write σϕ(a1, . . . , an) to mean the normal

σϕ-segment s (whose skeleton is σϕ) which has n σ-items such that the body of the

i-th (begining from the left) of them is ai. We call such a skeleton a normal skeleton

of arity n. For example, the following segments:

s′ = (ϕ2
3)(ϕ1

4)(ϕ6
7)(bσ9)(cσ11)(ϕ2

11)(bσ14)(ϕ5
16)

s′′ = (bσ1)(cσ3)(dσ4)(ϕ2
5)(ϕ1

6)(ϕ4
7)(aσ10)

have the respective skeletons

σϕ′ = (ϕ2
3)(ϕ1

4)(ϕ6
7)(σ9)(σ11)(ϕ2

11)(σ14)(ϕ5
16)

σϕ′′ = (σ1)(σ3)(σ4)(ϕ2
5)(ϕ1

6)(ϕ4
7)(σ10) ,

and are written: s′ = σϕ′(b, c, b) and s′′ = σϕ′′(b, c, d, a).

We can now give another description of the se-nf’s, as presented in Kamareddine

and Rı́os (1995b). This different point of view of the structure of the se-normal

forms will be exploited later.

Theorem 9

The se-normal forms can be described by the following syntax:

NF ::= V | IN | (NF δ)NF | (λ)NF | σϕ(NF, . . . , NF) V

where σϕ are normal skeletons. Terms of the form σϕ(a1, . . . , an)X are called σϕ-

normal forms (even if they are not written in item notation).

Now, we define an innermost strategy (before reducing a redex all its subterms must

have been already normalised) to calculate normal forms. We do it in three steps:

1. We define a function s′e to evaluate a normal form of ϕikd for d ∈ NF .

2. We use s′e to define a function s′′e to evaluate a normal form of d σje for

d, e ∈ NF .

3. We use s′e and s′′e to define a function s∗e to evaluate an se-normal form for

a ∈ Λsop.

Definition 12

Let d ∈ NF , we define s′e(ϕ
i
kd) by induction on d as follows:
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s′e(ϕ
i
kX) = ϕikX

s′e(ϕ
i
kn) =

{
n + i− 1 if n > k

n if n ≤ k

s′e(ϕ
i
k(a b)) = s′e(ϕ

i
ka) s

′
e(ϕ

i
kb)

s′e(ϕ
i
k(λa)) = λs′e(ϕ

i
k+1a)

s′e(ϕ
i
k(ϕ

j
l a)) =


ϕik(ϕ

j
l a) if k < l

ϕ
j+i−1
l a if l ≤ k < l + j

ϕ
j
l (s
′
e(ϕ

i
k+1−ja)) if l + j ≤ k

s′e(ϕ
i
k(a σ

jb)) =

{
ϕik(a σ

jb) if j > k + 1

s′e(ϕ
i
k+1a) σ

js′e(ϕ
i
k+1−jb) if j ≤ k + 1

Note the analogy of these equalities with the ϕ-rules.

Definition 13
Let d, e ∈ NF , we define s′′e (d σ

je) by induction on d as follows:

s′′e (X σ
jb) = X σjb

s′′e (n σ
jb) =


n− 1 if n > j

s′e(ϕ
j
0 b) if n = j

n if n < j

s′′e ((a c) σ
jb) = s′′e (a σ

jb) s′′e (c σ
jb)

s′′e ((λa) σ
jb) = λs′′e (a σ

j+1b)

s′′e ((ϕ
i
ka) σ

jb) =



(ϕika) σ
jb if j ≤ k

ϕi−1
k a if k < j < k + i

s′e(ϕ
i
k+1a) σ

k+1s′e(ϕ
i
0b) if j = k + i

ϕik(s
′′
e (a σ

j+1−ib)) if j > k + i

s′′e ((a σ
ic) σjb) =

{
(a σic) σjb if i > j

s′′e (a σ
j+1b) σis′′e (c σ

j+1−ib) if i ≤ j
Remark again the analogy of these equalities with the σ-rules. Only one does not

fit the pattern: s′′e ((ϕ
i
ka) σ

jb) = s′e(ϕ
i
k+1a)σ

k+1s′e(ϕ
i
0b) when j = k + i. The reason for

treating this case separately is that only when j = k + i an application of σ-ϕ tr.2

creates a new ϕ-σ tr.-redex:

(ϕik a) σ
j b −→σ-ϕ-tr.2 ϕik(a σ

k+1 b) −→ϕ-σ-tr (ϕik+1a) σ
k+1(ϕi0b)

Definition 14
Let d ∈ Λsop, we define s∗e(d) by induction on d as follows:

s∗e(X) = X s∗e(a b) = s∗e(a) s
∗
e(b) s∗e(ϕ

i
ka) = s′e(ϕ

i
ks
∗
e(a))

s∗e(n) = n s∗e(λa) = λs∗e(a) s∗e(a σ
jb) = s′′e (s

∗
e(a) σ

js∗e(b))
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To prove weak normalisation of se, we need to show that s′e and s′′e define normal

forms and this requires a powerful inductive hypothesis (see Lemmas 15 and 16)

which uses S and N below:

Definition 15

The set of sorts is defined asS = {V , B, δ, λ, σ, ϕ}. The sort of a term a, denoted S(a),

is defined as: S(X) = V , S(n) = B, S(a b) = δ, S(λa) = λ, S(a σib) = σ, S(ϕika) = ϕ.

The number of a term c of sort σ or ϕ or V , denoted N(c), is defined as N(ϕika) = k,

N(a σjb) = j and N(X) = 0.

S and N really matter in deciding the existence of redexes:

Remark 1

Let b ∈ NF:

1. If ϕika ∈ NF , S(a) = S(b) and N(a) = N(b), then ϕjkb ∈ NF for every j ≥ 1.

2. If a σjc ∈ NF , S(a) = S(b) and N(a) = N(b), then b σjc ∈ NF .

3. If ϕika ∈ NF , S(a) = S(b) and N(a) = N(b), then b σk+1c ∈ NF for c ∈ NF .

Proof

By analysis of the redex at the root (cf. (KR96)).

Lemma 15

If a ∈ NF then s′e(ϕ
i
ka) is an se-normal form of ϕika. Moreover, if s′e(ϕ

i
ka) 6= ϕika then

S(a) = S(s′e(ϕ
i
ka)) and when S(a) = σ or S(a) = ϕ we also have N(a) = N(s′e(ϕ

i
ka)).

Proof

By induction on a. We only show the case a = ϕ
j
l b and l + j ≤ k. Now, s′e(ϕ

i
ka) =

s′e(ϕ
i
k(ϕ

j
l b))

D 12
= ϕ

j
l s
′
e(ϕ

i
k+1−jb). If s′e(ϕ

i
k+1−jb) = ϕik+1−jb, then s′e(ϕ

i
ka) = ϕ

j
l (ϕ

i
k+1−jb)

wich is in normal form, beacuse l < k + 1 − j. If s′e(ϕ
i
k+1−jb) 6= ϕik+1−jb, then

our strong inductive hypothesis ensures S(b) = S(s′e(ϕ
i
k+1−jb)). Note that, since

a = ϕ
j
l b ∈ NF , b is neither an application nor an abstraction, also b is not a

variable (otherwise s′e(ϕ
i
k+1−jb) = ϕik+1−jb). Hence b is a σϕ-normal form, and we

have N(b) = N(s′e(ϕ
i
kb)). We conclude by Remark 1.1 that ϕjl s

′
e(ϕ

i
kb) ∈ NF .

Lemma 16

If a, b ∈ NF then s′′e (a σ
jb) is an se-normal form of a σjb. Moreover, if s′′e (a σ

jb) 6=
a σjb and a 6= j then:

1. If a 6= ϕikc with i + k = j then S(a) = S(s′′e (a σ
jb)) and when S(a) = σ or

S(a) = ϕ we have furthermore N(a) = N(s′′e (a σ
jb)).

2. If a = ϕikc with i+ k = j then S(s′′e (a σ
jb)) = σ and N(s′′e (a σ

jb)) = k + 1.

Proof

By induction on a. The proof is similar to the proof of the previous lemma.

Theorem 10 (Weak normalisation of se)

For every term a ∈ Λsop, s
∗
e(a) is an se-normal form of a. Hence, the se-calculus is

weakly normalising.
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Proof

By induction on a using Lemmas 15 and 16 and the fact that left members of

se-rules are neither applications nor abstractions.

We therefore have a strategy to find se-normal forms. Furthermore, the strategy

is innermost indeed: notice that for the out-of-the-pattern case we pointed out after

Definition 13, the strategy remains innermost. In fact, for j = k + i, we had:

(ϕik a) σ
j b −→σ-ϕ-tr.2 ϕik(a σ

k+1 b) −→ϕ-σ-tr (ϕik+1a) σ
k+1(ϕi0b) ,

and if ϕika ∈ NF and b ∈ NF then, a σk+1 b ∈ NF . Therefore, the only redex in

ϕik(a σ
k+1 b) is the ϕ-σ-transition-redex at the root.

If we knew that se is SN, since we proved local confluence of se (cf. Theorem 6),

we could apply Newman’s Lemma to show the confluence of se. In the abscence of

this information, we establish the following proposition.

Proposition 1

Let a, b ∈ Λsop, if a→se b then s∗e(a) = s∗e(b).

Proof

Induction on a showing first that s∗e(s
∗
e(a)) = s∗e(a), s

∗
e(ϕ

i
ka) = s∗e(ϕ

i
ks
∗
e(a)) and

s∗e(a σ
jb) = s∗e(s

∗
e(a) σ

js∗e(b)) and that for every rule L → R of the se-calculus,

s∗e(L) = s∗e(R). This last statement should be first proved assuming that all the terms

involved in the rules are se-nfs. This is easy for the s-rules, but for the other rules an

enormous amount of elementary calculations is needed. Furthermore, for some rules

it is necessary to assume that the fact hold for other rules, hence the importance

of the chosen order for the proofs. This order works: ϕ-ϕ-tr.1, ϕ-ϕ-tr.2, σ-ϕ-tr.1,

σ-ϕ-tr.2, ϕ-σ-tr., σ-σ-tr.. More details can be found in Kamareddine and Rı́os (1996).

Theorem 11 (Confluence of se)

The se-calculus is confluent both on Λsop and on Λs.

Proof

Since all the se-rules preserve closed terms, we just prove the theorem for Λsop.

It is easy to show by induction on the length of the derivation and using

Proposition 1 that for a, b ∈ Λsop, a→→se b implies s∗e(a) = s∗e(b).

Let us suppose a →→se b and a →→se c, hence s∗e(a) = s∗e(b) and s∗e(a) = s∗e(c). The

theorem is therefore settled since b→→se s
∗
e(b) and c→→se s

∗
e(c).

Hence, for every term a ∈ Λsop there exists (Theorem 10) a unique se-normal form

that we denote se(a). Hence, se(a) = s∗e(a) for every a ∈ Λsop, se(ϕ
i
kb) = s′e(ϕ

i
kb) for

every b ∈ NF and every i ≥ 1, k ≥ 0 and se(c σ
jd) = s′′e (c σ

jd) for every c, d ∈ NF
and j ≥ 1.

4 The calculus of the interpretation

Our aim is to apply the GIMES (Corollary 1) to obtain the confluence of the

λse-calculus. Our interpretation function will be se. Coming back to the notation
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of Corollary 1, we intend to apply the GIMES with: f = se, R =→λse , R1 =→se

and R2 =→σ−gen. In the previous section we proved Proposition 1 which evidently

implies that Condition 2 of the GIMES is satisfied. In this section we are going to

introduce the calculus of the interpretation. The set of the interpretation is, of course,

NF . Therefore, we shall define R′ on NF and prove that Conditions 1 and 3 of the

GIMES are also satisfied. We postpone the confluence of R′ until the next section.

Definition 16 (The interpretation reduction β′)

For a, b ∈ NF , a→β′ b iff there exists d ∈ Λsop such that a→σ−gen d and b = se(d).

We take →β′ as R′. Condition 1 of the GIMES is immediate:

Proposition 2

Let a, b ∈ NF , if a→β′ b then a→→λse b.

The following lemmas are needed to prove Proposition 3 which is Condition 3 of

the GIMES.

Lemma 17

Let a, b, c ∈ NF .

1. If a→→β′ b and c→→β′ d then a c→→β′ b d .

2. If a→→β′ b , then λa→→β′ λb .

Proof

1. Prove first that if a →β′ b , then a c →β′ b c and c a →β′ c b . Then use a

double induction.

2. Prove first that if a→β′ b , then λa→β′ λb .

Lemma 18

If a is a σϕ-normal form and a →σ−gen d then S(a) = S(se(d)) and N(a) = N(se(d))

(cf. Definition 15).

Proof

By induction on a using Remark 1 (cf. Kamareddine and Rı́os (1996) for details).

Lemma 19

For a, b, c, e ∈ NF the following hold:

1. If a→β′ b and ϕika ∈ NF then ϕikb ∈ NF and ϕika→β′ ϕ
i
kb.

2. If a→β′ b and a σjc ∈ NF then b σjc ∈ NF and a σjc→β′ b σ
jc.

3. If a→β′ b and c σja ∈ NF then c σjb ∈ NF and c σja→β′ c σ
jb.

4. If a→→β′ b and ϕika ∈ NF then ϕikb ∈ NF and ϕika→→β′ ϕ
i
kb.

5. If a→→β′ b, c→→β′ e and a σjc ∈ NF then b σje ∈ NF and a σjc→→β′ b σ
je.

Proof

Using Lemma 18 and Remark 1 (cf. (KR96) for details).

Lemma 20

Let a, b ∈ NF and d ∈ Λsop. The following holds:
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1. If a→σ−gen d then se(ϕ
i
ka)→β′ se(ϕ

i
kd).

2. If a→σ−gen d then se(a σ
jb)→β′ se(d σ

jb).

3. If b→σ−gen d then se(a σ
jb)→→β′ se(a σ

jd).

Proof

By induction on a

1. Use Lemma 19.1, 2 and 3.

2. The previous item is required.

3. Use Lemma 17 and Lemma 19.3, 4 and 5, as well as the first item.

See Kamareddine and Rı́os (1996) for more technical details.

Lemma 21

For a, b, c ∈ NF the following hold:

1. If a→→β′ b then se(ϕ
i
ka)→→β′ se(ϕ

i
kb).

2. If a→→β′ b then se(a σ
jc)→→β′ se(b σ

jc).

3. If b→→β′ c then se(a σ
jb)→→β′ se(a σ

jc).

Proof

Straightforward using Lemma 20.

The following proposition states that Condition 3 of the GIMES is satisfied.

Proposition 3

Let a, b ∈ Λsop, if a→σ−gen b then se(a)→→β′ se(b).

Proof

By induction on a.

a = c d : If the reduction is internal (c→σ−gen c
′ or d→σ−gen d

′), use IH and Lemma

17.1. If the reduction is at the root (c = λc′ and b = c′ σ1d) we have:

se((λc
′)d) = (λse(c

′))se(d)→β′ se(se(c
′) σ1se(d)) = se(c

′ σ1d).

a = λc : Use the IH and Lemma 17.2.

a = ϕikc : Use the IH and Lemma 21.1.

a = c σjd : Use IH and Lemma 21.2 or 21.3, if the reduction is within c or d,

respectively.

5 Confluence results

In this section we prove confluence for the calculus of the interpretation (NF,→β′ )

in order to obtain the confluence of the λse-calculus via the GIMES. The confluence

of (NF,→β′ ) is obtained via a parallelisation à la Tait-Martin-Löf (cf. Barendregt,

1984) defined as follows:
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Definition 17

Let a, b, c, d, a1, . . . , an ∈ NF . The reduction ⇒ is defined on NF by:

(REFL) a⇒ a (SPHI )
ah ⇒ bh 1 ≤ h ≤ n

σϕ(a1, . . . , an)X ⇒ σϕ(b1, . . . , bn)X

(ABST )
a⇒ b

λa⇒ λb
(BETA)

a⇒ c b⇒ d

(λa) b⇒ se(c σ1d)

(APPL)
a⇒ c b⇒ d

a b⇒ c d

We note that SPHI is a rule scheme where σϕ ranges over normal skeletons.

To prove that the transitive closures of →β′ and ⇒ coincide, we establish the

following two lemmas.

Lemma 22

Let a, b ∈ NF , if a⇒ b then a→→β′ b.

Proof

By induction on the length of the deduction a⇒ b. We only treat two cases according

to the last rule applied in this deduction:

SPHI: a = σϕ(a1, . . . , an)X, b = σϕ(b1, . . . , bn)X and ah ⇒ bh for 1 ≤ h ≤ n.
By IH, ah →→β′ bh, and we use the following (proved by induction on the length

of σϕ and using Lemma 19.4 and 5):

Fact: For every normal skeleton σϕ of arity n and for every ah, bh ∈ NF (1 ≤
h ≤ n), if ah →→β′ bh for 1 ≤ h ≤ n, then σϕ(a1, . . . , an)X →→β′ σϕ(b1, . . . , bn)X .

BETA: a = (λa′)b′, b = se(c
′σ1d′), a′ ⇒ c′ and b′ ⇒ d′.

By IH, a′ →→β′ c
′ and b′ →→β′ d

′ and therefore (λa′)b′ →β′ se(a
′σ1b′)

L 21.2→→β′

se(c
′σ1b′)

L 21.3→→β′ se(c
′σ1d′).

Remark 2

For a1, . . . , an ∈ Λsop and σϕ the skeleton of a normal σϕ-segment, we have

se(σϕ(a1, . . . , an)X) = σϕ(se(a1), . . . , se(an))X.

Proof

Because σϕ(a1, . . . , an)X →→se σϕ(se(a1), . . . , se(an))X which is a (unique) se-nf.

Lemma 23

Let a ∈ NF and d ∈ Λsop, if a→σ−gen d then a⇒ se(d).

Proof

By induction on a. As an example, we treat the case a = σϕ(a1, . . . , an)X. The

reduction must occur within some ai, hence d = σϕ(a1, . . . , a
′
i, . . . , an) such that

ai →σ−gen a
′
i. By IH, ai ⇒ se(a

′
i) and, since ah ⇒ ah, applying rule SPHI:

a⇒ σϕ(a1, . . . , se(a
′
i), . . . , an)

R 2
= se(σϕ(a1, . . . , a

′
i, . . . , an))
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Lemma 24

The transitive closures of →β′ and ⇒ coincide, i.e. →→β′ =⇒∗.

Proof

If a →β′ b then a →σ−gen d and b = se(d) and, by Lemma 23, a ⇒ b. Therefore,

→β′ ⊆⇒. Now, by Lemma 22,⇒⊆→→β′ , hence→β′ ⊆⇒⊆→→β′ . Therefore,→→β′ =⇒∗.

To prove that ⇒ is SCR we must first establish some lemmas (see Kamareddine

and Rı́os (1996) for details).

Lemma 25

For every i ≥ 1, k ≥ 0 and normal skeleton σϕ of arity n, there exists a normal

skeleton σϕ1, m, i1, . . . , im, k1, . . . , km such that 0 ≤ m ≤ n, ih ≥ 1 and kh ≥ 0

(1 ≤ h ≤ m) and such that for every a1, . . . , an ∈ NF the following holds:

se(ϕ
i
k σϕ(a1, . . . , an)X) = σϕ1(se(ϕ

i1
k1
a1), . . . , se(ϕ

im
km
am), am+1, . . . , an)X

Proof

By induction on the length of the skeleton σϕ.

Lemma 26

For every j ≥ 1 and normal skeleton σϕ of arity n, there exists a normal skeleton

σϕ2, m, i1, . . . , im such that 0 ≤ m ≤ n, ih ≥ 1 (1 ≤ h ≤ m) and one and only one of

the following holds:

• There exist i0 ≥ 1, p, im+1, . . . , ip, km+1, . . . , kp such that m ≤ p ≤ n, ih ≥ 1, kh ≥ 0

(m+ 1 ≤ h ≤ p) and for every a1, . . . , an, c ∈ NF , the following holds:

se(σϕ(a1, . . . , an)X σj c) =

σϕ2(se(b1), . . . , se(bm), se(ϕ
i0
0 c), se(dm+1), . . . , se(dp), ap+1, . . . , an)X

where bl = alσ
il c and dl = ϕilkl al

• For every a1, . . . , an, c ∈ NF , the following holds:

se(σϕ(a1, . . . , an)X σj c) =

σϕ2(se(a1σ
i1c), . . . , se(amσ

imc), c, am+1, . . . , an)X

• For every a1, . . . , an, c ∈ NF , the following holds:

se(σϕ(a1, . . . , an)X σj c) =

σϕ2(se(a1σ
i1c), . . . , se(amσ

imc), am+1, . . . , an)X

Proof

By induction on the length of the skeleton σϕ.

Lemma 27

Let a, b ∈ NF , if a⇒ b then se(ϕ
i
ka)⇒ se(ϕ

i
kb).

Proof

By induction on the length of the deduction a⇒ b. If the last rule is, e.g.:

SPHI: Hence a = σϕ(a1, . . . , an)X, b = σϕ(b1, . . . , bn)X and ah ⇒ bh for all h. By

Lemma 25 we have

se(ϕ
i
k σϕ(a1, . . . , an)X) = σϕ1(se(ϕ

i1
k1
a1), . . . , se(ϕ

im
km
am), am+1, . . . , an)X.

By IH, se(ϕ
ih
kh
ah)⇒ se(ϕ

ih
kh
bh) for h ≤ m and, since ah ⇒ bh for all h, in particular
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for m < h ≤ n, we apply rule SPHI to get

σϕ1(se(ϕ
i1
k1
a1), . . . , se(ϕ

im
km
am), am+1, . . . , an)X ⇒

σϕ1(se(ϕ
i1
k1
b1), . . . , se(ϕ

im
km
bm), bm+1, . . . , bn)X

L 25
= se(ϕ

i
k σϕ(b1, . . . , bn)X)

BETA: Hence a = (λa1)a2, b = se(b1σ
1b2), a1 ⇒ b1 and a2 ⇒ b2.

se(ϕ
i
k((λa1)a2)) = (λse(ϕ

i
k+1a1))se(ϕ

i
ka2)

IH⇒ se(se(ϕ
i
k+1b1)σ1se(ϕ

i
kb2)) =

se((ϕ
i
k+1b1)σ1(ϕikb2)) = se(ϕ

i
k(b1σ

1b2)) = se(ϕ
i
kse(b1σ

1b2))

Corollary 4

Let a, b ∈ NF such that ϕika, ϕ
i
kb ∈ NF , if a⇒ b then ϕika⇒ ϕikb.

Lemma 28

Let a, b, c ∈ NF , if b⇒ c then se(a σ
jb)⇒ se(a σ

jc).

Proof

By induction on a (see Kamareddine and Rı́os (1996) for details).

Lemma 29

Let a, b, c, d ∈ NF , if a⇒ b and c⇒ d then se(a σ
jc)⇒ se(b σ

jd).

Proof

By induction on the length of the deduction a⇒ b. If the last rule is, e.g.:

BETA: Hence a = (λa1)a2, b = se(b1σ
1b2), a1 ⇒ b1 and a2 ⇒ b2.

se(((λa1)a2) σjc) = (λse(a1 σ
j+1c))se(a2 σ

jc)
IH & BETA⇒

se(se(b1 σ
j+1d)σ1se(b2σ

jd)) =

se((b1 σ
j+1d)σ1(b2σ

jd)) = se((b1σ
1b2) σjd) = se(se(b1σ

1b2) σjd)

SPHI: Hence a = σϕ(a1, . . . , an)X, b = σϕ(b1, . . . , bn)X, ah ⇒ bh (1 ≤ h ≤ n).

Lemma 26 offers three possibilities which are treated analogously. We choose

the second one:

se(σϕ(a1, . . . , an)X σj c) =

σϕ2(se(a1σ
i1c), . . . , se(amσ

imc), c, am+1, . . . , an)X

by IH, se(ahσ
ihc)⇒ se(bhσ

ihd) and as c⇒ d and ah ⇒ bh for m+ 1 ≤ h ≤ n,
SPHI gives: σϕ2(se(a1σ

i1c), . . . , se(amσ
imc), c, am+1, . . . , an)X ⇒

σϕ2(se(b1σ
i1d), . . . , se(bmσ

imd), d, bm+1, . . . , bn)X. Finally, by Lemma 26,

se(σϕ(b1, . . . , bn)X σj d) =

σϕ2(se(b1σ
i1d), . . . , se(bmσ

imd), d, bm+1, . . . , bn)X.

Note that, to check the first option of Lemma 26, Lemma 27 is needed.

Theorem 12

The parallelisation ⇒ is strongly confluent.

Proof

By induction on the length of the deduction a⇒ b. We just study two cases for the

last rule applied in this deduction:

https://doi.org/10.1017/S0956796897002785 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002785


The confluence of the λse-calculus on open terms 417

SPHI: Hence a = σϕ(a1, . . . , an)X, b = σϕ(b1, . . . , bn)X and ah ⇒ bh for all h.

Remark that c = σϕ(c1, . . . , cn)X and ah ⇒ ch for all h, since the last rule to

obtain σϕ(a1, . . . , an)X ⇒ c must be either SPHI or REFL. By IH there exist

dh such that bh ⇒ dh and ch ⇒ dh for all h. Take d = σϕ(d1, . . . , dn)X.

BETA: Hence a = (λa1)a2, b = se(b1σ
1b2), a1 ⇒ b1 and a2 ⇒ b2. There are two

possibilities for c according to the last rule applied to obtain a ⇒ c. We only

treat the case where the last rule is BETA: Hence c = se(c1σ
1c2), with a1 ⇒ c1

and a2 ⇒ c2, then by IH there exists d1, d2 such that b1 ⇒ d1, c1 ⇒ d1, b2 ⇒ d2

and c2 ⇒ d2. Take d = se(d1σ
1d2) and use Lemma 29.

Proposition 4

The calculus of the interpretation (NF,→β′ ) is confluent.

Proof

By Theorem 12,⇒ is SCR, and by Lemma 1, also⇒∗ is SCR. Hence, by Lemma 24,

→→β′ is SCR, and so →β′ is confluent.

Theorem 13

The λse-calculus is confluent on Λsop.

Proof

All the conditions hold (see our four propositions) and the GIMES (Corollary 1)

can be applied as proposed at the beginning of Section 4.

Corollary 5

The λse-calculus is confluent on Λs.

Finally, we show that λse is correct with respect to the λ-calculus, i.e. that all

λse-derivations beginning and ending with pure terms can also be obtained in the

λ-calculus.

Theorem 14 (Soundness)

For a, b ∈ Λ, if a→→λse b then a→→β b.

Proof

First we show by induction on a that for all a, b ∈ Λ, a →β′ b iff a →β b and

deduce that a →→β′ b iff a →→β b. Then we show by induction on the length of the

derivation a →→λse b using Prpositions 1 and 3 that for all a, b ∈ Λsop, if a →→λse b

then se(a)→→β′ se(b). Now we are done because a, b ∈ Λ ⊂ NF .

6 Conclusion

We think that λs is an interesting alternative to calculi of explicit substitutions in

the λσ-style: it preserves SN (cf. Kamareddine and Rı́os, 1995a), has a confluent

extension on open terms (cf. Theorem 13) and simulates one step β-reduction (cf.

Lemma 14). Two important questions are still open:

1. Is the se-calculus strongly normalising?
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2. Does the λse-calculus preserve SN?

If the second question could be decided positively, λse would be the answer to the

two open problems in Muñoz Hurtado (1996), namely, a confluent (on open terms)

calculus of explicit substitutions that preserves strong normalisation which

1. reduces substitution redexes before β-redexes.

2. admits interaction of substitutions.

We note that SN of se would also shorten the proof of confluence that we have

given here: most of the results of section 3 become trivial in the presence of SN.

Finally, from a computational point of view, the lack of SN is not a major

problem, since the se-calculus has been shown weakly normalising and an effective

strategy to evaluate normal forms has been proposed.

However, from a theoretical point of view, the strong normalisation of the se-

calculus is an important feature and seems a very difficult problem which re-

mains still a challenge to the rewriting community. Zantema showed in a private

communication, that the σ-σ-transition rule terminates. He considered the infinite

Term Rewriting Structure TRS (with this rule), ranging over an infinite signature

{ σi, i > 0}. He showed strong normalisation of this TRS (call it S) by showing weak

normalisation and using the following lemma (cf. Klop, 1992):

Lemma 30

Any reduction relation → on a set T satisfying 1, 2 and 3 is strongly normalising:

1. → is weakly normalising.

2. → is WCR.

3. → is increasing, i.e. there exists f : T −→ IN s.t. a→ b⇒ f(a) < f(b).

For S , 2 follows from a simple critical pair analysis and 3 can be easily established

by choosing f(a) to be the size of a. To show weak normalisation of S , Zantema

establishes first two lemmas:

Lemma 31

Let b = ((· · · (aσi1a1)σi2a2)σi3a3) · · ·σinan, where a is either a variable or its root is

not σq , and i1 > i2 > ... > in−1, in−1 ≤ in. Then

b →+ ((· · · (aσj1b1)σj2b2)σj3b3) · · ·σjnbn, where j1 > j2 > j3... > jn−1 > jn = in−1, and

for every r = 1, · · · , n either br = ap for some p ≤ n or br = apσ
kan for some p < n

and some k.

Proof

By induction on n. At the top level, b→ ((....σin+1an)σ
in−1 (an−1σ

kan)).

Lemma 32

Let b = ((..(aσi1a1)σi2a2)σi3a3) . . . σinan, where a is either a variable or its root is not

σq . Then b →∗ ((· · · (aσj1b1)σj2b2)σj3b3) · · ·σjnbn, where j1 > j2 > j3... > jn−1 > jn,

and for every r = 1, · · · , n the term br can be written as

br = (..(ac(r,1)σac(r,2))σac(r,2))...σac(r,n) for 1 ≤ c(r, 1) < c(r, 2) < ... < c(r, n) ≤ n, where

σ stands for arbitrary σk .
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Proof

Induction on n using Lemma 31.

Lemma 33 (Weak normalisation of S)

S is weakly normalising.

Proof

By induction on the size of the term: assume there is a term b not having a normal

form for which every term of size smaller than b admits a normal form. Apply

Lemma 32 to this term. Note that a and b1, b2, ...bn are all smaller than b, hence

admit a normal form. Replace a and b1, b2, · · · , bn by their normal forms in the term

((..(aσj1b1)σj2b2)σj3b3) · · ·σjnbn, yielding a normal form of b, contradiction.

Zantema correctly comments that weak normalisation of this TRS does not

follow from weak normalisation of the whole se-calculus (cf. Theorem 10). We note,

moreover, that his proof of weak normalisation differs from ours, which provides

an effective strategy to calculate normal forms. Furthermore, Zantema notes that

his proof above is the first one that establishes strong normalisation from weak

normalisation. Finally, he remarks that Lemma 30 cannot be used to establish

strong normalisation of se from its weak normalisation because the full system is

easily proved to be non-increasing.
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