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Abstract

A field comprising uniformly porous soil overlying an impervious subsoil is drained through equally
spaced tile drains placed on the boundary between the two layers of soil. When this field is subject to
uniform irrigation, a free boundary forms in the porous region above the zone of saturation. We study
the free boundary value problem which thus arises using the theory of variational inequalities.
Existence and uniqueness results are established.

1980 Mathematics subject classification (Amer. Math. Soc.): 35 R 35.

1. Introduction

In the early 1970's the Pavia school of mathematicians (see Baiocchi [1], Baiocchi
et al. [4], Comincioli [7]) have provided a new approach to certain problems in
hydrology which involve a free boundary. Their approach uses a particular class
of transformations to reformulate the problems in such a way that the theory of
variational inequalities can be applied to provide not only existence and unique-
ness results, but numerical algorithms for the solution as well. This paper
demonstrates an application of this theory to a class of drainage problems of
importance to agriculture. It is shown how the original problem may be refor-
mulated in terms of variational inequalities, with existence and uniqueness as a
consequence. This work applies many of the results of Comincioli [7] and
Baiocchi et al. [4] (particularly Chapter V), except that the more recent work of
Grisvard flO] is used to stream line the argument a little. Although not directly
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390 John van der Hoek, C. J. Barnes and J. H. Knight (21

related to our study here, variational inequalities have been employed to similar
problems. We mention many of the papers of J. C. Bruck, Jr. and co-authors (for
example [7], [8]) use similar methods to deal with irrigation problems. Numerical
results and estimates on the free boundary have been deferred to another paper
(Barnes et al. [5]) as are a discussion of the physics and the assumptions involved
in this work. Notation used has been gathered together and explained in Section
7.

2. The physical model

The physical situation which we wish to model is that of a uniform porous soil
overlying an impervious subsoil, and drained by a series of parallel, regularly
spaced tile drains on the boundary between the two layers. The surface of the soil
is uniformly irrigated in space and time at rate somewhat less than the saturated
conductivity, so that no ponding occurs at the surface.

uniform irrigation

I I I 1 I 1 1 I 1

:• saturated
:• soil

impervious layer tile drain

FIGURE 1
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[ 3 ] A free surface problem in drainage 391

Because of symmetry, only the unit cell involving the porous soil between a
drain and the adjacent midpoint between the two drains (as shown in Figure 1)
need to be considered. Since it is assumed that the soil is homogeneous and
isotropic in a direction parallel to the axis of a drain, it is only necessary to
consider the problem in two dimensions.

A further simplification is that the circular arc representing the boundary of the
drain is replaced by a vertical slit in the side of the unit cell over the midpoint of
the drain. The width h of the slit can be related to radius R of the drain by
requiring that the flux of the simplified system be the same as that of the original
system. The resulting net flow will not differ appreciably from the original one
except in the vicinity of the drain.

In what follows we assume that the flux is sufficiently large so that the free
surface does not intersect the surface of the drain. The alternative case does not
differ mathematically from the simpler case of a ditch drained field, which can
also be dealt with in the same manner as what follows.

3. Mathematical formulation

Let D be the open rectangle

{(*, y) E R2: 0 <x <a,0 <y<b)

where 2a is the distance between the drains, and b is the thickness of the porous
layer of soils. Assume the hydraulic conductivity is unity, so that the total flux q
(which we will assume throughout to satisfy q< a) through a unit cell has units
of length. Then under certain basic assumptions it is well known that the reduced
potential (or the piezometric head) and the stream function, u and v respectively,
which completely determine the flow network of the system, may be defined (see
Bear [6], pages 256-257). In particular, given u and v it is possible to determine
the flow region Q, and the position of the free surface, represented by the
equation^ = tp(x) (see Figure 2).

In the flow region, u and v are conjugate harmonic functions, with values on
the boundary depending on external conditions, so for instance, on a no flux
boundary, v must be constant, while on a surface of seepage, u is equal to the
gravitational potential y. Thus the potential u will have the constant value y{

along [AS] and the value y along [SH]. If the radius of the drains is much less
than the depth of the soil (b), there is little physical difference between the case of
a full drain (S = H) and an empty drain (S — A), but we shall analyze the
general situation. It can be shown (see Barnes et al. [5]) that there exists a value
<7* < a depending on the parameters a, b, h, yx, such that for q> q* the region D
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[ s ] A free surface problem in drainage 393

will be saturated and for q < q* there exists d £ (0, a), which for fixed a, b, h, yx

depends only on q so that x , < d (see Figure 2(a)). We will henceforth assume

q<q*-
Formally we wish to solve

Problem A. Let a, b, h, q be positive real numbers, and let 0 < yx < h. We seek
{<p, fi, u, v} such that

(3.1) <p is continuous on [0, a]; <p is strictly decreasing on [xx, a], <p(x) = b for
x G [0, xx\ if x, > 0 (x, = 0 in Figure 2(b));

(3.2) Q = {(x, y) £ D: 0_< x < a, 0 <y < <p(x)};
(3.3) M, u £ f f ' ( B ) f l C(fl);
(3.4) 3t//ax + ac/9^ = 0 in B;
(3.5) du/dy - dv/dx = 0 in fi;
(3.6) u = y on C 9 5 9 or u = >; on C^B^, u = bon [CC*]\
(3.7) « = >>, on [^S] and M = >> on [5 / / ] ;
(3.8) v = 0 on [<X;] U [O^l] or « = 0 on [OC] U [OA);
(3.9)v = q on [HB^]^ ^
(3.10) o = qx/a on ( ^ or Cfa.

3.1. LEMMA. 7Vie solution u, v of Problem A satisfies
(3M)u(x,y)>y.
(3.12) qx/a >v(x,y)>0

for (x, y) G 0.

PROOF. The proof follows by a straightforward application of the maximum
principle to the harmonic functions u — y, v and qx/a — v, respectively. The
arguments are like those in Kinderlehrer and Stampacchia [12], pages 229-230.

4. The Baiocchi transformation: reformulation of the problem

The difficulty with Problem A is that the flow region is a priori unknown, so
that the boundary conditions (3.6) and (3.10) are effectively non linear. Assume
that a solution {<p, B, u, v} of Problem A exists. Following Baiocchi [1] (see
Comincioli [7]), we can define for P G D,

(4.1) w(P)= f(u-y)dy+(^-v)dx
Jp \ a I
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394 John van der Hoek, C. J. Barnes and J. H. Knight [6]

where C is any "smooth" path connecting P to B in D, and

\u(x,y) for (JC, y) G 0,
(4.2)

(4.3)

u(x,y) =

v(x,y) =

for (x, y) G D\Q.

v(x,y) for(x, j)

qx/a foi(x,y)

B,

Observe that w is well defined since the integral in equation (4.1) is path
independent by equation (3.4). Furthermore it follows that w has the properties:

(4.4) w G H\D) n C\D);
(4.5) w > 0 in Q, w = 0 on D\Q;
(4.6) Aw = (1 -q/a)Xa in D;
(4.7) dw/dy = 0 on [Cfi];
(4.8) dw/dy = h - y on [,4//];
(4.9) aw/9x = 0 on [OC] U [HB\,

(4.10) 3W/3X = -?jc/ f l o n \OA\.
It is evident from properties (4.4), (4.7)-(4.10) that the values of w are

determined by the boundary conditions on [OA] U [AH] only up to an additive
constant. Let us set a = w(a, 0). In our presentation we will write vva to display
the dependence of w on a. For each real a, let ga be a function defined on D so
that

(4.11)

(4.12)

ga(x,0) = a + ̂ -(a2-x2) ifO<x<a;

ga(", y) =
yxy

if>"i < > " ^ / J ;

(4.13) ga(x,b) = 0

where d is the number defined in Section 3.
For example,

ga(x, y) =

if i

< y < h,

where f(y) = 1 - ((y - h)/(b ~ h))2 if h < y < b, defines a function ga G
C'(^) which satisfies (4.11)-(4.13). Let TD = [OA] U [AH] U [£5] and TN =
3Z>\rD where E is the point (d, b). Let

K+ = {v G//1(D):u>0a.e. in D,v = gaonTD).
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(71 A free surface problem in drainage 395

For a> \yf, K* is a non-empty closed convex subset of H\D) and wa is a
solution of Problem Ba (see Baiocchi et al. [4], page 21).

Problem Bo. Find w G K+ so that

(4.13) j | v w . ( v c - Vw) + (l - ^)(u->v)J^xJ>'>0 '

for all v G #+ .

4.1. REMARK. For each a > xVj2, Problem Btt admits a unique solution. See
Kinderlehrer and Stampacchia [12] for coercivity consult Donaghue [8].

5. Uniqueness

5.1. THEOREM. There is at most one solution to Problem A.

PROOF. Let Q be the set of a > \y* with the property that Problem A has a
solution with the property that via the Baiocchi transform it gives rise to a
solution of Problem Ba. It is sufficient in the light of Remark 4.1 to show that Q
has at most one element. Assume to the contrary that a, fi G Q with a > /}. Let
{<Pai ô> "«' va) and {<P/8> fy> Mp> vp) be the corresponding solutions to Problem A
and let wa and w^ be their Baiocchi transforms. Put ^ = wa — Wp and

U={(x,y)GD:W](x,y)<0).

UU¥= 0, then since wa > 0 on D, wp > 0 in U. Then in U C fy,,

and

w, = 0 on W n £>;
w, > 0 on W D T as a > 0;

-g -̂ =0 onWD (dD\T),

where F = [OA] U [-4//]. So w, 3s 0 (see Kinderlehrer and Stampacchia [12], page
245), a contradiction. We thus conclude that wa > Wp and hence that Up C fla.
Now let

V= {(x, y) G D: ua(x, y) < Up(x, y)},
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then F c Q ^ a s Up(x, y) = y < ua{x, y) (Lemma 3.1) for (x, y) G D\Qp. Whence
u = ua — Up = ua — Up is harmonic on V and so V is empty as before.

We conclude that ua > Up, and likewise that t;a «£ Vp. We claim now that

(5.1) va(a, y) = ton_ (a - x)~l f(ua(x, t) - ua(a, t)) dt

for 0 ̂  y < b. In fact

fy(ua(x, t) - ua(a, t)) dt = wa(x,0) - wa(a,O) - f( & - t5o(€, j

from which (5.1) follows using va G C(D) and wa G C\D) and (4.10).
Likewise

(5.2) i<a(jc,O) = ->>,+ lim -

for 0 < x < a follows from

fva{i, y) d£ = fy(ua(x, t) -t)dt + wa(a,0) - wa(a, y).
Jx J0

Combining this with our previous results, we conclude that

(5.3) va(a,y)=Vp{a,y), 0<y^h,

and

(5.4) iia(x,0) = iip(x,0), 0<x<a.

The following is a consequence of the fact that w satisfies (4.4)-(4.10) and
v G C\D),

(5.5) f (v-w)^ds
JdD an

= [1 — ) I (v — w) dxdy + I V w . ( v u — Vw) dxdy.
\ a I Ja JD

We apply (5.5) first with v = Wp, w — wa, fl = J2a and then with v — wa, w = Wp,
fl = Qp and add the results. Now using

-TT^ = -z— on F
an an

which is a consequence of (5.3) and (5.4) we obtain

(5.6) (\VWp- VwJ dx dy = (l - f ) f (wfi - wj dxdy < 0.

It now follows that wa = wj, and hence that a = /?, a contradiction.

https://doi.org/10.1017/S1446788700025441 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025441


| 9 | A free surf ace problem in drainage 397

6. Existence

The existence of a solution to Problem A will be established in two steps:
(i) there exists a > {y2 so that the solution wa of Problem Ba belongs to

C\D)\
(ii) if wa G C\D) is a solution to Problem Ba with a s* \y2 then we can invert

the Baiocchi transform to obtain a solution to Problem A.
Let

Ka ={»€= H\D): v = ga on TD)

where TD is defined in section 4; let u+ = max{0, v}. Then for each a > ^,2 it
can be shown (see Baiocchi ef a/. [4], page 54) that Problem Ba is equivalent to

Problem Ca. Find w G Kaso that

(6.1) J |

for all v G ATa.

6.1. THEOREM. For each real a, a solution wa to Problem Ca satisfies

(6.2) Awa G L°°(D); 0 < Awa < (1 - ? / a ) a.e. in D;
(6.3) 3»va/an = 0onTN in the sense of(H^2(TN))';
(6.4) wa G H^'^(£)) n HA+°(D), 1 </> < 4, a < ^.

In particular, wa G C(D) and on setting

(65) **a= {(x,y)eD:wtt(x,y)>0),

0-={(x,y)ED:Wa(x,y)<0}

it follows that fia and S2~ are open ana1 moreover

/ n fia (i/i ?ne je«je o/<SD'(Q J ) ,Awa
(6.6)

Awa = 0 in tt~ (in the sense of €) ' ( f l^ ) ) .

P R O O F . This follows as in Theorem 2.2 in Baiocchi ef a/. [4], page 55 and

Grisvard [10].

6.2. THEOREM. There exists a bounded continuous function F: R -* R and two real

constants m, n such that a solution wa of Problem Ca belongs to W2tP(D) with

2 < p < 4 (and hence on C'(£>)) if and only if

(6.7) F(a) + m« + n = 0.

https://doi.org/10.1017/S1446788700025441 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025441


398 John van der Hoek, C. J. Barnes and J. H. Knight [ 10 ]

PROOF. Consider the map Tdefined on Wlp(D), 2 <p< 4, by

(6-8) Tu=

The range of T is a subspace of

Xp = L»(D) X Wp,D X WPtN

where

Wp D= W2-l/pp(]EB[ U]OA[ U]AH[),

WpN= Wl-l/pp(]OC[ U]HB[ U]CE[).

By Theorem 1, Grisvard [10], T is a Fredholm operator with index (T) = - 1 .
Since dimker T = 0, we conclude that there exists a continuous linear functional
L on Ap such that given / G L'(£>), g e Ŵ, o , /i G WpN and « G ^ ' (D) with
Tu = (/, g, h) then u G W2/>(i>) with 2 < p < 4 if and only if

(6.9) L(f,g,h) =

that is, there exists 4> G LP(D) (l/p + \/p' = 1), ¥ , G [Wp D]', % G [WpN]'
such that (6.9) holds if and only if

(6.10) (*,f)+(%,g)+(%,h)=0.

In fact 0, % and ^ 2 are independent of p for 2 < p < 4. Applying (6.10) to
/ = -Awo, g = ga and h = 0, where w,, is a solution to Problem Ca we conclude
that wa G W2p(D) for 2 < p < 4 if and only if

(6.11) < * , - / W a > + < • „ & , ) = 0.

Setting

fl on[OA]L)[AH],
g* = .;

and g = ga — «g* one has

Thus (6.11) is the same as (6.7) if we set

where m, n do not depend on a. The proof that F is bounded and continuous
follows as in Baiocchi et al. [1], pages 57-58.

6.3. LEMMA. The coefficient m in (6.7) is non-zero.
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[li] A free surface problem in drainage 399

PROOF. The proof is a modification of Lemma 2.1 in Baiocchi et al. [1], page 59.
In fact m = 0 if and only if the solution Z G H\D) of

AZ = 0 in D, Z\rD = g*, | f ^ = 0

belongs to W2p(D) for any 2<p<4 and hence to C\D). We show that
Z £ C\D). Since Z is not constant, 0 < g* < 1 on TD we have Z < 1 on rw by
the Hopf maximum principle (Hopf [11] or Gilbarg and Trudinger [9], Lemma
3.4). Now in the rectangle G = {(x, y) e R2: 0 < x < 2a, h <y < b) the func-
tion Z defined by Z(x, y) = Z(a — \ x — a \, y) for (x, y) G G, satisfies AZ = 0
in G; Z has a maximum value at the point (a, h) where Z = 1. By the Hopf
maximum principle the outward normal derivative to G at (a, h) must be positive,
that is

lim — (a, h + e)<0

while obviously

lim — (a,h-e) = 0

as Z = 1 on {a} X [0, h]. Thus Z £ C'(Z>) and the result follows.

6.4. THEOREM. There exists a real number y > \y2 such that Problem Cy has a

solution w which belongs to W2p(D) for any 2 <p < 4, and hence to Cl(D).
y

PROOF. That Problem CY has a unique solution for each real y is well known
(see Kinderlehrer and Stampacchia [12]) as Ky is a non-empty, closed convex
subset of H\D). By Theorem 6.2 and Lemma 6.3 there exists a root y of
Equation (6.7); in other words the solution wy to Problem Cy belongs to W2-p{D)
for 2 < p < 4 and as a consequence to Cl(D). We now claim that y > xv,2.
Suppose to the contrary that y < \y2, then

(6.12) >vy(/O = min{wy(P):/>erz,}
and

(6.13) - ^ ( t f ) = 0

by continuity. Let QH be the component of Q,~ which contains in its boundary a
neighbourhood of H in ]^fi[. Then Awy = 0 in fiw (equation (6.6)). The negative
minimum of wy on fiw is attained at the point H for vvy = 0 on dilH D D and
3>vy/9/j = 0 on 3BW n TN. But then (6.13) contradicts the conclusion of the
Hopf maximum principle which would require that dwy/dx(H) < 0.
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6.5. D E F I N I T I O N . In the remainder of this section we shall put w = wy where wy

is defined in Theorem 6.4. Note that by virtue of the equivalence of Problems By

and Cy we have w 3= 0 in D. We will also set il = fiy.

6.6. LEMMA. One has

dw _ , dw „ —
-r— < 0 and -z- < 0 in D.
ox ay

PROOF. Since w G C\D),

is an open subset of fi; for if P G £ly\U then w(P) = 0 and w is increasing with
respect to y in a neighbourhood of P, but then w would take on negative values. If
Sly ¥= 0 , let

>0

then /i = aw/dy(PQ) for some Po G B^ and by the maximum principle Po G dtty.
Po <£ [AH] U [C5] as 3w/3.y *£ 0 there; if Po G ]OC[ then 3 ^ n ]OC[ con-

tains a neighbourhood of Po in ]OC[ and hence using results like Lemma 6.18 of
Gilbarg and Trudinger [9] a(aw/dy)/dn(P0) = d{dw/dy)/dx(P0) = 0 con-
tradicting the Hopf maximum principle which would have required
3(3»v/3>')/3n(P0) > 0; likewise Po $ ]HB[ and Po $ ]OA[ for then
d(dw/dy)/dn(P0) = -d2w/dy2(P0) = -1 < 0; Po ^ 0 for there w attains its
maximum and so dw(O)/dy < 0.

As PQ & d$ly n D we must conclude that fiy = 0 . Also

is an open subset of S2. If flx =5̂  0 let

then v = dw/dx(Px) for some P] G 3flx. As above Px & [OC] U [HB] U [O4] U
[CB] U J^Sf. Suppose that Px G ]5/^[. Then there exists a point £> G ]P]H[ such
that [P,g] C 3 ^ . As 3w/3_y = 0 on [SH] and 3w/3j> < 0 in Z> we conclude that
d(dw/dx)/dy = d(dw/dy)/dx > 0 o n ]PXQ[, hence 3w/3x = v on [PXQ] by the
definition of v. Whence

W(X, y)=y + y(X-a)+±(l- ^ ) ( X - a f
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for (x, y) in a connected component of fi which contains [OA] in its boundary.
This follows from the uniqueness of the Cauchy problem

Aw - (1 - q/a),

w = y on [/>,£>],

in that component of £2. Since this cannot be true and as P, £ 3fix ODwe again
conclude that S2X = 0 and the lemma is proved.

6.7. LEMMA, dw/dy = 0 on [££].

PROOF. AS in Lemma 2.5 of Baiocchi e/ a/. [4], page 28, the function

dw, v
x - ^ — (*,Z>)

is non decreasing on [d, a]. This is a corollary to Lemma 6.6. As 9n>/9_y(rf, &) = 0
and dw/dy < 0 in D by Lemma 6.6, the conclusion follows.

As in Baiocchi et al. [4], page 28, we set for PQ = (x0, y0) G D,

(£ A. \Q+
Po={(x,y)E:D:x>x0,y>y0},

(6.14) <
[QPO= {(x,y)&D:x<xo,y<yQ}.

6.8. LEMMA. For every P E D\Q one has ~Q$ C D\ti; for every P £ D n 3fi
o«e /ias ^p C fl. Furthermore 9 8 n Z ) contains no vertical or horizontal line
segments and ]EB] does not intersect fi.

PROOF. See Lemma 2 of Comincioli [7], page 234 which is based on Baiocchi et
al. [4], pages 28-29 and Baiocchi [2], pages 118-119. The proofs make use of
Lemmas 6.6 and 6.7 above. If ]EB] n B ¥= 0 then there exists Q £ ]EB] so that
[EQ] C 3i2. However on [EQ] we have w = dw/dy = 0 and hence w = 0 in U
which is false.

6.9. LEMMA, fl is a set of the form (3.2) with tp satisfying (3.1).

PROOF. This follows from the above results with the same arguments as in
Baiocchi et al. [4].

6.10. THEOREM. Let {<p, R, u, v) be defined by the following:
(6.15) fi = {(x, y) £ D: w(x, y) > 0};
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(6.16) <p(x) = sup{>> G (0, b): ( J C J O G O } ; <p(0) = l i m ^ 0 + < K * ) , <p(a) =

_
(6.17) u = l/fc, U(x, y)=y- dw/dy(x, y) if(x, y) G D;
(6.18) v = Vfo, V(x, y) = qx/a + dw/dx(x, >>) if (x, y) G

(<j>, S2, u, c} « a solution to Problem A.

PROOF. This theorem summarizes the results of this section.

7. Notation

For any subset G of R2, G will denote its closure, 3G its boundary. For two sets
G, and G2, Gl\G2 = { | 6 6 , : g « G2}. For P,Q(E R2, [/><?] (]Pg[) will denote
the closed (open) line segment joining P to Q. In equation (3.6) B^CV denotes the
set of points {(x, <p(x)): 0 < x < a}. \G wiM denote the characteristic function of
G, that is, x c ( ^ ) = 1 if P e G, x G ( ^ ) =_0 if P € G.

For an open subset G of R2; C(G) (C(G)), C\G) (C\G)) will denote the space
of functions continuous on G (G) and functions continuously differentiable on G
(G) respectively. We denote by Lp(Sl) (1 < p < oo) the usual space of the (classes
of) real valued functions, defined a.e. (almost everywhere) on B, measurable and
/7-summable on Q (or a.e. bounded on Q if p = oo); Wk-P(Q) {k = 1,2,...;
1 «£/> < oo) denotes the Banach space (Sobolev space) of all elements of Lp(ti)
whose derivatives (in the sense of distributions) up to order k are again elements
of Lp(ti) and equipped with the norm

dxdy
dx'dyh

We denote by Ha(ti) (a real ~> 0) the space of restrictions to fl of functions of
Ha(R2), with the quotient norm. These spaces and the space H^2(TN) which
appears in equation (6.3) are discussed in Lions and Magenes [13], Chapter 1.
^'(fi) denotes the space of (Schwartz) distributions on B. Given a Banach space
X, X' will denote its continuous dual and ( , ) will denote the dual pairing
between X and X'. For a function u defined on a subset of R2, u | S2 will denote its
restriction to the subset fl. For u G Hl(Q), fi an open subset of R2, du/dn will
denote the outward normal derivative (understood if necessary in a distributional
sense—see Lions and Magenes [13], Chapter 1). For u, v G H\Q),

fvu.Wdxdy^ji^— + ^^\dxdy.du dv , 3M dv
-r— -r 1- -r--r-
dx dx dy dy
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For « £ ^)'(B), i « denotes the distribution

—7 H 7*
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