L))

Check for
updates

Forum of Mathematics, Sigma (2025), Vol. 13:¢172 1-37
doi:10.1017/fms.2025.10115 CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Inductive local-global conditions and generalised
Harish-Chandra theory

Damiano Rossi

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA; E-mail: damiano.rossi @rutgers.edu.
Received: 30 September 2024; Revised: 15 August 2025; Accepted: 15 August 2025
2020 Mathematics Subject Classification: Primary — 20C15, 20C20, 20C33

Abstract

We study new properties of generalised Harish-Chandra theory aiming at explaining the inductive local-global
conditions for finite groups of Lie type in nondefining characteristic. In particular, we consider a parametrisation
of generalised Harish-Chandra series that is compatible with Clifford theory and with the action of automorphisms
on irreducible characters and we reduce it to the verification of certain requirements on stabilisers and extendibility
of characters. This parametrisation is used by the author in a separate paper to obtain new conjectures for finite
reductive groups that can be seen as geometric realisations of the local-global counting conjectures and their
inductive conditions. As a by-product, we extend the parametrisation of generalised Harish-Chandra series given
by Broué—Malle-Michel to the nonunipotent case by assuming maximal extendibility.
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2 D. Rossi

1. Introduction

Generalised Harish-Chandra theory is a powerful tool that lies at the heart of many results in modular
representation theory of finite reductive groups in nondefining characteristic. First introduced by Fong—
Srinivasan [FS86] for classical groups and then fully developed by Broué—Malle—Michel [BMM93]
in the unipotent case, this theory extends the classical Harish-Chandra theory formulated by Harish-
Chandra [HC70] and further studied by Howlett—Lehrer [HL.80] by replacing Harish-Chandra induction
with Deligne-Lusztig induction.

The aim of this paper is towfold. First, we extend generalised Harish-Chandra theory, and in particular
the parametrisation of generalised Harish-Chandra series given in [BMMO93, Theorem 3.2], to the
nonunipotent case by assuming certain requirements on character extendibility. Secondly, we introduce
a new compatibility of this parametrisation with Clifford theory, which we realise by requiring certain
conditions on isomorphisms of character triples, and with the action of automorphisms on irreducible
characters. The motivation for our second aim comes from two natural questions. On the one hand, our
work suggests a more conceptual explanation for the validity of the so-called inductive conditions for
the long-standing local-global conjectures in representation theory of finite groups. Namely, for finite
reductive groups in nondefining characteristic these conditions are consequences of Parametrisation C
below. On the other hand, Parametrisation C together with [Ros24a, Theorem A] provide a uniform
description of the characters of finite reductive groups in terms of generalised Harish-Chandra theory.
This description is used in [Ros24a, Theorem F] to prove two new conjectures for finite reductive
groups that yield a geometric analogue of Dade’s conjecture by replacing £-local structures in the finite
reductive group with certain e-local structures inherent to the underlying algebraic group (see [Ros24a,
Conjecture C and Conjecture D] as well as [Ros24c, Theorem A and Theorem B]). An explanation for
the connection between ¢-local and e-local structures has been obtained in [Ros23] and [Ros24b] using
methods from algebraic topology. The Clifford theoretic properties introduced in Parametrisation C play
a fundamental role in the proof of [Ros24a, Theorem F]. Here, we also recall that the interest towards
a proof of the above-mentioned geometric version of Dade’s Conjecture for finite reductive groups is
driven by a reduction theorem for Dade’s Conjecture to finite quasi-simple groups (see [Spil7] and
[Ros]).

More precisely, let G be a connected reductive group defined over an algebraic closure F of a field
of characteristic p and F : G — G a Frobenius endomorphism endowing G with an F,-structure
for some power g of p. Fix a prime ¢ different from p and denote by e the multiplicative order of g
modulo ¢ (modulo 4 if £ = 2). All modular representation theoretic notions are considered with respect
to the prime ¢. For an e-cuspidal pair (L, 1) of G, we denote by £(GF, (L, 1)) the e-Harish-Chandra
series associated to (L, 1) and by Wg (L, 1) := N(;(L)/‘lE /L the corresponding relative Weyl group.
The parametrisation of e-Harish-Chandra series associated to unipotent e-cuspidal pairs (L, 2) given in
[BMMO93, Theorem 3.2] shows the existence of a bijection

1§, Irr(W(;(L, A)F) — £(GF, (L, 1)). (1.1)

Our first result extends this parametrisation to nonunipotent e-Harish-Chandra series in groups with
connected centre. Moreover, we show that these bijections can be chosen to satisfy certain additional
properties. In what follows, we denote by Autg(GF') the set of those automorphisms of G which are
obtained by restriction from bijective endomorphisms of G commuting with F (see Section 2.2).

Theorem A. If G has connected centre and |G, G] is simple not of type E¢, E7 or Eg, then there exists
a collection of bijections

X, Irr(WK(L, /l)F) 5 5(KF, (L, /l))

where K runs over the set of F-stable Levi subgroups of G and (L, A) over the set of e-cuspidal pairs of
K, such that:
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@) I&, D is Autg(GF )K, (L,1)-equivariant;

(i) 1§ (e = [KF : N (L, )¢ - A1) - n(1)e for every n € Ter(W (L, 2))¥ ; and
(iii) if z € Z(K*F") corresponds to characters Zy, € Irr(LF /[L, L1¥) and Zx € Irr(KF /[K, K]F) (see

Section 2.1), then A - 7y, is e-cuspidal, Wg (L, )F = W (L, A - 70.)¥ and
K ~ _ K
I(L,/l) (7]) *ZIK = I(L,J'EL) (77)

for every n € Irr(Wg (L, 2))F.

In Theorem 3.8 we consider similar bijections I(Ii’ D and obtain e-Harish-Chandra theory (as defined
in [KM13, Definition 2.9]) above any e-cuspidal pair in groups with connected centre. Notice that the
restrictions on the type of G are mainly due to the fact that the Mackey formula is not known to hold
in full generality. In addition for types E¢, E; and Eg it is not known whether there exists a Jordan
decomposition map which commutes with Deligne—Lusztig induction. If these two properties were to
be established for types E¢, E7 or Eg, then Theorem A and the other results obtained in this paper would
hold without restriction on the type.

Before proceeding further, we make a remark inspired by [Mal07] and [Mal14]. If A has an extension
Ato Ng(L) f , then Gallagher’s theorem and the Clifford correspondence imply that there is a bijection

Irr(Wg(L, /l)F) — II‘I‘(N(}(L)F | /l)

~\Ne(@L)*
n— (/U]) .

In this case, (1.1) is equivalent to the existence of the following bijection
Q% EGF (L) - Irr(N(;(L)F | a). (12)

Observe that the extendibility of the character A to its stabiliser N(;(L)/llD is expected to hold in general
and is known in a plethora of cases.

Working with the formulation given in (1.2) and using Theorem A, we obtain a parametrisation of
e-Harish-Chandra series for groups with nonconnected centre by assuming maximal extendibility for
certain characters of e-split Levi subgroups. Recall that if i : G — G is a regular embedding and L is a
Levi subgroup of G, then L := LZ(G) is a Levi subgroup of G. Moreover, for any connected reductive
group H with Frobenius endomorphism F, we denote by Cusp, (H, F) the set of (irreducible) e-cuspidal
characters of HF . Below we will consider some restrictions on the choice of the prime £. We refer the
reader to Section 2.3 for the definition of the set of primes I'(G, F).

Theorem B. Let G be simple, simply connected and not of type E¢, E7 or Eg and consider € € T'(G, F)
with € > 5. Let K be an F-stable Levi subgroup of G, (L, ) an e-cuspidal pair of K and suppose
there exists an (Autg(GF)k 1, < Irr(GF /GT))-equivariant extension map for Cusp, (L, F) with respect
1o LF < NK(L)F (see the discussion following Definition 3.9). Then, there exists an Autr(GF )k (1,1
equivariant bijection

ok o :S(KF,(L,/l)) - Irr(NK(L)F | /l)

that preserves the {-defect of characters.

The extendibility condition considered in Theorem B should be compared with condition B(d) of
[CS19, Definition 2.2]. In particular, this has been shown to hold for groups of type A and C (see
[BS20] and [Bro22]) and is expected to hold in all cases. Due to these results, in Section 5 we obtain
consequences for groups of type A and C (see Corollary 5.6).
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Most importantly, by working with the formulation given in (1.2) we are able to compare the Clifford
theory of corresponding characters via equivalence relations on character triples as defined in [NS14]
and [Spil7]. This idea has been introduced in [Ros24a, Conjectured Parametrisation B] and provides
an adaptation of generalised Harish-Chandra theory to the framework of the inductive conditions for
the so-called Local-Global conjectures in representation theory of finite groups.

Parametrisation C. Let G, F, £, g and e be as above. For every e-cuspidal pair (L, 1) of G there exists
a defect preserving Autz(GF )(L,1)-equivariant bijection

QS . 5(GF, (L, /1)) = Irr(N(;(L)F | a)
such that
(Xﬂ, GF, ﬁ) ~cF (Nxﬂ (L).Ngr (L), QS , (ﬁ))

in the sense of [Spil7, Definition 3.6] for every ¢ € E(GF, (L, 1)) and where X := GF = Auts(GF).

The bijections described in Parametrisation C play a central role in the verification of the inductive
conditions for the local-global conjectures. In fact, similar bijections have been used in [MS16] and
[Ruh22a] to prove the McKay Conjecture, the Alperin-McKay Conjecture and Brauer’s Height Zero
Conjecture for the prime £ = 2. Furthermore, in [Ros24a, Theorem F] the author shows that Parametri-
sation C implies certain conjectures (see [Ros24a, Conjecture C and Conjecture D]) that can be seen as
geometric analogues of the local-global conjectures and their inductive conditions.

In section 4, we prove a criterion for Parametrisation C (see Theorem 4.8) and show that its validation
reduces to the verification of certain requirements related to the extendibility of characters of e-split
Levi subgroups. These requirements (see Definition 5.1) are analogous to the one considered in [CS19,
Definition 2.2] and have already been studied when verifying the inductive McKay condition (recently
settled in [CS]) as well as the inductive condition for the Alperin-McKay and the Alperin Weight
conjectures (see [Spidl3], [Mall4], [SF14], [CS15], [KS16a], [KS16b], [BS20], [BS22], [Bro22]).
Thanks to the results obtained in [Ros24a, Section 7], our approach also suggests a way to tackle Dade’s
Conjecture and its inductive condition by utilising the theory that has already been developed to verify
the inductive conditions for the other counting conjectures.

If (L, 2) is an e-cuspidal pair of G, then we say that (L, 2) is e-Brauer-Lusztig-cuspidal in G if the
associated e-Harish-Chandra series £(GF, (L, 1)) coincides with a Brauer-Lusztig block £(GF, B, [s])
as defined in [Ros24a, Definition 4.15].

Theorem D. Let G be simple, simply connected and not of type Eg, E7 or Eg and consider € € T'(G, F)
with € > 5. Let L be an e-split Levi subgroup of G and suppose that the following conditions hold:

(i) maximal extendibility holds with respect to Ng(L)F < N(;(L)F in the sense of Definition 3.9;
(ii) there exists an (Autz(GF)L = Irr((~}F /GE))-equivariant extension map for Cusp, (L, F) with
respect to LF < N(~;(L)F (see the discussion following Definition 3.9);
(iii) the requirements from Definition 5.1 hold for L < G;

Then Parametrisation C holds for every e-Brauer-Lusztig-cuspidal pair (L,1) of G with abelian
Out(G")s and where B is the GF -orbit ofbl(/l)GF.

Assumptions (i), (ii) and (iii) of Theorem D are part of an important ongoing project in representation
theory of finite reductive groups and have been verified for groups of type A (under certain block
theoretic restrictions) and C in [BS20] and [Bro22] respectively (see Remark 5.2 and Lemma 5.7).
Assumption (i) holds in almost all cases since G /G is cyclic for groups not of type D (see [GM?20,
Proposition 1.7.5]). Next, we observe that every e-cuspidal pair associated to an £-regular semisimple
element is e-Brauer—Lusztig-cuspidal by [Ros24a, Theorem A] and [CE99, Theorem 4.1]. Finally, the
block theoretic condition formulated in the last part of Theorem D holds, for instance, whenever G is of
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type B, C or E;. In Theorem 5.5 we prove a slightly more general result by considering a larger class of
blocks. We plan to circumvent the obstructions appearing in the remaining cases by applying techniques
developed by Bonnafé-Dat—Rouquier [BDR 17] and Ruhstorfer [Ruh22b] on quasi-isolated blocks.

In Section 5, as a corollary of Theorem D and by using [CS17a, Theorem 4.1] and [BS20, Theorem
1.2 and Corollary 4.7], we obtain Parametrisation C for some cases in type A (see Corollary 5.10).
Similarly, by using [CS17b, Theorem 3.1] and [Bro22, Theorem 1.1 and Theorem 1.2], we obtain
Parametrisation C for all e-Brauer—Lusztig-cuspidal pairs of groups of type C whenever £ > 5 (see
Corollary 5.11).

The paper is organised as follows. In Section 2 we introduce our notation and recall some prelim-
inary results. We also introduce the notion of e-Brauer—Lusztig-cuspidality in Definition 2.5 and state
a weaker version of Parametrisation C by replacing G* -block isomorphisms of character triples with
G' -central isomorphisms of character triples (see Parametrisation 2.7). In Section 3, we prove
Theorem A which provides an extension of [BMMO93, Theorem 3.2] to nonunipotent e-cuspidal pairs in
groups with connected centre and type different from Eg, E7 or Eg. Then, assuming maximal extendibil-
ity, we develop a Clifford theory for e-Harish-Chandra series with respect to regular embeddings. This
is done by applying the results obtained in [Ros24a, Section 4]. As a consequence, we construct certain
bijections needed in the criteria proved in the subsequent section (see Theorem 3.19). We conclude
Section 3 with a proof of Theorem B. In Section 4, we prove Theorem 4.8 which provides a criterion for
Parametrisation C. On the way to prove this result we also consider the weaker Parametrisation 2.7 and
prove a criterion for its validity in Theorem 4.3. Finally, in Section 5 we combine the results obtained
in Section 3 and Section 4 in order to obtain Theorem D. In Definition 5.1 we give a definition of
certain requirements on stabilisers and extendibility of characters that should be compared with [CS19,
Definition 2.2]. Then, applying the main results of [BS20] and [Bro22], we obtain consequences for
groups of type A and C and prove Corollary 5.6, Corollary 5.10 and Corollary 5.11. We also prove
similar results for Parametrisation 2.7 (see Corollary 5.8 and Corollary 5.9).

2. Preliminaries

In this paper, G is a connected reductive group defined over an algebraic closure F of a finite field of
characteristic p and F' : G — G is a Frobenius endomorphism endowing G with an [F,-structure for
a power q of p. Let (G*, F*) be a group in duality with (G, F) with respect to a choice of an F-stable
maximal torus T of G and an F*-stable maximal torus T* of G*. Then, there is a bijection L. — L*
between the set of Levi subgroups of G containing T and the set of Levi subgroups of G* containing T*
(see [CE04, p.123]). This bijection induces a correspondence between the set of F-stable Levi subgroups
of G and the set of F*-stable Levi subgroups of G*.

2.1. Regular embeddings

Let G, G be connected reductive groups with Frobenius endomorphisms F : G — G and F:G—G.
A morphism of algebraic groups i : G — Gisa regular embedding if Foi= o F and i induces
an isomorphism of G with a closed subgroup i(G) of G, the centre Z(G) of G is connected and
[((G),i(G)] = [G G] In this case we can identify G with its image i(G) and F with an extension of F
to G which, by abuse of notation, we denote again by F.

Since [G G] is contained in G, we deduce that G is normal in G and that G/ G is abelian. Moreover,
as G is connected and reductive, we have G = Z(G) [G G] Z(G)G In particular, it follows that
Z(G) = Z(G) NG. Similarly, [GF, GF] < GF and hence G is a normal subgroup of G¥ with abelian
quotient G* /G* . Notice, however, that G might be larger than Z(G")G*'.

_ LetL bean F-stable Levi subgroup of G. Then, the group L. := Z(G)L is an F-stable Levi subgroup of
G. In fact, if L = Cg(S) with § := Z°(L), then L. := LZ(G) = Cg(S)Z(G) < C(S) = GZ(G) (S) <
C(;(S)Z(G) = LZ(G) = L. Then, it is clear that L. = Ln G and therefore Ng(L) = Ng(S) and

NG (L) = Ng (L) = Ng(S). In addition, as Z(G) is contained in L, observe that G = LG which implies
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a/G ~ i/L. Similarly, we have GF = LFGF and GF/GF ~ NG(L)F/N(;(L)F ~ EF/LF. Observe
that, since L has connected centre by [DMO91, Lemma 13.14] and [E, i] = [LZ(G), LZ(G)] =[L,L],
themap iy, : L — Lisa regular embedding. _

Next, consider pairs (G*, F*) and (G*, F*) dual to (G, F) and (G, F) respectively. The map
i : G — G induces a surjective morphism i* : G* — G” such that Ker(i*) is a connected subgroup of
Z(G") (see [CEO4, Section 15.1]). When G is simply connected, we have Ker(i*) = Z(G"): observe
that Z(G") is trivial since G* is adjoint and therefore, using the isomorphism G*/Ker(i*) ~ G*, we
deduce that Z(G*) < Ker(i*). As shown in [CE04, (15.2)], there exists an isomorphism

Ker(i*)F — Irr(GF /GF ) 2.1)
Vg E(;

If L is an F-stable Levi subgroup of G, noticing that Ker(i*) < Z(G*) < L*, it follows that Ker(i*) =
Ker(i%*). As before we obtain a map Ker(i;ij)F — Irr(iF /L), z zg which coincides with
the restriction of the map defined above, that is, EE = ('Za)iF. If no confusion arises, we denote
K = Ker(i*)F = Ker(i;‘.j)F and obtain bijections

K- Irr(EF/LF)
T Zf

for every F-stable Levi subgroup L < G. To conclude this section, we define an action of the group X
on the set of irreducible characters.

Definition 2.1. Let /C be the set defined above. For z € K and y € Irr(aF ), let
X° =X 2g

where 7g € Irr(GF /GF) corresponds to z via the isomorphism (2.1). Similarly, for an F-stable Levi
subgroup L of G, the group K acts on Irr(iF ). Moreover, since G /GF ~ N(;(L)F /Ng(L)F, we
deduce that z € K also acts on the characters ¢ € Irr(Ng (L)) via

Y=g ),

where EN(;(L) denotes the restriction of Zg to Na(L)F . In the same way, we can define an action of
on Irr(KF) and on Irr(Nf((L)F ) for every F-stable Levi subgroups L and K of G satisfying L. < K.

2.2. Automorphisms

For every bijective morphism of algebraic groups o : G — G satisfying o o F = F o ¢, the restriction
of o to GF', which by abuse of notation we denote again by ¢, is an automorphism of the finite group
GF. Let Autz(GT) be the set of automorphisms of G obtained in this way. As mentioned in [CS13,
Section 2.4], a morphism o of G as above is determined by its restriction to G up to a power of F. In
particular Autz(GF') acts on the set of F-stable closed connected subgroups H of G and we can define
the set Autg(G' )z whose elements are the restrictions to G of those bijective morphisms o~ considered
above that stabilise H. Observe that Autz(G'') = Aut(G’) whenever G is a simple algebraic group of
simply connected type such that GF' /Z(G'") is a nonabelian simple group (see [G1.S98, Section 1.15]
and the remarks in [CS13, Section 2.4]).

Next, we consider the relation between the automorphisms of G¥* and those of its dual G*F . Consider
a pair (G*, F*) dual to (G, F). According to [CS13, Section 2.4], there exists an isomorphism
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Aut]p(GF)/Inn(GaFd) ~ AutF(G*F*)/Inn(ng*).

If the coset of o~ corresponds to the coset of o* via the above isomorphism, then we write o ~ o™ (see
[CS13, Definition 2.1]).

Lemma 2.2. Let L < K be F-stable Levi subgroups of G in duality with the Levi subgroups L* < K*
of G*. Then, for every o € Autg(GF)p x there exists o* € Autg(G*F ")« g+ such that o ~ o*.

Proof. Define the groups Autz(G)Lx = Autz(G")L N Auts(GF)k and Auts(G*F')p. ko :=
Autg(G*F ) N Autp(G*F " )k-. If L = K the result follows from [CS 13, Proposition 2.2] while a similar
argument applies in the general case. O

Assume now that G is simple of simply connected type. Fix a maximally split torus Ty contained in an
F-stable Borel subgroup By of G. This choice corresponds to a set of simple roots A C @ := (G, Ty).
For every @ € ® consider a one-parameter subgroup x, : G, — G. Then G is generated by the
elements x,(t), where t € G, and @ € +A. Consider the field endomorphism Fy : G — G given by
Fo(xq (1)) := xo(tP) for every t € G, and @ € ®. Moreover, for every symmetry y of the Dynkin
diagram of A, we have a graph automorphism vy : G — G given by y(x4(t)) = Xy(q)(t) for every
t € G, and @ € +A. Then, up to inner automorphisms of G, any Frobenius endomorphism F defining
an F-structure on G can be written as F' = F{'y, for some symmetry y and m € Z with g = p™ (see
[MT11, Theorem 22.5]). One can construct a regular embedding G < (.}i in such a way that the Frobenius
endomorphism Fy extends to an algebraic group endomorphism Fy : G — G defining an F,-structure
on G. Moreover, every graph automorphism y can be extended to an algebraic group automorphism of G
commuting with Fy (see [MS16, Section 2B]). If we denote by A the group generated by y and Fy, then
we can construct the semidirect product G = A. Finally, we define the set of diagonal automorphisms
of G to be the set of those automorphisms induced by the action of G¥ on G¥. If G /Z(GF) is a
nonabelian simple group, then the group GF > A acts on G and induces all the automorphisms of G*
(see, for instance, the proof of [Spil2, Proposition 3.4] and of [CS19, Theorem 2.4]).

2.3. Restrictions on primes

For the rest of this section we consider the following setting.

Notation 2.3. Let G be a connected reductive linear algebraic group defined over an algebraic closure
of a finite field of characteristic p and F : G — G a Frobenius endomorphism defining an F,-structure
on G, for a power g of p. Consider a prime ¢ different from p and denote by e the multiplicative order
of g modulo ¢ (modulo 4 if £ = 2). All blocks are considered with respect to the prime ¢.

Here we recall the definition of good primes and define the set I'(G, F) (see also [CE94, Notation
1.1]). First, recall that ¢ is a good prime for G if it is good for each simple factor of G, while the
conditions for the simple factors are

A, : every prime is good
B,,C,,D,, : {+2
Gy, Fy,Eq,E7 : € £2,3
Eg:(+2,3,5.

We say that € is a bad prime for G if it is not a good prime. Then, we denote by v (G, F) the set of primes
¢ such that: £ is odd, ¢ # p, ¢ is good for G and ¢ doesn’t divide |Z(G)¥ : Z°(G)F|. Let (G*, F*) be
in duality with (G, F) and set I'(G, F) := (y(G, F) N y(G*, F*)) \ {3} if Gii has a component of type
3D4(g™) and T'(G, F) := y(G, F) N y(G*, F*) otherwise.
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2.4. e-Harish-Chandra theory

Let G, F, g, ¢ and e be as in Notation 2.3 and consider an F-stable Levi complement of a (not necessarily
F-stable) parabolic subgroup P of G. Deligne-Lusztig [D1.76] and Lusztig [L.us76] defined two Z-linear
maps

RESP : ZIrr(LF) - ZIrr(GF) and *R(L;sP : ZIrr(GF) — ZIrr(LF)

called Deligne—Lusztig induction and restriction respectively. It is conjectured that RE pand *RE pdo
not depend on the choice of P. This would, for instance, follow by the Mackey formula which has been
proved whenever G does not have components of type 2E4(2), E7(2) or Eg(2) (see [BM11]). In what
follows, we just write RE and *Rl(f whenever the independence on the choice of P is known.

An F-stable torus T of G is called a ®.-torus if its order polynomial is of the form Pt r) = @}
for some non-negative integer n and where ®, denotes the e-th cyclotomic polynomial (see [CE04,
Definition 13.3]). The centralisers of ®,-tori are called e-split Levi subgroups. Then (L, 1) is an
e-cuspidal pair of (G, F) (or simply of G when no confusion arises) if L is an e-split Levi subgroup of
G and A € Irr(LF) satisfies *RIM SQ(/l) = 0 for every e-split Levi subgroup M < L and every parabolic
subgroup Q of L containing M as Levi complement. An e-cuspidal pair (L, 1) is (e, ¢’)-cuspidal if
A lies in a Lusztig series associated with an {-regular semisimple element of the dual group L*F".
To any e-cuspidal pair (L, ) of G we associate the e-Harish-Chandra series £(GF, (L, 1)) consisting
of the irreducible constituents of the virtual characters RE <p(4) for every parabolic subgroup P of G
containing L as a Levi subgroup.

Using Deligne—Lusztig induction, one can define a partial order relation on the set of e-pairs of G.
If (L, 2) and (M, p) are e-pairs of G, then we write (L, 1) <, (M, ) if L < M and y is an irreducible
constituent of Rll‘f <Q for some parabolic subgroup Q of M having L as a Levi complement. Then, <,
denotes the transitive closure of <,. It is conjectured that <, is transitive and hence coincides with <,
(see [CE99, Notation 1.11] and [Ros24a, Proposition 3.6, Proposition 4.5 and Corollary 4.11]).

Recall by [Ros24a, Definition 4.15] that a Brauer—Lusztig block is any nonempty set of characters
of GF of the form £(GF', B, [s]) := £(GF, [s]) NIrr(B), where £(GF, [s]) denotes the rational Lustig
series associated to the semisimple element s € G*f"" and B is an ¢-block of GF. In [Ros24a, Theorem
A] the author gives a description of the Brauer—Lusztig blocks in terms of e-Harish-Chandra series
under suitable hypotheses. More precisely, we assume the following hypothesis.

Hypothesis 2.4. Let G, F : G — G, ¢, € and e be as in Notation 2.3. Assume that:

(i) ¢ € T'(G, F) with £ > 5 and the Mackey formula holds for (G, F);
(i) If Kis an F-stable Levi subgroup of G, then

{Kelrr(KF) | (L, 1) <, (K, K)} =1rr(R§(/1))

for every (e, {’)-cuspidal pair (L, 1) of K.
Under Hypothesis 2.4, [Ros24a, Theorem A] shows that for every e-cuspidal pair (L, 1) of G we have

5((;", (L, /l)) c 5(GF,B, [s])

where s is a semisimple element of L**" such that 1 € (LY, [s]), B = bl(/l)GF and £(GF, B, [s]) is
the associated Brauer—Lusztig block. Inspired by this result, we introduce the following definition.

Definition 2.5. An e-Brauer-Lusztig-cuspidal pair of G is an e-cuspidal pair (L, 1) of G such that
&(6F. (.2 = (6", B, [s])
for some semisimple element s of G*f" and some ¢-block B of GF.
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By [Ros24a, Theorem A] and [CE99, Theorem 4.1] it follows that every e-cuspidal pair (L, 2) such
that A lies in a Lusztig series associated to an £-regular semisimple element is e-Brauer—Lusztig-cuspidal.

We conclude this section with a remark on the validity of Hypothesis 2.4. Observe that the Mackey
formula and Hypothesis 2.4 (ii) are expected to hold for any connected reductive group.

Remark 2.6. Suppose that [G, G] is simply connected and has no irreducible rational components of
type 2E¢(2), E7(2) or Eg(2) and consider £ € T'(G, F) with £ > 5. Then Hypothesis 2.4 is satisfied (see
[Ros24a, Remark 4.2]).

2.5. A nonblockwise version of Parametrisation C

By replacing G -block isomorphisms of character triples with G* -central isomorphisms of character
triples (see [Ros22, Definition 3.3.4]) in the statement of Parametrisation C, we obtain a nonblockwise
version of Parametrisation C. For the reader’s convenience and for future reference, we include this
statement below.

Parametrisation 2.7. Let G, F : G — G, ¢, { and ¢ be as in Notation 2.3 and consider an e-cuspidal
pair (L, 1) of G. Then there exists an ¢-defect preserving Autz(G) 1, 1)-equivariant bijection

QS 5(GF, (L, 1)) = Irr(N(;(L)F | a)
such that
(0,67, 8) ~gr (Nx, (L), Ner (1), Q5 (9))

for every ¢ € £(GF', (L, 1)) and where X := GF < Autz(GF).

We point out that it is much easier to verify Parametrisation 2.7 than it is to verify Parametrisation C.
As a hint to this fact, the reader should compare Theorem 5.4 and Theorem 5.5.

Furthermore, proceeding as in [Ros24a, Section 6] we could use Parametrisation 2.7 to obtain
nonblockwise versions of [Ros24a, Conjecture C and Conjecture D]. On the way to prove our results
for Parametrisation C, we also obtain similar statements for the simpler Parametrisation 2.7.

3. Parametrisation of nonunipotent e-Harish-Chandra series

In this section we start by proving Theorem A and hence extend [BMM93, Theorem 3.2] to nonunipotent
e-cuspidal pairs of reductive groups with connected centre and type different from Eg, E; or Eg.
Then, assuming maximal extendibility for e-cuspidal characters of e-split Levi subgroups, we prove
Theorem 3.19 and obtain certain bijections that are part of the requirements of the criteria we prove in
Section 4 (see Assumption 4.1 (ii) and Assumption 4.4 (ii)).

3.1. e-Harish-Chandra theory for groups with connected centre

In what follows we make use of the fact that, under suitable hypotheses, there exists a Jordan decompo-
sition that commutes with Deligne—Lusztig induction (see [GM20, Theorem 4.7.2 and Theorem 4.7.5]).
More precisely, we consider the following hypothesis.

Hypothesis 3.1. Let G, F : G — G, ¢, £ and e be as in Notation 2.3 and suppose that [G, G] is simple
and not of type E¢, E; or Eg.

We observe that if we assume Hypothesis 3.1 with [G, G] simply connected and ¢ € T'(G, F) with
¢ > 5, then Hypothesis 2.4 holds thanks to Remark 2.6.
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Theorem 3.2. Assume Hypothesis 3.1 and suppose that G has connected centre. Then there exists a
collection of bijections

s E(LF1s) = €(Cu (907 1)
for every F-stable Levi subgroup L of G and every semisimple element s € LY, such that the following

properties are satisfied:

@) JLs(d) o = JL, 0+ (5) (A7) for every A € E(LF,[s]), o € Autp(GF ), and o* € Autp(G*F ") with
o ~ 0" (see [CS13, Proposition 2.2]);

(i) Jk 5o Rf = Rg: ((:)) o JLs for every F-stable Levi subgroup K of G containing L;

>iii) A(1) = |L*F* : CL*(S)F*’p' JLs()(1) for every 2 € E(LF, [s5]); and
(iv) ifz € Z(L*F") corresponds to the character 7y, € Irr(LF) via [CE04, (8.19)], then

JL,S(/D =JL.sz (- EL)
for every A € E(LF, [s]), or equivalently
I L= Il )

foreveryv € E(Cp-(s)F", [1]) = E(Cr-(s2)F", [1])

Proof. The required bijections are constructed in [DM90, Theorem 7.1] and satisfy (iv) by [DM90,
Theorem 7.1 (iii)]. The properties (i) and (ii) follow from [CS13, Theorem 3.1] and [GM20, Theorem
4.7.2 and Theorem 4.7.5] respectively. For (iii) see, for instance, the description given in [MalO7,
2.1)]. O

As a consequence of the equivariance of the above Jordan decomposition, we obtain an isomorphism
of relative Weyl groups. This result should be compared with [CS 13, Corollary 3.3]

Corollary 3.3. Assume Hypothesis 3.1, suppose that G has connected centre and let L < K be F-stable
Levi subgroups of G. Then, there exists a collection of isomorphisms

. F*
it WL, )T > Wey () (CLe (5), JLs (1))
for every A € E(LF, [s]), such that
oo if,/l = if,/l” °T

for every o € Autz(GF )k 1 and o* € Autg(G* g+ 1+ with o ~ o* (see Lemma 2.2). Moreover, if
z € Z(K*F") corresponds to the character 7y, € Irr(LE) via [CE04, (8.19)], then

Wk (L, ) = wg(L,2-7)",

F ~ \F*
Wege () (Cre (), JL,s (D) = Wy (s2) (Crr (52), JL,s2(4 - 20))
and
K _ K
'La=lLag

Proof. The first statement follows from the proof of [CS 13, Corollary 3.3]. The second statement follows
from Theorem 3.2 (iv). O
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Before proving Theorem A, we state an equivariant version of [BMMO93, Theorem 3.2]. The following
statement is a slight improvement of [CS13, Theorem 3.4].

Theorem 3.4. Let H be a connected reductive group with a Frobenius endomorphism F : H — H
defining an F-structure on H, € a prime not dividing q and e the order of q modulo € (modulo 4 if
{ = 2). For any e-split Levi subgroup M of H and u € EMF | [1]) with (M, u) a unipotent e-cuspidal
pair, there exists an Autg(HF )(M, u0) -equivariant bijection

Itvp) :Iff(WH(M, ,U)F) - E(HF, (M,u))
such that
I (D =[BT - Na (ML )| - u(1)e - (1),

for every n € Irr(Wa(M, u)).

Proof. This follows from the proof of [CS13, Theorem 3.4] applied to arbitrary e-split Levi subgroups
(see the comment in the proof of [BS20, Proposition 5.5]). Regarding the statement on character degrees,
see [Mal07, Theorem 4.2] and the argument used to prove [BS20, Lemma 5.3]. O

Let K be an F-stable Levi subgroup of G and consider an e-cuspidal pair (L, 1) of K. Let s be
a semisimple element of L*/" such that 1 € £(LF, [s]). By [CE99, Proposition 1.10], the unipotent
character J, (A1) is e-cuspidal. Moreover, using the fact that L is an e-split Levi subgroup of K, we
conclude that Cp+(s) is an e-split Levi subgroup of Ck-(s). This shows that (Cr:(s), JL (1)) is a
unipotent e-cuspidal pair of Ck-(s). Now, we can define the map

K . Irr(WK(L, /l)F) = 5(KF, (L, /l)) 3.1)

given by
K -1 Ck+ (s) K
I = Jxs (1 (Cur (5):715 () ((’7) “))

for every 1 € Irr(Wk (L, 1)F) and where nilliﬂ € Irr(Wey. (5) (CL: (), JL.s(2))F") corresponds to 7 via
Ck~ (s)

. . K
the isomorphism iy , of Corollary 3.3 and / (Coe ()15 (D)

is the map constructed in Theorem 3.4.

Lemma 3.5. Assume Hypothesis 3.1 and suppose that G has connected centre. Then the map 1 }i 2 is
an Autp(GF )K, (L,2)-equivariant bijection.

K

Proof. First, we observe that the map / (L)

is a bijection because of Theorem 3.2 (ii), in fact

K F -1 Cx (5)
18, (tr (Wi (L 7)) = g, (e (RES ) (1,5 ()|
— -1 Ck+ ()
= Trr(Ji, o REX () 0 714 (1)
= Irr(Rf(/l)).

To show that the bijection is equivariant, let & € Autz(G’ )k 1 and consider o* € Autg(G*F *)K*,L*
with o ~ o (see Lemma 2.2). If o € Aut=(G* )k (1.1), then o stabilises the L*¥" -orbit of s. Without
loss of generality, we may assume that o*(s) = s. Then Theorem 3.2 (i) implies that o stabilises
JL.s(1). Applying Theorem 3.2 (i) and the equivariance properties of Corollary 3.3 and Theorem 3.4,
we conclude that
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o

o _ -1 Ck+(s) l
(LJ)(TI) =J ,S(I((]J(L*(s),JL,s(/l))(n /l))
_ 1 4Gk ) i)
_JK,S(](CKL*(S),JL,S(/U)((n /L) ))
‘K
L

=R (18 Do (1))

=14,
for every i € Irr(Wi (L, 2)). O
Lemma 3.6. Assume Hypothesis 3.1 and suppose that G has connected centre. Then I& (L) (D), =
|KF : NK(L,/l)F|g A1) - (1), for every n € Trr(W (L, 1)F).

Proof. By the condition on character degrees given in Theorem 3.4 together with Theorem 3.2 (iii), we
deduce that

L& s @) ((”)if“) (e
Ji, v(/l)(l)t’ |k ($)F" : Ny (5) (Cre (8), JLs () F e
) 1% D (De - |Cx () e - [
Al - |cL*(s>F le - IKF ¢ - |Cke (9)F" : Nege (5) (Ce (5). S5 (D)
R
A1) - |KF : Nk (L, 1)F|,

n(1)e = (n)Ea(1), =

for every i € Irr(Wk (L, 1)F'). The result follows immediately from the above equality. O

Lemma 3.7. Assume Hypothesis 3.1 and suppose that G has connected centre. If z € Z(K*F") corre-
sponds to the characters 7y, € Irr(LF) and 7x € Irr(KF) via [CE04, (8.19)], then A - 7y, is e-cuspidal,
WK(L /l)F WK(L A- ZL)F and

K -~ K
I(L,,l) (m -z = I(L,A-ZL) (n)

for every € Irr(Wg (L, 1)T).

Proof. According to [Bon06, Proposition 12.1] the character A - 7, is e-cuspidal, while Corollary 3.3
shows that Wi (L, 1) = Wk (L, A - z1,) and that i zL 1= =K Using Theorem 3.2 (iv) we obtain

L,23
Ckr (s) — 7Ck+ (s2)
(Crx(5),JL,5 () (Crx(52),J1,52(A°2L))
and
K = _ =1 {7Ck+(s) il =
I(L,/l) (77) K = JK,S (I(é(L* (8).JL.5 () ((TI)ZLA)) * ZK
_ g1 (7Ck+ (s2) =) .=
- JK s (I(Cl (52),JL,52 (2:ZL)) ((77) - L)) K
_ -1 7€k (s2) iz
- JK,SZ (I(CL* (52),J1L,52 (4:ZL)) ((77) b ))
_ K
=Lz (M
for every i € Irr(Wg (L, 2)F). O

Now, combining Lemma 3.5, Lemma 3.6 and Lemma 3.7, we obtain Theorem A.
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To conclude, we prove one final result which, although not used directly in the subsequent sections,
might be of independent interest. Under the Hyposthesis 3.1, the bijections /¥ = from (3.1) extend by

L.2)
linearity to Z-linear bijections

I ZIrr(WK(L, /I)F) N zg(KF, (L, z)). (3.2)

Cx- (s)
(3) JL,S
with those given by [BMMO93, Theorem 3.2 (2)], then we obtain a collection of isometries

If we consider the definition given in (3.1) and replace the maps I @) given by Theorem 3.4

% ZIrr(WK(L, A)F) - ZE(KF, (L, /1))

that satisfy certain important properties. However, notice that the maps given in (3.2) agree with the
new maps I( 2 only up to a choice of signs.

The next result should be compared to [BMM93, Theorem 3.2] and [KM 13, Theorem 1.4 (b)] (see
also [KM 13, Definition 2.9]).

Theorem 3.8. Assume Hypothesis 3.1 and suppose that G has connected centre. Then there exists a
collection of isometries

X o ZIrr(WK(L 2) ) = zg(KF, (L, /l))

where K runs over the set of e-split Levi subgroups of G and (L, 2) over the set of e-cuspidal pairs of
K such that:

(i) forall K and all (L, 1) we have

- 76 ondVe® HF

G _ K
Rg o1 (L,2) Wi (L)F

(L) —

(ii) the collection (I:i 2 )K,(L, 1) is stable under the action of the Weyl group Wgr;

(iii) ZX | maps the trivial character of the trivial group Wy, (L, 1)¥ to A.

(L,
Proof. As explained above, the maps are constructed as in (3.1) by replacing the maps [ (Cé‘L(fs)) Toa ()
given by Theorem 3.4 with those given by [BMM93, Theorem 3.2 (2)]. Consider K and (L, 1) as above
and fix € Irr(Wg (L, 1)*). Since Wi (L, )" < Wg(L, )", the construction given in the proof of
[CS13, Corollary 3.3] shows that the map if’ , given by Corollary 3.3 coincides with the restriction of i](i 2
K *
to Wk (L, 2)F . In particular, if we write p'L1 to denote the element of ZIrr(Wey. (5) (Cre(s), JLs (NFH
corresponding to p € ZIrr(Wk (L, 2)F') via the isomorphism if » it follows by elementary character
theory that

We (L)F SPLCHCICROR JLM))F*( iK,)
(IndW w1 )) 0y (o (). (e T ) (3-3)

By the definition given in (3.1) and applying Theorem 3.2 (ii) and [BMM93, Theorem 3.2 (2.a)] we
conclude that
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Go7K _RG( -1 (7Ck(s) K
RK o I(L,,l) (n) = RK (]K,s (I((I:(L* ()1 (1) (77 L,,z)))

=Jg o REEE;; (Ifg;((ss)“m ) (r]i:i/l))

R A ALY
5 T [ ) )

= o ndye ) ()

where the penultimate equality holds because of (3.3). This proves (i).

The other properties follow by a similar argument. First, (ii) follows from [BMMO93, Theorem 3.2
(2.b)] together with Theorem 3.2 (i) and recalling the compatibility with automorphisms obtained in
Corollary 3.3. Secondly, to prove (iii) we observe that the trivial character of Wy, (L, 1)F maps to the
trivial character of W, . (5) (Cr+(s), JL,s (2))F via the isomorphism ih > While the character Ji, 5(4) is
mapped to A via Ji’ls. Then (iii) follows from [BMMO93, Theorem 3.2 (2.c)]. ]

3.2. Consequences of equivariant maximal extendibility
We start by recalling the definition of maximal extendibility (see [MS 16, Definition 3.5]).

Definition 3.9. Let Y < X be finite groups and consider )V C Irr(Y). Then, we say that maximal
extendibility holds for ) with respect to Y < X if every ¢ € Y extends to Xy. In this case, an extension
map is any map

A:Y > ]_[ Irr(X')

Y<X’'<X

such that for every ¢ € ), the character A(J) € Irr(Xy) is an extension of . If )} = Irr(Y), then we
just say that maximal extendibility holds with respectto ¥ < X.

Asin Section 2.2, consider G simple of simply connected type, leti : G — Gbea regular embedding
compatible with F and consider the group A generated by field and graph automorphisms of G in such
a way that A acts on G¥'. Then we can define the semidirect product G’ = A. For every F -stable closed
connected subgroup H of G we denote by (G* A)y the stabiliser of H under the action of GF A.

Consider K as in Section 2. 1. We form the external semidirect product (G’ .4)=/C where, for X € GrA
and z € K, the element z* is defined as the unique element of K corresponding to (z5)* € Irr(GF /GF)

via (2.1). For every F-stable Levi subgroup L of G, notice that (GF Ay, = K acts on Irr(LF) via
=T

for every Aelr(LF), x € (éF A)p, and z € K. We denote by ((GF A)L = K)7 the stabiliser of A under
this action. _ o _

Let L and K be F-stable Levi subgroups of G with L. < K and consider an extension map A with
respect to L < Nf((L)F . In this case notice that

A = MY Iy iy
is an extension of %% to NK(E, IXZ)F = NK(E, IX)F, where EN~(E )P denotes the restriction of 7
—~ o~ K ’
to Ng (L, A9F.
The next definition should be compared with condition B(d) of [CS19, Definition 2.2] with d = e.
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Definition 3.10. We say that an extension map A with respect to L¥ < NK(L)F is ((GF Ak = K)-
equivariant if K(;f”) = K(I)xz for every A e Irr(LF), x € (GF A1 and z € K. Moreover, if
Cusp, (L, F) denotes the set of (irreducible) e-cuspidal characters of L7, then ((~}F Ak L = K acts on
Cuspe(f, F) (see [Bon06, Proposition 12.1]) and therefore we can also consider a (((~}F Ak L = K)-
equivariant extension map A for Cusp, (L, F) with respect to LT < Ng (L)F.

Let K be an F-stable Levi subgroup of G and consider an e-cuspidal pair (E, ;f) of K. Using the
bijection I:% ) from (3.1) and assuming the existence of an extension map A for Cusp, (E F) with

respect to LF < Ng (L)F, we can define the map
K .ekRF (T 7 _MVF | 7
o .E(K ,(L, A)) = Irr(NK(L) | /l) (3.4)
o \Ng@F
I = (A1) 7)

for every 17 € Trr(Wg (L, 1)F). Notice that YK~ LD is a bijection by the Clifford correspondence and

Gallagher’s theorem (see [Isa76, Theorem 6. 11 and Corollary 6.17]).
First we show that the bijection Y(E ) from (3.4) preserves the £-defect of characters. Recall that

for any finite group X and any y € Irr(X), the £-defect of y is the non-negative integer d(y) such that
2400 y (1), = | X|¢. Moreover, observe that if Hypothesis 3.1 holds for G then it holds for any regular
embedding G of G since [G, G] = [G, G].

Lemma 3.11. Assume Hypothesis 3.1 and suppose there exists an extension map A for Cusp, (L F)
with respect to LF < NK(L)F. For everyn € Irr(Wf((L, DY) we have

(1 @) = (3(7) 7))

Proof. This follows immediately from Lemma 3.6 applied to G after noticing that induction of characters
preserves the defect (this follows from the degree formula for induced characters). O

The bijection Yf% 3 from (3.4) also preserves central characters.

Lemma 3.12. Assume Hypothesis 3.1 and suppose there exists an extension map A for Cusp, (i, F)
with respect to LF < NK(L)F. For every 7 € Irr(Wg (L, D)) we have

Irr(If%j) (ﬁ)z(fm) = It ((K(Z) -ﬁ)Nf((L)F)Z(f(F) .

Proof. First, by Clifford theory we deduce that

i (3(7) .ﬁ)Nf‘(L)F)

On the other hand, by using the character formula [DM91, Proposition 12.2 (i)], we obtain

= Irr(/l 3.5)

ool

RE D, (k) = REDD) T,
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and hence
I~( _ —_~
Irr(I(ij) (ﬁ)z(f(p)) = Irr(/lz(f(p)). 3.6)
Now the result follows by combining (3.5) with (3.6). O
Next, we show that the bijection ng D from (3.4) is compatible with block induction.

Lemma 3.13. Assume Hypothesis 3.1 and consider € € T'(G, F) with € > 5. Suppose there exists an
extension map A for Cusp, (L, F) with respect to LF < Nf((L)F . Then

forevery x € E(KF, (L, Q).

Proof. Notice that Hypothesis 2.4 holds for G under our assumptions and so bl(/T)f(F = bl(y) by
[Ros24a, Proposition 4.8] and bl(Yﬁj 3 (x) = bl(;f)Nf((L)F by [Ros24a, Lemma 5.5]. Then the result

follows from the transitivity of block induction. O

Finally, we show that the bijection Yﬁj ) from (3.4) is equivariant.

Lemma 3.14. Assume Hypothesis 3.1 with G _simple and simply connected and suppose there exists

a (G* A)k 1, < K-equivariant extension map A for Cusp, (L, F) with respect to L¥ 2 Ng(L)¥. Then
K . ((GF [P

Y(E,I) is ((G" A) L = K)3-equivariant.

Proof. Let (x,z) € (((}FA)K,L < K)7. Since A= - Zj» we have
Ng (L, )F = Ng(L, 7 - 7p)" = Ng (L, 2%)F .
By using the equivariance properties of A, we obtain

50 )

\Ng(LF
[DRE N

x Ng (L)
) e (L,zw) 3.7

(e Ng(L)F
=(A /lx-Ai)'ﬁx) *

- (R(3) 7).

On the other hand, considering Lemma 3.5 and Lemma 3.7 with respect to G it follows that

>1

=
SN—

=)

>1

~|
S —

=\

K (x,z) _ 4K X o
I(f,,7l) (m) = I(E,/T) (m) iK

_ K ~x
= I(E,ZX-EE) ) 3.8)
_ K =
=1 ) (77 )
Now, the result follows immediately from (3.7) and (3.8). O
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3.3. e-Harish-Chandra series and regular embeddings

We use the results obtained in the previous two subsections in order to obtain the bijections needed in
the criteria we prove in Section 4 (see Theorem 4.3 and Theorem 4.8).
To start, we study the behaviour of e-Harish-Chandra series with respect to the regular embedding
G —> G Fix an F-stable Levi subgroup K of G and an e-cuspidal pair (L, 1) of K. Observe that
K KZ(G) is an F-stable Levi subgroup of G and that (L, 1) is an e- cuspidal pair of K for every
A € Irr(LF | 2) and where L := LZ(G) (see [Bon06, Proposition 10.10]).

Definition 3.15. Let HC(KF, (L, 1)) be the set of e-Harish-Chandra series & (KF,(L,2)) with
A € Irr(LY | 2). The group K from Section 2.1 acts on the set HC(KF', (L, 1)) via

&(Rr,(LA)) = g(RM, (.75

for every E(KF, (L, ) € HC(KF, (L, 1)), z € K and where zj, corresponds to z via (2.1). Here notice
that, as A is e-cuspidal, then so are Aand 1- EE (see [Bon06, Proposition 10.10 and Proposition 10.11]).
Moreover, if we define £ (K'F (L) - Zi to be the set of characters y - 7 for y € £ (ﬁF , (I: 1)), then

EKF, (L) = EK",(L,D) - 7g
by [Bon06, Proposition 10.11].

We want to compare the action of K on HC(KF, (L, 1)) with the action of K on the set of characters
Irr(LF | 2). First, observe that [Isa76, Problem 6.2] implies that both actions are transitive.

Lemma 3.16. Assume Hypothesis 2.4 for ((~}, F) and let A; € Irr(EF | A) fori=1,2. Let z € K, then
&(Rr, (L.01)) = £(RF, (L. 22))°
if and only if
1T %
for some x € Ng (L, DHE.

Proof. First, assume E(KF (L /11)) = 5(KF (L /12))Z By [Ros24a, Proposition 4.10], there exists
u € KF such that (L, 1;) = (L, 2> -Zp)". This implies that u € Ng (L)* and that 1; = A% -Z;. Moreover,

since /11 lies over both A and A“, it follows from Clifford’s theorem that 1 = A"V, for some v € LF.
Then x := uv € Ng(L, )F and A, = 5 - zg.- Conversely, if ) = /lx zj for some x € Ng(L, A)F, then
[Bon06, Proposition 10.11] yields the desued equality. O
Corollary 3.17. Assume Hypothesis 2.4 for (G, F) and consider A € Irr(LF | A). Then

Ke&r.@m) < Ng@L D" (Ng(L DT =< K)y
where Kg(fd‘,(i]t)) denotes the stabiliser ofE(ﬁF, (I: A)) under the action of K on HC(KF, (L, 2)).

Proof. Let z € K stabilise £(KF, (L, 2)). By Lemma 3.16 there exists x € Ng(L, A)F such that
A= 2% -7 and hence z = x~'xz € Ng(L, )F (Ng (L, )T < K)7. o

For every finite group X with subgroup ¥ < X and every subset of characters ) C Irr(Y), we denote
by Irr(X | )) the set of characters y € Irr(X) lying over some character ¢ € ).
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Proposition 3.18. Assume Hypothesis 2.4 for (G, F) and let e Irr(EF | ). If T is a transversal for
the cosets ofICE(f(F (T.2) in IC, then

Irr(f{F ’ E(KF,(L,A))) =ZE]_le(f{F (L /l)) Z (3.9)
and
Irr(NK(L)F | 1) - UIrr(N (L)F ( ) TN (L)» (3.10)
zeT

where Irr(Ng (L) | ) “ZNg (L) Is the set of characters v - INg (L) fory € Irr(Ng (L)F | Q).

Proof. Set G = Irr(KF | £(KF, (L, 1)) and N = Irr(Nf((L)F | A). First, we claim that G is the
union of the e-Harish-Chandra series in the set HC(K¥, (L, 1)). In fact, if ¥ € G, then there exists
x € E(KF (L, 1)) 1y1ng below y. By [GM20, Corollary 3.3.25], it follows that y X is an irreducible
constituent of RK(/lL ) and therefore there exists v € Irr(LF | 1) such that y € £(K, (L,7)). On the
other hand, if ¥ € Irr(LF | 1) and § € &(KF, (L,)), then [GM20, Corollary 3.3.25] implies that y
lies over some character y € £(KF, (L, 2)). Since the action of K on HC(KF, (L, 1)) is transitive and
recalling the definition of 7, we hence obtain (3.9).

Now we prove (3.10). By Clifford theory, we know that every element of G lies above some character
Ve Irr(L | 2). Since K is transitive on Irr(LF | 1), we deduce that N is contained in the union

U Irr(NK(L)F ) /T) “INg(L)-

zek

Moreover, we claim that the above union coincides with

g Irr( <(L)F | ) N (1) 3.11)

ze€T
To see this, let z € K and write z = zot, for some zg € ICE(T(F (T.2) and ¢t € 7. By Corollary 3.17 we
obtain z9 € Ng (L, HF (Ng(L, DF K)7 and therefore

Irr(Nf((L)F ) I) Eng (1) = Irr(Nf((L)F ) I) e
This proves our claim and it rerBains to show that the union 1 in (3.11) is disjoint. éssume that, for some
z € 7T, there exists a character i inside both Irr(NK(L)F | 4) and Irr(NK(L)F | ) 'ZNK(L)' By [Isa76,
Eroblein 5.3] we deduce that Irr(Ng (~L)F L/T) - ZNR(LL = Irr(Ng (L)¥ | 2+ Z) and hence ¢ lies above
A and A - Zj. By Clifford’s theorem A = (1 - z;)" = A" - 7, for some u € NK(L)F and now Lemma
3.16 implies £(KF, (L, 1)) = £(KF, (L, 1)). By the definition of 7 it follows that the union in (3.11)
is disjoint. o
As a corollary of Proposition 3.18 and using the bijection YK. 3 from (3.4), we are finally able to

prove the main result of this subsection. The bijection descrlbed 1n the following theorem is part of the
requirements of the criteria we prove in Section 4 (see Assumption 4.1 (ii) and Assumption 4.4 (ii)).
Theorem 3.19. Assume Hypothesis 3.1 with G simple and simply connected and consider € € T'(G, F)
with € > 5. Suppose there exists a ((GF A)k 1 = K)-equivariant extension map for Cusp,(L, F)
with respect to LF < NK(L)F . Then, there exists a defect preserving ((GF A, (L,2) < IC)-equivariant

bijection
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ax - Irr(f(F | S(KF (L, /1))) 5 Irr(Nﬁ(L)F | a)
such that, for every ¥ € Irt(KF | E(KF, (L, 1))), the following conditions hold:

(i) Irr()?z(f(p)) = Irr(q’()?)z(f(p));

— KF
(ii) bI(}) = bl(\y(;‘a) .

Proof. First observe that under our assumptions Hypothesis 2.4 holds for G and for G.SetG = Irr(f(F |
E(KF, (L, 1)) and NV := Irr(Ng (L)* | ) and fix A € Irr(L” | 2). Let

K .e(wF (¥ 7 _NF | 7
YR S(K : (L, /l)) - Irr(NK(L) | /l)
be the bijection constructed in (3.4). Let %glo be a (((~}F Ak, < K)3-transversal in £ (KF, (E, 1)) and
observe that, by Lemma 3.14, the set Tioe := {Ygj 3 X)) | x e fglo} isa (((~}F A)k,L < K)7-transversal
in Irr(Nf((L)F | 2).
Next, we fix a transversal 7 for K £(RF (L) in IC and we claim that
KF (((’iFA) . /c)
K,L

o _RF(&F g
T =Kf (G A)K,(L,/l) K. (3.12)

a

To prove this equality, consider xz € (GF Ak, (L2 = K. Then both Aand 1 -z lie over A and by [Isa76,
Problem 6.2] there exists u € K such that 1 = A~ -Zg - uj . Therefore xz € ((GF A)k,L = K)7- K. On the
other hand, applying Corollary 3.17, we obtain Ky gr .7, < K! (KF x K)7 and by the definition of
T, we conclude that

k{((éFA)K’L < ;c)Z T ﬁg((au)KM . )

To prove the remaining inclusion it’s enough to show that

N I (CoT)

A a

Since A is L -invariant, one inclusion is trivial. So let xz € (((~}F A)k,L=K)7 and observe that A=2* 75
lies both over 4 and over 4*. By Clifford’s theorem there exists y € L7 such that 1 = 2*Y and hence
xz € LF ((GF Ak (1.a) < K)7. This proves the claim.

Now, using (3.12), we show that Tglo isa (((}FA)K,(L,A) x KC)-transversal in G. Consider y € G. By
Proposition 3.18 there exist unique z € 7 and y/, € £ (KF, (L, 2)) such that y = X * Zg- Let xo be the
unique element in Tglo such that x| = i - ug, for some xu € ((GF Ak 1 < K)7. Then y = ¥ - ug -7,
for xuz € (((~}F A)k,L<K)7-T. Butusing (3.12) and since y and yo are Nf((L)F -invariant, we conclude
that y = )?g Vg, forsome y € (GF Ak, (1,2 and v € K. This argument also shows that j is the unique
element of Ty, with this property.

Similarly, using (3.12), we deduce that the set Tioc is a ((GF A), (1,2 = K)-transversal in N. Now,
the map

x5 =
Q(L,/l) G >N
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defined by

‘QI((L,/I) (X

K ~
"Zg) =Yg (0 I

for every y € fglo, X € ((}FA)K,(L,,;) andz € K, is a (((}FA)K,(L,,I) = KC)-equivariant bijection. The
remaining properties follow from Lemma 3.11, Lemma 3.12 and Lemma 3.13 after noticing that 7 and
ENK(L) are linear characters and that

KF

bl(lz . ENR(L))RF = bl((Z)K 7R

for every i € Irr(Nﬁ(L)F) and z € K. O
Thanks to Remark 2.6, Theorem B follows from our next theorem.

Theorem 3.20. Assume Hypothesis 3.1 with G simple and simply connected and let £ € T'(G, F) with
¢ > 5. Consider an F-stable Levi subgroup K of G and an e-cuspidal pair (L, A) of K. Suppose there
exists a ((GF Ak 1, < K)-equivariant extension map for Cusp, (L, F) with respect to L < Nz (L)F

Then, there exists a defect preserving (GF A)K, (L,1)-equivariant bijection
ok o (KF (L, /l)) N Irr(NK(L)F | a)

Proof. Fix a ((GF A)g,(L.1) < K)-transversal Ty, in Irr(KF | £(KF, (L, 2))). By Theorem 3.19 the
set Toc := {Q%‘L ) (X) | X € Tao} is a ((GF A)k (1,1 = K)-transversal in Irr(Nf((L)F | 1). For every
X € Tglo fix an irreducible constituent y € £(GF, (L, /l)) of ygr and define the set Tglo consisting
of such characters y, while y runs over the elements of Tglo Similarly, for every w € TIOC, fix an
irreducible constituent ¢ € Irr(Ng(L)¥ | 1) of wNK(L)F and define the set T}, consisting of such

characters ¢, while :Z runs over the elements of Tloc. Then Ty, and Tioc are ((~}F A)K, (L, -transversals
in £(GF, (L, )) and Irr(NK(L)F | 1) respectively Fix xy € Ty, and let y be the unique element of
Tglo lying above y. Let v o= (L 2 (x) € Tioe and consider the unique element ¢ of Tjoc lying below

. This defines a bijection

Teto = Tioc- (3.13)
Then, defining

QL") =

for every x € (GF Ak, (1,2 and every x € Ty, corresponding to € Tio via (3.13) we obtain the
wanted bijection. O

The above result provides a way to extend [BMM93, Theorem 3.2 (ii)] and obtain a parametrisation
of e-Harish-Chandra series for nonunipotent e-cuspidal pairs of simple algebraic groups with (possibly)
disconnected centre.

4. The criteria

In this section we prove Theorem 4.3 and Theorem 4.8 which serve as criteria for Parametrisation 2.7
and Parametrisation C respectively. The assumptions of these criteria consist of two main parts: first we
assume the existence of certain bijections (see Assumption 4.1 (ii) and Assumption 4.4 (ii)). These bi-
jections have been constructed in Theorem 3.19 under suitable hypotheses. Secondly, we need to control
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the action of automorphisms on irreducible characters (see Assumption 4.1 (iii)-(iv) and Assumption
4.4 (iii)-(iv)) in order to construct projective representations via an application of [Spid 12, Lemma 2.11].
This second problem is part of an important ongoing project in representation theory of finite reductive
groups. Moreover, in order to obtain G -block isomorphisms of character triples, in the assumption
of the criterion for Parametrisation C we need to include certain block theoretic requirements (see
Assumption 4.4 (v)-(vi)). These restrictions are analogous to those introduced in [CS15, Theorem 4.1],
[BS20, Theorem 2.4] and [BS22, Theorem 4.5].

The results presented in this section should be compared to [Spi 12, Theorem 2.12], [CS15, Theorem
4.1], [BS22, Theorem 4.5], [Ruh22b, Theorem 2.1] and [Ruh22c, Theorem 9.2].

4.1. The criterion for Parametrisation 2.7

We start by dealing with Parametrisation 2.7. The results obtained in this subsection are then used in
the next one to prove the criterion for Parametrisation C under additional restrictions.

Consider G, F : G — G, g, € and e as in Notation 2.3 and leti : G — G be a regular embedding. We
recall once more that the group K introduced in Section 2.1 acts on the sets of irreducible characters of
G* and NG(L)F (see Definition 2.1).

Assumption 4.1. Let (L, 1) be an e-cuspidal pair of G, set
G = E(GF,(L, /1)) and N := II'I'(N(;(L)F | /l)

and consider

G = Irr(f}F | Q) and N = Irr(Na(L)F | N)
Assume that:

(i) (a) There is a semidirect decomposition GF % A, with A a finite abelian group, such that
Cor 4(G") =Z(G") and GFA/Z(G") = Auts(G");

(b) Maximal extendibility holds with respect to G < GF ;
(c) Maximal extendibility holds with respect to Ng (L)F < N(}(L)F )

(ii) For A := ((}F A)(v,2) there exists a defect preserving (A < K)-equivariant bijection
¢ 5
Q(L’ NE G- N

such that Irr()?z((;p)) = Irr(ﬁf’L’l) ()"(')Z(ap)) for every y € G.
(iii) For every y € G there exists y € G N Irr(ygr) such that:

(2) ((EF A) —Gl Ay

(b) x extends o x €lrr(GFA,).
(iv) For every y € N there exists veNN Irr(JNG(L)F) such that:

(2) ((;FA)L , = Na(L)f (G A,

(b) ¢ extends to ¢’ € Irr((GF.A)L zp)'
Our aim is to show that Assumption 4.1 implies Parametrisation 2.7. Before giving a proof of this

result, we show that Assumption 4.1 (iii.a) and Assumption 4.1 (iv.a) are equivalent in the presence of

an equivariant bijection Q?L’ nE G- N.
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Lemma 4.2. Assume Hypothesis 2.4. Let (L, 1) be an e-cuspidal pair of G and suppose that there exists
a (GF A) (v, 1) -equivariant bijection

Q% EGF (L) - Irr(Ng(L)F | /l).

If y € £(GF, (L, ) and ¢ = Q(GL 2 (x), then

(éFA)X —GlA, @.1)

if and only if

(674), =Nz (6"4) . (4.2)

L,y L.y

Proof. As the two implications can be shown by similar arguments, we only show that (4.1) implies
(4.2). To start, consider the subgroups

T :=Ne(L)" (G{LJ),X ' (GFA)<L,A>,)() =Na(L)" (é{L,A),lﬂ (G A, )
and
V = Ne(L)F (GF A) w2, = N (L) (GF A w14

where the equalities follow since Q?L D is equivariant by assumption.

Define U(y) := ((}FA)L,X and U(y) := (GFA)L’W We claim that U(y) = U(¥). To prove this
fact, notice that it is enough to show that U(x) and U(y) are contained in V, in fact this would
imply U(y) =U(x) NV =(GrALnV=UW)NV=U®W).Ifx € U(y), then y € E(GF, (L, 1)) n
E(GF, (L, 1)%) and, by [Ros24a, Proposition 4.10], there exists y € GF such that (L, 1) = (L, ).
Notice that y € Ng(L)" and hence x € V. On the other hand, if x € U(i), then y lies over 1* and by
Clifford’s theorem A*¥ = A, for some y € Ng(L). Also in this case x € V. Now U(y) = U(y) and we
denote this group by U.

Next, we claim that T = U. If this is true, then we deduce that 7' < N(~;(L)5 (GF AL,y <U=Tand

therefore (4.2) holds. First, observe that T < U. AsTNGY = Ng(L)F =UNGF andT < U < ((}FA)X,
it is enough to show that TGF = (GF A) - First, repeating the same argument as before, a Frattini
argument shows that

~F _ F(~F
(G A)X—G (G A)(L,/l),X 43)
and
Gy =G Gl - (44
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Then using the hypothesis we finally obtain
4.3 ~
D er (GFA)
(L, ). x
4 1

4D (F(~FGEF F
G (G G(LM(G A)X .

(674)

X

AT (L)

= GFG}(FL ) X(GFA) (L.).x

=G'T.
This concludes the proof. O

We are now ready to prove the criterion for Parametrisation 2.7. It should be clear from the proof of
this result that, by using Lemma 4.2, only one amongst Assumption 4.1 (iii.a) and Assumption 4.1 (iv.a)
is actually necessary. In fact, the equivariant map required in Lemma 4.2 is constructed in the following
proof independently form the choices of characters satisfying Assumption 4.1 (iii.a) and Assumption

1 (iv.a).

Theorem 4.3. Assume Hypothesis 2.4 and Assumption 4.1 with respect to an e-cuspidal pair (L, 1) of
G. Then Parametrisation 2.7 holds for (L, 1) and G.

Proof. We start by fixing an (A = C)-transversal Tglo inG.AsQ is (A= K)-equivariant, we deduce

(L )
that the set Tjoc := {Q(LJ) ) | x € Tglo} is an (A x C)-transversal in N'. For every y € Tglo, we
choose a character y € G NIrr(ygr) satisfying Assumption 4.1 (iii). Denote by Tg, the set of such
characters y, where y runs over fglo. Similarly, for every v e Tioc, fix a character v eNN Irr(JNG (L)F)
satisfying Assumption 4.1 (iv) and denote by T}, the set of such characters iy. Now, arguing as in the
proof of Theorem 3.20, we obtain an A-equivariant bijection between G and A" by setting

(L 2 ") =

for every x € A and y € Tgo, where ¢ is the unique character in T, lying below t,b = Q6 (L 2 (X{)
and Y is the unique character in Tglo lying over y. By Assumption 4.1 (i.a) this means that QG Lo i
Autp(GF )(L,1)-equivariant.

To show that Q((}L 1) breserves the defect, we use Assumption 4.1 (i.b) and (i.c). Clearly it’s enough to

show that d(y) = d(¢), for xy € Ty, and ¥ := Q(L 2 (x
of Tglo (resp. Tioc) lyglg over y (resp. ). Then Q(LJ) (x¥) = ¢ and d(y) = d(y) by Assumption 4.1
(ii). Moreover, since G /GF ~ Ng (L)F /Ng(L)¥ is abelian and using Assumption 4.1 (i.b) and (i.c),
we deduce that the Clifford correspondent y € Irr((.ji ) of y over y is an extension of y and, similarly,

) € Tioc. Let ¥ (resp. ¢) be the unique element

that the Clifford correspondent U e Irr(Ng (L) g ) of  over i is an extension of /. As a consequence
2400 — pd(o) . |(;§ : GF|[
and

(0 = (1D IN(L)  Ne(LF .
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Therefore, as the defect is preserved by induction of characters, we obtain d(y) = d(y) = d W) =d (tZ)
and it remains to show that |G§ (G|, = INg (L)f; : Ng(L)F|,. This follows from the proof of Lemma

4.2: in fact there it is shown that Na(L)g = Ng(L)! and therefore (}f/GF ~ Ng(L){ /Ng(L)F =
Ng (L)) /Ne(L)".

Next, we prove the condition on character triples. Applying a simplified version of [Spil7, Theorem
5.3] adapted to G* -central isomorphic character triples (this immediately follows by the argument used
in the proof of [Spial7, Theorem 5.3]), it is enough to show that

(67 A 6" x) ~&r (67 Ay Ne ()", Q5 (1)). 45)

Moreover, as the equivalence relation ~ :}F is compatible with conjugation, it’s enough to prove this

condition for a fixed y € Ty, and ¢ := Q6 L) (x) € Tie-
First of all, notice that the required group theoretical properties are satisfied by the proof of Lemma
4.2. In fact, there we have shown that (G A)y, , = (GF A) 4 and that (GF A), = GF (GF A)y,,,, while

C(EFA) (GF) C(GFA) ( F) = ((}FA)L’X - (6FA)L,I/I.

To construct the relevant prOJectlve representations, we make use of [SpalZ Lemma 2.11]. As
before, consider the corresponding ¥ € Tgjo and iy € Tjoc With Q(L D (Y) = ¢, ¥ lying over y and ¢

lying over . Furthermore, consider the Clifford correspondent y € Irr(G)f | x) of ¥ and the Clifford

correspondent {ﬁ € Irr(Ng (L)ZbD | ¥) of J Let ﬁglo be a representation affording ¥ and notice that,
by the choice of y and using Assumption 4.1 (iii.b), there exists a representation Délo affording an

extension y’ € Irr(GF A,) of y. Additionally, we may chose Délo such that Délo (x) = ﬁglo (x) for all

x € G, Similarly, let Dioc be a representation affording ¢ and observe that, by the choice of ¢, there
is a representation Dy = affording an extension y’ € Irr((GF A)r,y) of . Also here, we may assume

that 5loc(x) =Dy .(x) forall x € Ng(L)¥. Applying [Spil2, Lemma 2.11] with L := GF, L= é)’?,
C :=GF A,, X := (G" A), and recalling that X = LC because Assumption 4.1 (iii.a) holds for y, we
deduce that the map

Pao: (67 4) = GLy1)(©)

given by Pgio(x1x2) = Dgio (x1) Dy, (x2), for every x| € (~})’; and x, € GF A, , is a projective represen-
tation associated with y whose factor set ay, satisfies

@gio(¥1%2, y172) = 12 (1) (4.6)

o

€ Irr((~}§ /GF) is determined by the equality
X = yx2 °Y™ via Gallagher’s theorem. In a similar way, considering L := Ng (L), L= Na(L))f ,

C:=(GF Ay, X = (GF AL,  and noticing that X = LC because Assumption 4.1 (iv.a) holds for i,
we deduce that the map

for every X1,V1 € GF and x,y, € GF A, where ,ug

Ploc : (aF A)L’X — GLy (1) (C)

given by Pioc(x1x7) := 7310C(x1)Dl’OC(x2), for every x| € NG(L)}: and x; € (GF.A)L,X, is a projective
representation associated with ¢y whose factor set aj,. satisfies
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loc

e (X1X2, y1¥2) = My (V1) 4.7)

for every x1,y; € Ng(L){ and x5, y2 € (G" A)y, ., where u'% € Irr(Ng (L)F /Ng (L)"') is determined

X
by ¢y = y£g°¢X2. In order to obtain the condition on factor sets required to prove (4.5) we have to show

that the restriction of agj, to ((~}F A,y X (GF AL, coincides with @joc. Using (4.6) and (4.7), it is
enough to show that

glo) — loc
(/Jx N(;(L)AI/: Hx

for every x € (G A)L, and where y = ,u)gclo)?x and = p'°y~. To prove this equality, since

(GF A),, = Ng(L)F A, (see the proof of Lemma 4.2), we may assume x € A,. Then, we conclude
since Q?L 2 is (A = K)-equivariant.

To conclude we need to check one of the equivalent conditions of [Spidl7, Lemma 3.4]. Recalling
that C gr A, (GF) = Z(GF) by Assumption 4.1 (i.a), if {glo and {joc are the scalar functions of Py, and
Pioc respectively, we have to show that g1, and 1o coincide as characters of Z((~}F ). By the definition
of Pyo, it follows that g, coincides with the unique irreducible constituent v of /?Z((;p). Moreover,
by Clifford theory we know that v is also the unique irreducible constituent of )y, (©F) Therefore, we
conclude that {{g0} = Irr()'(vz((;p)) and a similar argument shows that {{joc} = Irr(tzz((;,u)). Then,
Assumption 4.1 (ii) implies that {gjo = {ioc. This completes the proof. m]

4.2. The criterion for Parametrisation C

We now prove a criterion for Parametrisation C. To do so, we sharpen the argument used in the proof of
Theorem 4.3. As mentioned at the beginning of this section, some additional restrictions are required
in order to deal with the necessary block theoretic demands. Recall that whenever ¢ € I'(G, F), L
is an e-split Levi subgroup of G and A € Irr(LY), the induced block bl(/l)GF is defined (see the
comment preceding [Ros24a, Lemma 4.6]). The following assumption is obtained by adding extra
conditions to those considered in Assumption 4.1, namely, (ii.b), (v) and (vi) below. For the reader’s
convenience, we have decided to rewrite below the full set of conditions required to prove our criterion
for Parametrization C. This would also be useful for future reference.

Assumption 4.4. Let (L, 1) be an e-cuspidal pair of G and suppose that B := bl(/l)GF is defined. Set
G:=&(GF, (L) and N :=Ir(Ne() | 2)

and consider

G = Irr((~}F | g) and N = Irr(Né(L)F | /\/)
Assume that:

(i) (a) There is a semidirect decomposition G* > A, with A a finite abelian group, such that
Cgra(G") =Z(G") and (GFA)/Z(G") = Autz(G");

(b) Maximal extendibility holds with respect to GF" < GF ;
(c) Maximal extendibility holds with respect to Ng (L)F < N(}(L)F )
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(ii) For A := (GF A)(w, 1) there exists a defect preserving (A < K)-equivariant bijection
~c 5
Q(L, NE G- N

such that, for every y € G, the following conditions hold:
(a) Irr(;\?z((;F)) = II"I"(Q?L,/D (/F\,/')Z(alf));
GF

—_ G
(b) bI(}) :bl(Q?LJ)()?)) .

(iii) For every y € G there exists y € Irr(ygr ) such that:
@ (GF4) =Gfay;
() x exten()i(s to x’ € Irr(GF A,).
(iv) For every v e N there exists veNN Irr(z;NG(L)p) such that:

(a) (GFA)W =Ng(L)E (GFA), ,;
(b) ¢ extends to ¢’ € Irr((GFA)L’w).
(v) Assume one of the following conditions: _
(a) Qut(GF )5 is abelian, where B is the GF -orbit of B. In particular (iii) holds for every
G* -conjugate of y (see the proof of [BS22, Lemma 4.7]); or _
(b) for every subgroup GF < J < GF we have that every block C € BI(J | B) is G -invariant.
(vi) The pair (L, 2) is e-Brauer—Lusztig-cuspidal in the sense of Definition 2.5.

Remark 4.5. Here we comment on Assumption 4.4. First, observe that (v.a) holds for every block of
G! whenever G is a simple algebraic group of type B, C or E;. Next, notice that condition (v.b) holds
for blocks of maximal defect (see [CS 15, Proposition 5.4] and observe that the proof of this result holds
in general in our situation by [CE04, Proposition 13.19]) and for unipotent blocks: if B is a unipotent
block of G, then there exists a unipotent character y € Irr(B). By [DM91, Proposition 13.20] we
deduce that y extends to a character y € Irr(G). If GF < J < G and C is a block of J that covers B,
then we can find a character ¢ € Irr(C) that lies above y. Since 7 is an irreducible character of J lying
above y, we deduce that ¢ = y;7z; for some z € K corresponding to zg € Irr(GF /GF) and where 7
is the restriction of 7 to J. Then ¥ is GF -invariant and therefore C is G -invariant. This proves that
(v.b) holds for unipotent blocks.

Next, we point out that the character y from Assumption 4.4 (iii) is not required to lie in G. In fact,
if such a character y exists, then a character with the same properties and lying in G can always be
found under Assumption 4.4 (v)-(vi). To see this, fix ¥ € G and y € Irr(ygr) satisfying Assumption
4.4 (iii). By the definition of G there exists yo € Irr(ygr) NG. In particular y and y( are GF -conjugate.
Now, if (v.a) holds, then all GF -conjugates of y satisfy Assumption 4.4 (iii.a) and (iii.b) according to
the proof of [BS22, Lemma 4.7]. Then yo is the character we were looking for. If (v.b) holds, then B is
G -invariant and, since bl( yo) = B, we deduce that bl(y) = B. On the other hand, if s is a semisimple
element of L*¥" such that 1 € E(LF, [s]), then yo € G € £(GF, [s]) by [CE04, Proposition 15.7].
Thus y € £(GF, [s]) by [CE04, Proposition 15.6] and we conclude that y € Irr(B) N E(GF, [s]) =G
by applying Assumption 4.4 (vi).

Finally, as discussed in Section 2.4, it is expected that Assumption 4.4 (vi) holds for every e-cuspidal
pair under suitable hypotheses on the prime ¢.

We now prove the criterion for Parametrisation C. Our argument makes use of the notion of Dade’s
ramification group. For every block b of a normal subgroup N of G, Dade introduced a normal subgroup
G[b] of the subgroup G; such that G[b] < G, for every y € Irr(b). Here we use the following
equivalent definition given by Murai in [Mur13] (see also [CS15, Definition 3.1]).
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Definition 4.6. For every N < G and b € BI(G) define
G[b] :={g € Gy | Ay (Clin gy (M)*) # 0, for some h € Ng}

where b®) is any block of (N, g) covering b, A, is the central character associated to b® and
Cl(n gy (h)* is the conjugacy class sum of 4 in (N, g). It can be shown that this definition does not
depend on the choices of the blocks 5(8) covering b.

See [Dad73], [Murl3] and [KS15] for further details on ramification groups.
Before proving the criterion for Parametrisation C, we need the following result in which we show
how to choose transversals with good properties.

Proposition 4.7. Assume Hypothesis 2.4 and Assumption 4.4. Let Tglo be any (A w K)-transversal
in G and consider the (A < K)-transversal Tioc = {Q?L 2 (X) | X € Tao} in N. Then there exist
A-transversals Ty, in G and Tioc in N with the following properties:

(i) Every x € Tg, satisfies Assumption 4.4 (iii.a) and (iii.b);
(ii) Every y € Tioc satisfies Assumption 4.4 (iv.a) and (iv.b);
(iii) For every y € Ty, there exists a unique ¥ € Tg, lying over y. Conversely x is the only character
of Tgio lying under x;
(iv) For every y € Tyo there exists a unique {J € Tioc lying over . Conversely  is the only character
of Tioe lying under ir;

(v) Let x € Ty1o and € Tioc such that ﬁ?L 2 (Y) = ¥, where ¥ is the unique character of fglo lying

above y and J; is the unique character of Tioc lying above . Then
_ - J
bI(Es) = b (P g

for every G < J < GF', where X € Irr(é; ) is the Clifford correspondent of y over x and
U e Irr(Na(L)l’; ) is the Clifford correspondent of W over .

Proof. For every € Tioc fix a character ¢ € N’ N Irr(JNG(L)F) satisfying Assumption 4.4 (iv) and
denote by T, the set of such characters ¢, while J runs over Tjoc. As proved in Theorem 4.3, the set
Tioc is an A-transversal in A satisfying (iv) above. Next, for every y € %glo, we are going to find a
character y € G N Irr(ygr ) satisfying Assumption 4.4 (iii.a) and (iii.b) and such that

—_ J
bl(7)) = bl(wNé(L)Xpm) (4.8)

for every GI' < J < (35 and where y € Irr(éf | x) is the Clifford correspondent of y over y and

z; € Irr(Na(L)f; | ¢) is the Clifford correspondent of ¢ over ¢ with ¢ := ﬁ?L 2 (x) and ¢ € Tioc

corresponding to . Then, as shown in the proof of Theorem 4.3, the set Tg1o of such characters y while
X runs over Tglo will be an A-transversal in G satisfying (iii) above. Moreover (v) will be satisfied by
our choice. —
We first prove the claim assuming Assumption 4.4 (v.a). We start by showing that, for every y € Tgjo,
there exists a character y € G N Irr(ygr) such that
- G"[B]
bl( Yar| B]) - bl(wNa(L)F [C]) , (4.9)
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where ¥ € Irr(éf | x) is the Clifford correspondent of y over y and LZ € Irr(Né(L)i | ) is

the Clifford correspondent of ¥ over ¢ with ¢ = Q?L’ 2 (x) and ¢ € Ty, corresponding to ¥ and
C := bl(y). Notice that, as pointed out in Remark 4.5, under Assumption 4.4 (v.a) such a character y
automatically satisfies Assumption 4.4 (iii.a) and (iii.b).

Set b := bl(1) and recall that, as every block of Ng(L)* is Lf -regular (see [Ros24a, Lemma
5.5]), C must coincide with pN6M" and therefore 6" = pS" = B. Moreover, for E = Z° (L);7 s
we have Nx (L) = Nx(E) for every GF < X < GF (see [Ros24a, Lemma 2.5]). Then, for every
GF <Y < X < GF, every Cy € BI(Ny (L)) and C; € BI(Nx(L) | Cy), the induced block By := C¥
is well defined and covers CY (see [KS15, Theorem BJ]): in fact for a defect group D € 6(Cyp) we have
E < Og(Ny(L)F) < D and hence Cx(D) < Nx(E) =Nx(L).

Consider C := bl(¢), B := bl(y) and recall that B = (C )G by Assumption 4.4 (ii.b). Notice that
GF[B] = G(L)F [C]-GF (see [KS15, Lemma 3.2 (c) and Lemma 3.6]) and set C; := bl(d/N(.;(L)F c1)
and By := C?F [B] By the previous paragraph (applied with ¥ = GF and X = GF [B]) the block B,
covers B and the exact same argument (applied with Y = GF [B] and X = GF ) can be used to show that
B covers Bj. In particular there exists x| € Irr(B;) lying under y. We claim that y; gr is irreducible
and lies in G. If y is an irreducible constituent of y gr, then By covers bl(y). As Bis GF [ B]-invariant,
we conclude that bl(y) = B. Then GF [B] < G§ and Assumption 4.4 (i.b) implies that y; gr = x.
Furthermore, since for every GI' < J < (~}F there exists a unique irreducible character of J lying over
x and under y, we conclude that y; = XGF , where y € Irr(GF ) is the Clifford correspondent of
X over y. To conclude, since y € G covers Xl and hence y, [CE04, Proposition 15.6] implies that
x € E(GF, [s]) where s € Lf" such that 1 € £(LF, [s]). By Assumption 4.4 (vi) we conclude that
x € G NIrr(ygr) and satisfies (4.9). _ _

Next, we deduce (4.8) from (4.9). First, since bl(zﬁNa(L)F[CJ) is covered by bl(y), by the same
argument used before (applied with Y = GF [B] and X = (35 ) we deduce that bl(z’ﬁ\N(;(L)p e J)aF (B] =
bl(xgr [B]) is covered by bl(J)Gf. Since (~}§ has a unique block that covers bl()?(;F[B]) (see [Murl3,

Theorem 3.5]), we conclude that bl(@)éf = bl()). Finally, for GF' < J < (~}§, observe that bl(y;) is
G§ -stable and therefore it is the unique block of J covered by bl(y). Since, again by using the previous
argument (applied with ¥ = J and X = (~}§ ), bl({//\NE(L){m ;) is covered by bl([b\)(}f = bl(y) we
conclude that y is a character of Irr(ygr ) N G satisfying Assumption 4.4 (iii.a) and (iii.b) and such that
(4.8) holds. This proves the claim under Assumption 4.4 (v.a).

We now prove the claim under Assumption 4.4 (v.b). Consider y € Irr(ygr) satisfying Assump-
tion 4.4 (iii) and notice that, as shown in Remark 4.5, under Assumption 4.4 (v.b) we automatically have

X € G. As shown in the previous part, the block B = bl(zﬁ)Gx is covered by B := bl(Y) and covers B.
Since B covers B, we deduce that B and bl(y) are GF -conjugate. On the other hand our assumption

implies that B is GF -stable and therefore coincides with bl(Y). This shows that bl(y) = bl(zﬁ)Gx and,
arguing as in the final part of the previous paragraph, we conclude that (4.8) holds. This completes the
proof. O

We can finally prove the criterion for Parametrisation C.

Theorem 4.8. Assume Hypothesis 2.4 and Assumption 4.4 with respect to the e-cuspidal pair (L, 2).
Then Parametrisation C holds for (L, 1) and G.

Proof. Choose transversals Tglo, Tloc, Tg1o and Ty as in Proposition 4.7. As in the proof of Theorem 4.3,
setting

(L 2 ") =
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for every x € A and y € Ty, where ¥ is the unique character in T, lying below W= ﬁ& 2 (x) and

X is the unique character in ﬁf‘g]o lying over y, defines an A-equivariant bijection between G and N. By

Assumption 4.4 (i.a.) this means that Q((}L 2 is Aut(GF )(L,1)-€quivariant.
G

The argument used in the proof of Theorem 4.3 shows that € L. is defect preserving. By [Spil7,
Theorem 5.3], we deduce that to conclude the proof it’s enough to show that

(€7 A 6" x) ~gr ((G" Ay Na(L)".v). (4.10)

for every y € G, ¥ = Q(GL D (x)- Moreover, as the equivalence relation ~gr is compatible with
conjugation, it is enough to prove (4.10) for a fixed y € Tglo and ¢ := Q(GL D (x) € Tioc. As before,
consider the corresponding y € Tglo and ¥ € Tioc with ﬁ?L’ 2 ) :~J, ¥ lying over y and ¢ lying
over . Furthermore, consider the Clifford correspondent y € Irr(G)f | x) of y and the Clifford
correspondent ¢ € Irr(Na(L)g | W) of 4.

Proceeding as in the proof of Theorem 4.3, we can construct a projective representation associated
with y

Pato : (f}FA)X — GL,(1)(©)

given by Py (Zx1x2) = 5g10 (x I)Délo (x7) for every x| € 65 and x; € (GF A) - Similarly, we obtain a

projective representation associated with

Ploc : (674) = GLy)(©)

given by Pioc(Zx1x3) = ﬁloc(xl)D’ (x2) for every x| € Ng (L)f; and x; € (GFA)L,l/,. Moreover, by

loc
the proof of Theorem 4.3, we know that

(6" ,.6" . x) ~&r (G Ay Na (L) v)

via the projective representations (Pglo, Ploc). Consider the factor sets a/glo of Pglo and @joc of Pioc. Let
S be the group generated by the values of @, and denote by Ay, the central extension of ((~}F A), by
S induced by agjo. Let € : Aglo — (éF A), be the canonical morphism with kernel S. As ayg, is trivial
on (35 X (35 , every subgroup X < (';‘jj is isomorphic to the subgroup Xy := {(x,1) | x € X} of Ag,

and €' (X) = X x S. In particular, we have Hyo = e! (éﬁ) = ((}5)0 % S. The map given by

leo(x’ 5) = Spglo(x),

forevery s € Sand x € (éF A)y, is an irreducible representation of A, affording an extension y of
the character o of (G'')y corresponding to y. Notice that

X1.Hgo = X0 X & (4.11)

where «(s) := s and Yo is the character of (é; )o corresponding to y € Irr(é; ). Next, set

Alge := € 1 ((GF Af /) and notice that, because the factor set @ioc Of Pioc is the restriction of the factor
set aglo of Pglo, the map given by

Qloc(x, 5) 1= sPioc(X),
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forevery s € Sand x € (GF A)f v is an irreducible representation of Aj,. affording an extension | of

the character ¢ of (Ng (L)) corresponding to . As before, we have
UiH = Y0 X L, (4.12)
where Hjy, 1= ¢! (Ng (L))‘(E ) = (Na(L))f Yo X S and ¢ is the character of (Ng (L))f )o corresponding to

= Irr(Na(L)A’f). Now, (4.11), (4.12) and (4.8) imply that

7
bl(x1,s) = bl(lﬁl,mHg,o) (4.13)

for every (GF) < J < Hyg, (see the argument at the end of the proof of [CS15, Proposition 4.2]).
By [KS15, Theorem C] there exists ¢y € Irr(Agio[Bo]) such that ¢, (gr), is irreducible and lies in the
block B and

bl(¢1,s) = bl(lﬁl,mA.OC)J (4.14)

for every (G')g < J < Agio[Bo]. It follows from (4.13) and (4.14) that

J
bl(e1,s) = bl(W1s0m,)" =bl(x1s)
forevery (G )y < J < Hgio[Bo] = Hglo N Aglo[ Bo]. In particular By = bl(x1,(Gr),) = bl(xo). Therefore
the conditions of [CS15, Lemma 3.2] are satisfied and we obtain an extension x> € Irr(Ag) of x1, Hyo
satisfying

bl(¢1,s) = bl(x2,) (4.15)

for every (GFy<J< Aglo[Bo]. From (4.14) and (4.15) we obtain

bl(¥1.s04,.)” = bl(x2.s)

for every (GF)y < J < Aglo[Bo]. The latter equation, together with [Murl3, Theorem 3.5], yields

J JNAjoc
bl(w] ,JmAlnc) = (bl(wlstAloanglo [BO] ) )
J
= (012, 0g01501) (4.16)
= bl(x2.)

for every (G )y < J < Ag,. Finally, observe that using Assumption 4.4 (i.a) and [Spil7, Theorem 4.1
(d)] we obtain

Ca,o ((GM)o) = Cay ((GF)o % S)
<e!(Cra, (67))
= (Z((;F))

= Z((~}F)O xS.
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Recalling that Irr(xz(gr)) = Irr(¥zgr)), we obtain Irr()?Z(aF>) = Irr(zZZ(éF)) and hence

Irr(Xz,Z((;F)oxs) = Irr(Xl,Z(ﬁF)oxS)
= Irr()?o,Z((}F)o X L)
= 1r(9 2, X ) (4.17)
= Irr('vl’l,Z((;F)OxS)'

Thanks to (4.16) and (4.17), we can apply [Spidl7, Lemma 3.10] which implies

(Aglo, (GF)O,XO) ~(GF), (Aloc:a (NG(L)F)O,%).

Then (4.10) follows by using [Spil7, Theorem 4.1 (i)]. This completes the proof. O

5. Stabilisers, extendibility and consequences

In this section, we combine the results obtained in Section 3 and Section 4 and show how to obtain the
parametrisation of e-Harish-Chandra series introduced in (1.2) and its compatibility with automorphisms
and Clifford theory, considered in Parametrisation C and Parametrisation 2.7, by assuming certain
requirements on stabilisers and extendibility of characters. This proves Theorem D and, in particular
provides a strategy to extend the parametrisation given in [BMM93, Theorem 3.2] to nonunipotent
e-cuspidal pairs in groups with disconnected centre. At the end of this section, we apply the main results
of [BS20] and [Bro22] and obtain some consequences for groups of type A and C.

5.1. Proof of Theorem D

LetG, F : G — G, g, { and e as in Notation 2.3 with G simple of simply connected type. Leti : G — G
be a regular embedding compatible with the action of F and consider the group A generated by field
and graph automorphisms of G in such a way that A acts on (iF (see Section 2.2). Let K be the group
introduced in Section 2.1 and define the semidirect product (GF A) < K as discussed at the beginning
of Section 3.2.

We now come to the proof of Theorem D. As said before, this reduces the verification of Parametri-
sation C to questions on stabilisers and extendibility of characters. Before proceeding further, we give
an exact definition of these conditions. The following should be compared to [CS 19, Definition 2.2].

Definition 5.1. For every e-split Levi subgroup L of G, we define the following condition.
There exists a L -transversal 7 in Cusp, (L, F) such that:

(G) Forevery A € T and every y € £(GF, (L, 1)) there exists an N(;(L)f -conjugate y of y such that:
@) (GF A) =GP Ay, and

X0
(ii) xo extends to GF A, .

(L) Forevery A € T and every ¢ € Irr(Ng (L) | 1) there exists an Ng (L) -conjugate ¢ of ¢ such
that:

® ((}FA)L,W) - NG(L)‘I;O (GF'A)L,'M)’ and

(ii) o extends to (GF A)L’ oo
‘We make a remark on the global condition of Definition 5.1. In fact, this condition is slightly stronger
than condition A(co) of [CS19, Definition 2.2]. However, these two conditions are equivalent under

additional assumptions.
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Remark 5.2. Assume that Hypothesis 2.4 holds for (G, F) and let (L, 1) be an e-cuspidal pair of G.
Set B := bl(/l)GF and suppose that either:

(i) Out(G")g is abelian, where B denotes the G -orbit of B; or
(i) Bis GF -invariant and (L, A) is e-Brauer-Lusztig-cuspidal.

Then Definition 5.1 (G) is equivalent to the following:

(G’) Forevery A € T and every y € £(GF, (L, 1)) there exists a GF -conjugate yq of y such that:
@ (G A)XO = G” Ay, and
(ii) xo extends to GF A,,.

Proof. Clearly Definition 5.1 (G) implies (G’) above. Conversely let y € £ (GF, (L, 1)) and consider a
G' -conjugate y; of y satisfying the required properties. As explained in Remark 4.5, if Out(G*)z is
abelian, then y also satisfies the required properties (see [BS22, Lemma 4.7]) and we set o := x.On the
other hand, by using the argument of Remark 4.5, if B is G* -invariant and (L, ) is e-Brauer—Lusztig-
cuspidal, then y; € £(G, (L, 1)) and we set xo := 1. This shows that there exists o € £(G, (L, 1))
and x € GF such that yo = y* satisfies the required properties. In particular yo € £(GF, (L,1)) N
E(GF, (L, 1)*) and [Ros24a, Proposition 4.10] implies that (L, 1) = (L, )*> for some y € GF. It
follows that yo = y*> withxy € Na(L)/Il: as required by Definition 5.1 (G). O

Moreover, we make another remark on the local condition in Definition 5.1. This should be compared
with condition A(d) of [CS19, Definition 2.2] with d = e.

Remark 5.3. Let L be an e-split Levi subgroup of G. Then condition A(d) of [CS19, Definition 2.2]
states that for every ¢ € Irr(Ng (L)) there exists an Na(L)F -conjugate i such that:

® (aFA)L,wo - Na(L)‘I;O (GF'A)L,GZ’()’ and

(ii) o extends to (GF A)L, vo'

Condition (L) of Definition 5.1 gives a more precise description by saying that whenever A € Irr(L)*
is e-cuspidal and y lies above A, then ¥ can be chosen to lie above A.

We point out that a detailed inspection of the argument used in all instances where condition A(d)
of [CS19, Definition 2.2] has been verified would actually provide the more precise condition (L) of
Definition 5.1. This is explained in more details in Lemma 5.7 below.

Before proving Theorem D, we prove a similar result for the simpler Parametrisation 2.7.

Theorem 5.4. Assume Hypothesis 3.1 with G simple and simply connected and suppose that £ € T'(G, F)
with € > 5. Let L be an e-split Levi subgroup of G and suppose that the following conditions hold:

(i) maximal extendibility holds with respect to GF < G and to Ng(L)F « NG(L)F ;
(ii) there exists a ((GF A), = K)-equivariant extension map for Cusp, (L, F) with respect to LF <
Ng@L)F;
(iii) the requirement from Definition 5.1 holds for L < G.

Then Parametrisation 2.7 holds for every e-cuspidal pair (L, 1) of G.

G
(L)

Let 7 be the L -transversal in Cusp, (L, F) given by Definition 5.1. Since G* -central isomorphisms
of character triples are compatible with conjugation, it is no loss of generality to assume A € 7. Now
Assumption 4.1 (iii) and (iv) hold by Definition 5.1 (G) and (L) respectively, while the bijection from
Assumption 4.1 (ii) exists by Theorem 3.19. Since under our assumption we also have Hypothesis 2.4,
we apply Theorem 4.3 and obtain Parametrisation 2.7 for (L, 1) and G. O

Proof. Fix an e-cuspidal pair (L, 1) of G. We want to find a bijection Q as in Parametrisation 2.7.
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The same proof can be used to obtain Theorem D. Here, we prove a slightly more general result
which allows us to consider a larger class of blocks. The additional block theoretic requirements are
inspired by [CS15, Theorem 4.1 (v)] and [BS20, Theorem 2.4 (v)] and hold automatically for unipotent
blocks, blocks with maximal defect and in general for every group of type B, C or E7 (see Remark 4.5).

Theorem 5.5. Assume Hypothesis 3.1 with G simple and simply connected and suppose that € € T'(G, F)
with € > 5. Let L be an e-split Levi subgroup of G, B € BI(GF") and suppose that the following conditions
hold:
(i) maximal extendibility holds with respect to GF < GF and 10 Ng(L)f < Na(L)F ;
(ii) there exists a ((GF A), = K)-equivariant extension map for Cusp, (L, F) with respect to LF <
N(; (L)F :
(iii) the requirement from Definition 5.1 holds for L < G;
(iv) the block B satisfies either _
(a) Out(GF)g is abelian, where B is the Gt -orbit of B, or _
(b) for every subgroup GF < J < G, we have that every block C of J covering B is GF -invariant.

Then Parametrisation C holds for every e-Brauer-Lusztig-cuspidal pair (L, 2) of G with bl(/l)GF = B.

Proof. Consider an e-Brauer—Lusztig-cuspidal pair (L, 1) of G as in the statement. Let 7 be the
L7 -transversal in Cusp, (L, F) given by Definition 5.1. Since G' -block isomorphisms of character
triples are compatible with conjugation and our block theoretic hypothesis (iv) is preserved by GF-
conjugation, it is no loss of generality to assume A € 7. Now Assumption 4.4 (iii) and (iv) hold by
Definition 5.1 (G) and (L) respectively, while the bijection from Assumption 4.4 (ii) exists by Theorem
3.19. Finally notice that Assumption 4.4 (v) and (vi) hold by our hypothesis. Since Hypothesis 2.4 holds
under Hypothesis 3.1 for £ as above, we can apply Theorem 4.8 to conclude that Parametrisation C
holds for (L, 1) and G. o

The extendibility conditions in Theorem 5.4 (i)-(ii) and Theorem 5.5 (i)-(ii) should be compared
with condition B(d) of [CS19, Definition 2.2] with d = e.

The reader should compare Theorem 3.20 with Theorem 5.4 and Theorem 5.5. We want to stress,
when proving Parametrisation C and Parametrisation 2.7, that the hardest task is to show that the
associated character triples are G -central isomorphic and G* -block isomorphic respectively.

5.2. Results for groups of type A and C

Finally, by applying the main results of [BS20] and [Bro22], we obtain consequences of Theorem 3.20,
Theorem 5.4 and Theorem 5.5 for groups of type A and C. We start by considering Theorem 3.20 which
allows us to prove the following corollary.

Corollary 5.6. Let G, F : G — G, g, € and e be as in Notation 2.3 and suppose that G is simple, simply
connected of type A or C and that € € T'(G, F) with € > 5. For every e-cuspidal pair (L, 1) of G, there
exists an Autp(GF )(L,1)-equivariant bijection

QS 5(GF, (L, /l)) = Irr(N(;(L)F | /1)

that preserves the €-defect of characters.

Proof. We apply Theorem 3.20 with K = G. Suppose first that G is of type A. Then [BS20, Corollary
4.7 (b)] shows that there exists a ((G' A)r, < K)-equivariant extension map with respect to LF < Ng (L)F
and therefore the result follows. On the other hand, if G is of type C, then we obtain a (((~}F A = K)-
equivariant extension map for Cusp, (L, F) with respect to L < Na(L)F by applying [BS20, Theorem
4.1 (b)] whose conditions are satisfied thanks to [Bro22, Corollary 4.13, Proposition 4.18, Lemma 5.11,
Proposition 5.18] (see the proof of [Bro22, Theorem 1.1] for a detailed explanation). This concludes the
proof. O
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Our next aim is to show that the bijections obtained in Corollary 5.6 can be chosen in such a way
that the corresponding character triples are G' -central isomorphic and even G -block isomorphic as
predicted by Parametrisation 2.7 and Parametrisation C respectively. In order to apply Theorem 5.4 and
Theorem 5.5, we need to prove the requirements of Definition 5.1. In the next lemma we consider the
local condition from Definition 5.1 (L).

Lemma 5.7. If G is simple, simply connected of type A or C and € € T'(G, F) with € > 5, then Definition
5.1 (L) holds with respect to every e-split Levi subgroup L.

Proof. First, observe that [BS20, Theorem 1.1] and [Bro22, Theorem 1.1] rely on the proof of [CS17b,
Theorem 4.3], and therefore on the arguments introduced in [CS17a, Section 5], via an application
of [BS20, Theorem 4.1]. In particular, we focus on the argument used in [CS17a, Proposition 5.13].
Consider ¢ € Irr(Ng(L)F | 2) and notice that A has an extension e Irr(NG(L)f ) by [BS20, Theorem
1.2 (a)] (if G is of type A) and [Bro22, Theorem 1.2] (if G is of type C). Using Gallagher’s theorem
and the Clifford correspondence, we can write ¢ = (Zn)NG(L)F for some n € Ilrr(N(;(L)/}lF JLF). By the
argument of [CS17a, Proposition 5.13], there exists 779 € Irr(Ng (L)% /L) such that g := (Ano)Ne @
satisfies Definition 5.1 (L.i)~(L.ii) and ¢ = ¢/ for some x € NG(L)F . By the definition of ¢, we deduce
that g lies above A and therefore ¥ lies above A and A*. Then Clifford’s theorem implies that 4 = 2*Y
for some y € Ng(L)F and we conclude that y = wgy with xy € Ng (L)f. O

Using Lemma 5.7 we can prove Parametrisation 2.7 under suitable hypotheses. We start by consid-
ering groups of type A.

Corollary 5.8. Consider G, F : G — G, g, { and e as in Notation 2.3 and suppose that G is simple,
simply connectepd of type A and that € € T'(G, F) with £ > 5. Let (L, 1) be an e-cuspidal pair of G and
set B :=bl(1)C" . If one of the following is satisfied:

(i) Out(GF)gz is abelian, where B is the GF -orbit of B; or
(ii) (L, Q) is e-Brauer-Lusztig-cuspidal and either B is unipotent or B has maximal defect,

then Parametrisation 2.7 holds for (L, 1).

Proof. We prove the statement via an application of Theorem 5.4. First, we notice that Hypothesis 3.1
and Hypothesis 2.4 are satisfied under our assumptions thanks to Remark 2.6. Noticing that G /GF =~
N(;(L)F /Ng(L)F is cyclic, [Isa76, Corollary 11.22] implies that maximal extendibility holds with
respect to G < G and to Ng(L)F <« N(;(L)F . Moreover, as in the proof of Corollary 5.6, we obtain a
((GF A) = K)-equivariant extension map with respect to L¥ < Ng(L)* by applying [BS20, Corollary
4.7 (b)]. It remains to check the requirements of Definition 5.1. We obtain Definition 5.1 (L) by applying
Lemma 5.7. To prove Definition 5.1 (G), we observe that condition (G’) in Remark 5.2 is satisfied by
[CS17a, Theorem 4.1]. Then, in order to apply Remark 5.2 we only need to show that if B is unipotent
or has maximal defect, then it is G -invariant. This follows by Remark 4.5. m]

Next, we consider Parametrisation 2.7 for groups of type C.

Corollary 5.9. Consider G, F : G — G, g, € and e as in Notation 2.3 and suppose that G is simple,
simply connected of type C and that £ € T'(G, F) with £ > 5. Then Parametrisation 2.7 holds for every
e-cuspidal pair (L, 2) of G.

Proof. We argue as in the proof of Corollary 5.8 and prove the result via an application of Theorem 5.4.
By Remark 2.6, we notice that Hypothesis 3.1 and Hypothesis 2.4 are satisfied under our assumptions.
Since G* /G" = Ng(L)" /Ng(L)" is cyclic, maximal extendibility holds with respect to G < G* and
to Ng(L)F" <« N(}(L)F by [Isa76, Corollary 11.22]. Moreover, as shown in the proof of Corollary 5.6,
we obtain a (((~}F A) = K)-equivariant extension map for Cusp, (E, F) with respect to LF < Né(L)F
by applying [BS20, Theorem 4.1] together with [Bro22, Corollary 4.13, Proposition 4.18, Lemma 5.11,
Proposition 5.18]. Finally, noticing that Out(GF) is abelian, we obtain Definition 5.1 (G) by applying
Remark 5.2 and noticing that condition (G’) in Remark 5.2 is satisfied by [CS17b, Theorem 3.1]. O
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Finally, we prove Parametrisation C for certain e-Brauer—Lusztig-cuspidal pairs of groups of type A
and C. First, we deal with groups of type A. Notice that the hypothesis of the following result is the
same as the one of Corollary 5.8 with the additional assumption that (L, 1) is e-Brauer—Lusztig cuspidal
even when considering the case where Out(G’)3 is abelian.

Corollary 5.10. Consider G, F : G — G, g, { and e as in Notation 2.3 and suppose that G is simple,
simply connected of type A ang that € € T'(G, F) with{ > 5. Let (L, A) be an e-Brauer—Lusztig-cuspidal
pair of G and set B := bl(1)G" . If one of the following is satisfied:

(i) Out(GF)z is abelian, where B is the GF -orbit of B;
(ii) B is unipotent; or
(iii) B has maximal defect,

then Parametrisation C holds for (L, 1).

Proof. We show that Parametrisation C holds for the e-cuspidal pair (L, 1) of G by applying Theorem
5.5. By the proof of Corollary 5.8 it only remains to verify Theorem 5.5 (iv). Therefore, it is enough to
show that if B is unipotent or has maximal defect then Theorem 5.5 (iv.b) is satisfied. This fact follows
by using [DM91, Proposition 13.20] and the results of [CS15, Section 5] as explained in Remark 4.5.
Now the result follows by recalling that (L, 1) is e-Brauer-Lusztig-cuspidal by assumption. O

To conclude, we consider groups of type C and prove Parametrisation C for all e-Brauer—Lusztig-
cuspidal pairs under suitable hypotheses on €.

Corollary 5.11. Consider G, F : G — G, g, € and e as in Notation 2.3 and suppose that G is simple,
simply connected of type C and that { € T'(G, F) with { > 5. Then Parametrisation C holds for every
e-Brauer-Lusztig-cuspidal pair (L, 1) of G.

Proof. As in the proof of Corollary 5.10 we apply Theorem 5.5. Using the proof of Corollary 5.9 we
therefore only need to check Theorem 5.5 (iv). Since Out(G*') is abelian, Theorem 5.5 (iv.a) holds and
then the result follows because (L, 1) is e-Brauer—Lusztig-cuspidal by hypothesis. O
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