
Can. J. Math. Vol. 47 (2), 1994 pp. 421-435. 

FACTORIZATION OF POSITIVE INVERTIBLE 
OPERATORS IN AF ALGEBRAS 

HOUBEN HUANG AND TIMOTHY D. HUDSON 

ABSTRACT. We examine the problem of factoring a positive invertible operator 
in an AF C*-algebra as T*T for some invertible operator T with both T and T~l in 
a triangular AF subalgebra. A factorization theorem for a certain class of positive 
invertible operators in AF algebras is proven. However, we explicitly construct a 
positive invertible operator in the CAR algebra which cannot be factored with respect 
to the 2°° refinement algebra. Our main result generalizes this example, showing that 
in any AF algebra, there exist positive invertible operators which fail to factor with 
respect to a given triangular AF subalgebra. We also show that in the context of AF 
algebras, the notions of having a factorization and having a weak factorization are the 
same. 

1. Introduction. Since their introduction by James Glimm over thirty years ago [7], 
UHF algebras have formed a very important class of C*-algebras and the subject of 
extensive literature. This is due, in part, to their accessible yet highly nontrivial nature. 
Equally as interesting and nontrivial are the AF algebras, a generalization of UHF 
algebras first introduced by Ola Bratteli in the early 1970s [3]. More recently, certain 
triangular subalgebras of UHF algebras have become the key motivating examples in the 
study of limit subalgebras of C*-algebras and von Neumann algebras; see, for example, 
the work of Baker [2], Hopenwasser and Power [10], Muhly, Saito, and Solel [15, 16], 
Muhly and Solel [14], Peters, Poon, and Wagner [18, 19], Peters and Wagner [20], 
Power [27, 28], and Ventura [30], to name a few; the recent monograph by Power [23] 
gives an excellent overview of this and other recent progress in the area. Most of this 
work has dealt with classifying the various limit subalgebras of a given C*-algebra up to 
isometric isomorphism, although reflexivity [21], representation theory [17], and ideal 
structure [6,12, 26] have also been examined. 

The purpose of this note is to investigate the problem of factoring a positive invertible 
operator in a UHF or AF algebra as T* T for some invertible operator T, with T and T~l in 
a triangular limit subalgebra. We first produce a positive invertible operator in the CAR 
algebra which does not factor with respect to a very nice triangular limit algebra; this 
triangular limit algebra is even a nest subalgebra of the CAR algebra. Our construction is 
based on the failure of the boundedness of triangular truncation in infinite dimensions. In 
a more positive direction, using rather delicate estimates on the Cholesky factorizations 
of positive definite matrices, we are able to prove a nontrivial class of positive invertible 
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operators will always factor with respect to a large class of triangular limit subalgebras. 
Finally, we show our construction in the CAR algebra generalizes, and thus we prove 
there always exist positive invertible operators which do not factor for a given triangular 
subalgebra. 

This problem of factorization in AF algebras was motivated by the study of fac
torization questions among another class of triangular subalgebras of C*-algebras, the 
nest algebras. The question in this setting is to determine the conditions under which a 
positive invertible operator factors as T*T for an invertible element T, with both T and 
77"1 in the nest algebra of some complete nest. This has proven to be a deep problem 
related to the similarity theory of nests [13]. Such factorizations were first considered by 
Gohberg and Krein in the 1960s [8, 9], and subsequently studied by many authors, viz., 
Arveson [1], Davidson and Huang [5], Larson [13], Pitts [22], Power [24, 25], etc. (see 
[4] for an overview). 

A C* -algebra ft is said to be approximately finite (AF) if there is an ascending sequence 
of finite-dimensional C*-subalgebras of ft whose union is dense in ft. If ft is unital and 
each of these finite-dimensional subalgebras both contains the unit of ft and is a factor, 
i.e., is isomorphic to a full matrix algebra, then ft is called uniformly hyperfinite (UHF). 
A norm-closed subalgebra T of an AF algebra ft is called triangular AF if the diagonal 
*D - T H T* is a canonical maximal abelian self-adjoint subalgebra (masa) in ft (see 
[23] for details). A strongly maximal triangular subalgebra T is a triangular subalgebra 
for which T + T* is dense in ft. Such triangular subalgebras can always be represented 
as direct limits of their corresponding chain of finite-dimensional subalgebras via some 
sequence of embeddings, and so are often referred to as triangular limit subalgebras. We 
will use the notation Mn for the n x n complex matrices, and %,£>„, and /„ for the n x n 
complex upper triangular, diagonal, and identity matrices, respectively. 

The general setting in which we will be most interested will be the factorization of 
positive invertible operators of the UHF algebra of type {pn}^\, where {pn}^\ is strictly 
increasing andpn\pn+\ for all n. The limit subalgebras T we will consider are those of 
the form 

cr ^<T Jfl^rr _^_> > r 

where ipn:
 (IVn —> ¥Pn+l is a regular embedding. This basically means that the mapping 

can be extended to a *-homomorphism between the corresponding full matrix algebras 
and that ipn takes matrix units in cTPn to a sum ofpn+\/pn matrix units in %n+x\ a more 
technical definition which we will not need is given in [23]. For all m > n, the maps 
(fmy. (IPn —> HLPm are the compositions 

<PmAa) = Vm-\ O • • • O <p„(à), 

fora G %n. 
We use the notation e^ for a general matrix unit in ^H , and e\n) will denote the 

diagonal matrix unit e^f. If A belongs to some T 7̂, we shall follow the common abuse 
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FACTORIZATION IN AF ALGEBRAS 423 

of notation by allowing A to denote both the finite-dimensional operator in (IPn and its 
image in the limit algebra, f. 

Say that a positive invertible operator^ in an AF algebra factors with respect to a 
limit subalgebra T if A - 7*7" for an invertible element T in T with T~l also in T. 
We will say that a positive invertible operator^ has the universal factorization property 
provided A factors with respect to every strongly maximal triangular limit subalgebra. 
The Cholesky factorization of a positive definite matrix A in 9v(n is A = T* T, where T is 
an invertible upper triangular matrix with positive diagonal elements. 

We will need to make use of the representation theory of triangular AF algebras in the 
sequel, so we require the following definitions. Let Oi be a Hilbert space and #(X) the 
bounded linear operators on tK. A nest $£ is a chain of closed subspaces of 9{ containing 
{0} and H which is complete under the operations of intersection and closed linear 
span. The corresponding nest algebra, T(fA0, is t n e subalgebra of $(?{) consisting of 
all operators on Oi leaving each element of fA£ invariant. The diagonal £>($§ of f (fAO is 

T(fA0n<rCA0*. 
For convenience, we record two theorems we will need for our analysis. The first is 

a representation theorem for triangular AF algebras from [17]. Recall that a C*-algebra 
is primitive if it has a faithful irreducible representation; in particular, the following 
theorem applies to all UHF algebras. 

THEOREM 1.1 (ORR-PETERS). Let !Abe a primitive AF algebra and T a strongly 
maximal triangular limit subalgebra ofJA with canonical masa <D. Then there exists a 
Hilbert space Oi, a faithful irreducible representation IT of Si, and a nest 5\£ in 9i such 
that 7r(T)wk = T(fAQ and 7r(2))wk = 2>(X). 

For our positive results in Section 3, we need the following estimates on the Cholesky 
factors of positive invertible matrices from [29]. 

THEOREM 1.2 (SUN). Let A and B be two positive invertible elements ofMn with 
Cholesky factorizations 71* T and S*S, respectively. If 

I M - ' I I I M - £ | | < i , 

then 

-^r-iM-'iiiM-fiii)' 
where || • ||2 denotes the Hilbert-Schmidt norm. 

2. An example. In this section we give an example of a positive invertible operator 
in the 2°° UHF algebra ?L which does not factor in the refinement limit algebra T. The 
refinement embeddings pn\ f^« —•* (M2n+\ are defined for [ay] G Mi» by 

Pn([aij]) = [dijh], 

where h is the 2 x 2 identity matrix. Thus, the algebras !A and T can be represented as 
the direct limits lim(^2" ; Pn) and lim^* ; pn\ respectively. 
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424 H. HUANG AND T. D. HUDSON 

We need several preliminary lemmas. The first one gives the properties of a class of 
matrices from [4, Example 12.19]. These properties form the basis of our analysis. 

LEMMA 2.1. For any positive integer n, let Tn be the strictly upper triangular n x n 
Toeplitz matrix (///), where ty = -^-forj > i. Let Vn = elSn, where Sn is defined by 

c _ 2T„ 

Tn + 1ï\ 

Then Vn is an invertible upper triangular matrix with diagonal A(Vn) = In, and moreover, 

1 
lim \\Vn — In\\ = sin , 

n—>oo Z 

even though 
lim | | ^ F „ - / „ | | = 0 . 

n—>oo 

We will make use of the next two lemmas both in this section and in our more general 
results of Section 4. 

LEMMA 2.2. Let 9\[ be a nest and {Dn}^ be a sequence of diagonal operators in 

W if 

% = {{0} =No<Nx<---<Nn = 9{} 

is a finite partition of$C then, regarding Vn as an operator in T(fA£), 

lim \\Vn-Dn\\> ^ s i n - . 
n—>oo Z Z 

PROOF. Let n be any integer, and set APk = P(Nk) - P(Nk-\) for k = 1,...,«. If 

2 s m i ' ||/ — A*|| > \ sin j , there exists at least one k, with 1 < k <n, such that 
\\APk(I- Dn)APk\\ > \ sin \. Therefore, 

\Vn-Dn\\> \*Pk{yn-Dn}bPk\ 

= \\APk(I - Dn)APk\\ 

. 1 . 1 > - s i n - . 
~ 2 2 

Otherwise, if ||/ — Dn\\ < \ sin ^, then 

\\Vn-Dn\\ > \\V„-I\\ - \\I-Dn\\ > \\Vn-I\\ -\sm1-. 

Thus, by Lemma 2.1, we are done. • 

LEMMA 2,3. Let {An}^{ be a sequence of operators in <B(9{) such that A n converges 
strongly to A and A~x converges strongly to B. If the norms ofAn and A~x are uniformly 
bounded, then B = A ~x. 
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PROOF. Let 77 > 0 be the uniform bound on the norms of An and A~x. For every 

\\(AB -I)x\\ = \im \\(AnB - I)x\\ 

= lim 11^(5-4T')x|| 
n—»oo 

< H m 7 ? | | ( B - / ! „ - y i l = 0 . 

It follows that AB = I. Similarly, BA = I, and so A and B are invertible and B = A~]. • 

To begin our construction, first note that by Lemma 2.1, there exists an integer M 

such that if n > M, then || V\n V2n -l2n\\<\. "LciXM = V2M 0 I2M £ fT2M+\, and, if n > M, 

d e f i n e ^ G I^-M+I by 

Xn = p2n-AfMV2M) © P2/i-A/-l^+l(*2*+1) © ' * ' © P/i+l,/i-l(^2»-') © ^2" © ^ • 

LEMMA 2.4. Le/ {JG?}^M 6e //ze sequence constructed above. Then 

(i) there exists a positive invertible element A of A such thatX*nXn converges in norm 

to A, but 

(ii) no subsequence of {Xn}^M is Cauchy. 

PROOF. Let e > 0 be given. Using Lemma 2.1, choose N > M such that if n > N9 

then || V\n V2n — I2n || < e. Thus, for n > m > N, we have 

n n 

\X*nXn — P2/i-A/+l,2m-A/+l(^Ci^Ll| = J ] ©P2«-/',/(^2/^2/ ~^2') 

= max | |KT 2 / - / 2 / | | < e . 

Hence, by completeness there is some element A e fA such that X*nXn converges to 

A in the norm topology. Since A is a limit of positive operators, then clearly A > 0. 

Observe that 

\\rnxn - / 2 M + 1 1 | = | | é ®P2n-iÀV*2>
v* - h>)\\ 

= max \\KV2I -I2i\\ 
M<i<n " Z " 

1 

<r 
by the choice of M. It follows that 

\\A - I\\ = lim \\rnXn - /22„-„+l|| < \ < 1; 
/i—->oo 2 

hence, yl is invertible, proving (i). 
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To see (ii), apply Lemma 2.1 to obtain NQ > M such that || Vk — Ik || > \ sin \ provided 
k > No. Then for any n > m> No, 

\\Xn
 — P2n-M+\,2m-M+\(Xm E ®P2n-iAV* - h) 

i=m+\ 

V2,-I2:\\ = max 
m+\<i<n 

> | | ^ - / 2 , | | > ^ s i n ^ > 0 , 

and so the proof is complete. 

We next show that although Xn does not have a norm limit in T, it does have a limit in 
a different topology. To do this, we make use of the usual representation of A onto #(#"), 
where H - £2([0, l],/i) and \i is Lebesgue measure. Let fA£ denote the Volterra nest 
and T(fA£) the corresponding Volterra nest algebra. If IT: A —> #(.?/") is the representation 
acting on the matrix units of A by 

(^;V)(o=x^,^/('+y) 
for/ in <H, then it is well known that IT extends to a faithful irreducible representation of A 
for which 7r(T)w = T(fAO- Leti^ be the projection in #(X) given by multiplication by the 
characteristic function of [1 — ^ r , 1 — ^r] and Qn the projection given by multiplication 
by the characteristic function of [1 — ^ , 1]. Then Pn can be written as 

(i) 

and Qn as 

(2) 

Furthermore, observe that 

(3) 

for a\\k> n> M. 

2»-M+\ 

. y - J2n-M+\) 
/ J ^22n~M+[—2n~M+2+i 

*i *l£2([0,l-^]) JLl \ - ^ 7 2 ^([0,1-^]) 

LEMMA 2.5. 77ze sequence {Xn}n converges strongly to an invertible element X in 
T(fAt) such thatX~x is also in T(fA0 tffld.4 = J fX 

PROOF. Observe that by construction, each X„ is invertible, and so by the previous 
lemma there is a B > 0 such that ||X„||, \\Xn~

x\\ < B for all n >M. Lete > 0 be given, and 
le t / G ̂ . Choose 5 > 0 such that for any measurable subset E of [0, 1] with /i(£) < <5, 
then J^ |/|2 d[i < {2BYxe. Let TV > M be such that 2~N < 6. Then for a\lk>n>N, by 
(3) above, 

\\(Xk-X„)f\\ = \\(Xk-Xn)Qnf\\ < 25 f ± \f\2dn < £• 
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Hence, {Xn(f)}^M is Cauchy for a l l / G 9i, i.e., the sequence {Xn}™M is strong operator 
topology Cauchy; let X be the strong limit of this sequence. 

An argument analogous to the one above proves that {X~] } ^ M converges strongly to 
some operator Y. By Lemma 2.3, we have 

xrx = Y G Wf°T Ç Mrfk = TCAO. 

It is immediate from Lemma 2.4 and the above that A = X*X. • 

The lemma which follows is the main technical tool needed to prove our construction. 

LEMMA 2.6. Let X be the operator from the previous lemma, and let Ube a unitary 
in (D(9\Q. Then UX does not belong to the 2°° refinement limit algebra. 

PROOF. Suppose that UX is in the 2°° refinement limit algebra. Then there is a 
sequence {Tn}^{ such that T„ converges to UXin norm. For notational simplicity, we 
assume Tn G Ti". Observe that by (3), for any n> M 

X\Li{m_jïï])= Xn\ûm_^]V 

and so PnX-PnXn. Furthermore, by (1) and (2), if m > n + 1, then Qn >Pm. It follows 
that if \ne$> = é§Tn, then QnTn = \nQn. 

Now fix n > M. By Lemma 2.2, we can choose NQ > M such that if m > No, then 
|| ^2m — \nPmU*\\ > \ sin j . Then for any integer m such that m > n + 1 and m>No, 

\\UX-Tn\\ > \\Qn{UX-Tn)\\ 

= \\UQnX-\nQn\\ 

= \\Q„X-\„Q„U*\\ 

> \\Pm(QnX-xnQnir)\\ 

= \\pmx-xnpmir\\ 
= \\pmxm-\npmir\\ 
= \\V2™-KPrnU*\\ 

> - sin - > 0. 
4 2 

This contradiction proves the lemma. • 

We now give the main result of this section. 

THEOREM 2.7. The operator A constructed in Lemma 2.4 above is a positive invertible 
element of the 2°° UHF algebra which does not factor as T*Tfor any invertible element 
T with T and T~] in the 2°° refinement limit algebra. 

PROOF. IL4 = r r fo r some T G T(!A0n('r(fA0)~1,then^X= TT. By Lemma 2.5, 
X is invertible, and so U = TX~X is a unitary with both U and U* belonging to f(fA0; ^ 
follows that U G 2>(3\0- Since 7 = UX, then Lemma 2.6 implies that T does not belong 
to the refinement limit algebra. • 

https://doi.org/10.4153/CJM-1995-023-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-023-0


428 H. HUANG AND T. D. HUDSON 

3. Factorizable operators. We saw in the last section that the Cholesky factoriza
tion is not continuous, namely, we exhibited a sequence of upper triangular matrices { Tn } 
with positive diagonals such that TnTn — In converges to zero while \\T„ — D„\\ > 5 for 
some fixed <5 > 0 and any diagonal operator^. This failure of continuity of the Cholesky 
factorization is the main difficulty of factorization problems in both nest algebras and 
AF algebras. In this section, we overcome this obstacle for a certain class of nontrivial 
positive invertible operators in any UHF algebra by applying concrete estimates on the 
Cholesky factors to prove a factorization exists for every maximal triangular limit sub-
algebra. This class can be loosely described as those operators which are approximated 
"fast" enough by elements in the finite-dimensional factors. 

First, we show there are two classes of positive invertible operators in any AF algebra 
which always factor. 

PROPOSITION 3.1. Let ft be an AF C -algebra. 

(i) For any triangular limit subalgebra T of ft, the positive invertible operators in 
the diagonal <D = T H T* factor with respect to T. 

(ii) For any finite spectrum positive invertible operator A in ft, there is a strongly 
maximal triangular AF subalgebra T such that A factors with respect to T. 

PROOF. For any positive operator ,4 in (D, since \[A G TPl T*, then (i) holds. For (ii), 
let A be any finite spectrum positive invertible operator in ft. By the spectral theorem, 
there are finite orthogonal projections P i , . . . ,P„ with 1 = P\ + - • • +Pn and P, G C*(A), 
and such that A = J2%\ A/P,-, where the spectrum of A consists of A i , . . . , Aw. Under this 
partition of the identity, A is constant. Let ft\ be the finite dimensional C*-subalgebra 
of ft generated by P i , . . . , P„, so A G ft\. By [3, Theorem 2.2], there is an increasing 
sequence of finite-dimensional C*-subalgebras {-^}^2 °f -̂  anc* regular embeddings 
-0W, such that ft\ Ç ft2 and ft = l i m ( ^ ; ^ ) - Let T be the triangular limit subalgebra 
T = l i m ^ ; ^ ) of ft with each Sn a maximal triangular subalgebra of ft„. Clearly A 
factors as T* T for some invertible T in S\, and so A factors as A = T* T with both T and 

r-Unr. • 

We can now prove the main result of this section, a factorization theorem for a 
nontrivial class of operators. 

THEOREM 3.2. Let ft be the UHF algebra of type {pn}^\ and T = l i m ^ ; ^ ) a 

triangular limit subalgebra of ft with respect to regular embeddings ipn. Let A be a 

positive invertible operator in ft for which there exists a sequence of positive invertible 

operators {An}n>k, with An G MPn, such that 

y/p~n\\A-An\\ —>0. 

Then A factors with respect to T. 
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PROOF. By hypothesis, An
 l converges in norm to A 1, so there is a constant M such 

that 

\\An\\t\\A?\\<M 

for all n. Furthermore, the hypotheses ensure that each An has a Cholesky factorization 
An-=TnTn, with Tn invertible in 0^n. Let E > 0 be given. Choose N such that if m > N, 
then 

y/p^\\A-Am\\ < — , 

and if n > m > N, then 

IM;'llMi.-¥'-^m)||<^ 

By Theorem 1.2, if n > m > N we have 

11^2- ^«,m(^)|| < || iT„- ^ ,m ( rm ) | | 2 

< \\M\HAnX\\\\An~ ^m^rn)h 

" y2(i-K^niMw-^,^m)ii) 
< M p „ - (/v^tfOlh 
< M p w - ^ | | 2 + M | M - ^ w | | 2 

< Mv^|M„ ~A\\ +M^\\A-Am\\ 

Hence, {Tn}n>k is Cauchy and so there is a T in T which is the norm limit of this 
sequence. The same argument holds for {77"1 }n>k, whose norm limit in T is necessarily 
T~l. It is elementary to check that A- T*T, and so we are done. • 

The following corollary is immediate. 

COROLLARY 3.3. Let ft be an AF C*-algebra with presentation l im(^; (pn), where 

ftn is a finite-dimensional C*-subalgebra of the form 

MmT ® Mmf ® • • • ® Mm^ 

with m^ < • • • < né£j, and each ipn is a regular embedding. Let A be an operator in ft 
for which there is a sequence of positive invertible operators A„, with An G ft„, such that 

>) lim Jm^\\An-A\\ =0. 

If? is a maximal triangular limit subalgebra of ft of the form lim(5«; <p„), where Sn is 

maximal triangular in ftn, then A factors with respect to T. 

We have shown that a certain class of positive invertible operators in AF C*-algebras 
always factors with respect to a nice family of triangular limit subalgebras. For specific 
examples of such operators, see [11]. 
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The problem of determining which positive invertible operators factor with respect to 

every maximal triangular limit subalgebra is more difficult. The factorization results in 

the nest algebra setting show that the operators with the universal factorization property 

are precisely those of the form scalar plus Macaev ideal. Since UHF algebras contain 

no compact operators, intuition suggests the only operators in our setting having the 

universal factorization property are the constants. 

4. Nonfactorable operators in UHF algebras. In Section 2 we saw that the CAR 

algebra contains a positive invertible operator which does not factor with respect to 

the refinement limit subalgebra. Our construction there appears to be very embedding-

specific, i.e., it appears to depend heavily on the refinement embeddings, and on the fact 

that we can represent the CAR algebra on £2(0,1) in such a manner that the refinement 

limit subalgebra is weakly dense in the Volterra nest algebra. In this section, we show 

that the operator given in Section 2 is actually a very simple special case of a more 

complicated general construction. 

THEOREM 4.1. Let A be the UHF algebra of type {pn}%L\ and let T = l i m ( ^ ; yn) be 

a triangular limit subalgebra with respect to regular embeddings ipn. Then there exists 

a positive invertible operator in A which does not factor as T*Tfor any invertible T in 

T with T~ * also in <T. 

PROOF. We first construct the positive invertible operator .4 as the limit of a sequence 

of finite-dimensional operators. To begin, note that by Lemma 2.1, there exists an integer 

M such that if « > M, then \\V*Vn - In\\ < \. 

Define a sequence {kn}^M as follows: let kM be the smallest integer such that/?^ > M, 

and for each n> M, let kn be the smallest integer larger than kn- \ such that 

(4) £***]. > / I + i ; 

Pk„ 

such an integer kn exists since {pn}^\ is strictly increasing, and so kn is defined for all 

n. Set 
_ Pk„ 

qn  
Pkn-X 

for all n >M+ 1. 

Let XM = VM 0 IPkM_M e %kM, and define PM e <DPkM by PM = e\kM) + • • • + e%M\ 

Suppose for some positive integer n, that XM, • . . ,Xn and PM,... ,Pn have been 

defined so that for all M < m < n, 

(i) Xm is invertible in %km, e^Xm = ep\^ and Z ^ = efc\ 

(ii) Pm is a projection in <DPkm satisfying Pmep
k
k
m) = 0 and 

(iii) ^fkrkm{pm)Xj = <Pkj,km{PmXm) for m <j < n, 

(iv) \\Xn - VknJcMW > Il vn ~ //ill, and 
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(v) there exists a unitary Un G MPk such that 

Ki=M J 

where 
M 

k=\ 

(«,/) is an integer depending on / and the embedding <£*„,*„_,, and /„ = 

We now proceed to construct X„+\ satisfying the above properties. Since the embed-
dings (frj are regular, then <Pkn+l,k„ maps the matrix unit ep

k
k
n) to a sum of qn+\ matrix units 

in ^ say, 

where the positive integers ir are listed in ascending order. Set 

w+l 

so P^+i Ç <DPk . Since regular embeddings preserve block structure ([12, Lemma 1.1]), 
then we have 

for all r<s. Define 7w+i G ̂ + f by 7„+i = [«//]i</</<^+i, where 

^ = f 4"+1)F„+14"+1\ if/ = /r,y = is for some 1 < r < s < n + 1 
lJ \ 0, otherwise ' 

and let A^i = (pkn+lJCn(Xn) + 7„+i. 
By construction, it is easy to see that Xn+\ is invertible, and by (4), we have both 

Xn+\eD, - Cm and eD. Xn+\ = eD. . Furthermore, also by construction we see that 
yKn+\ Fkn+l yKn+l ' Kn+\ 

e{t)pn+\ = Pn+\, and again by (4), Pn+\e%'+l) = 0. Note that by (ii), for M < m < n, 

^Pkn,km{Pm)epk^ ~ Q' Then since Y„+\ = Pn+\ Yn+\, by induction hypotheses (ii) and (iii) we 
have 

¥kn+ukm(Pm)Xn+\ = (pkn,km(Pm)Xn+Pkn+i,kn(Pm)Yn+\ 

= fk„ ,km (PmXm ) + (fkn+, Mm (Pm )Pn+1 Yn+1 

= <PkH*SpM + ^kn+ukm{Pm)e{^Pn+\ Yn+i 

= Vk^kSPmXm) + Vkn+l.kn {
{PknxSPni)ep

k
k"])Pn+\ Yn+\ 

~ VknJ<m{PmXm) 
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for all M < m < n + 1. This proves that Xn+\ and Pn+\ satisfy conditions (i), (ii), 
and (iii). To see (iv), first note by the previous paragraph, for any M < m < n + 1, 

/Vi =p„+i^+1,^(4t))-Thus ' 

IMC+l - Vkn+i,km(Xm > \\Pn+l{Xn+{ - ipMm(Xm))\\ 

= \\Pn+\Xn+\ — Pn+\ Vkn+Ukm(epkm Xm 

- II^H+ICA^+I — 4+011 

= | | ^ + 1 - 4 + i | | . 

Finally, to see (v), observe that by construction, interchanging the appropriate rows 
and columns of Xn+\ yields an operator of the form 

vM © • • • e vM © vM+{ vM+\ © • • • e vn © • • • e vn © vn+] © • • • e vn+l © /,, 

where the number of copies of each Vi9 i = M1... n +1 depends on the embedding <Pkn+ukn 

and /, and y is a positive integer. Hence (v) follows. Thus, by induction Xk satisfying 
conditions (i) through (v) above is defined for all positive integers k> M. 

It is immediate from Lemma 2.1 and condition (iv) above that the sequence {Xn}^M 

is not norm Cauchy in T. From (v), we see that for m, n > M, 

\\rnxn-ifknXxrmxm)\\ = I ê © ( £ © ( ^ - 4 ) ) 
k=m+\ V=l 

= max WVW-Iil 
m+\<i<n 

But again by Lemma 2.1, the last term above can be made arbitrarily small for sufficiently 
large n and m. Hence, {X^Xn}^ is a norm Cauchy sequence in A. Let A E JZ be the 
norm limit of the operators X^Xn, so clearly, A > 0. Next, note that 

\\KXn-iPj = | è ® ( i : W * W ' ) ) 

= max 11^.-411 < 
M<i<n r 

by the choice of M. It follows that 

IK limpyfB-/,J|<-<l; 
hence, A is invertible. 

By Theorem 1.1, we can represent A as the bounded linear operators on some Hilbert 
space !H in such a manner that T is weakly dense in a nest algebra T(fA£) in $(#) . To 
show thaty4 does not factor in T, we first show ,4 has a strong factorization, i.e., A = X*X 
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for some operator Xsuch that Xand X~x belong to T(fA£) and X„ converges to X in the 
strong operator topology. By condition (i), the invertibility of A, and the fact that A is the 
norm limit of the X^X„9 there is a constant B > 0 such that ||Z„||, \\X~l \\ < B for all n. 
For each n>M, define Qn = e^. Then by the construction of X„, for each k>n>M, 

(5) Xn(I-Qn)=Xk(I-Qn) and X~\l - Qn)= X^\l - Qn). 

Let r represent the normalized trace functional on ft. Clearly r{Qn) converges to zero as 
n goes to infinity. However, it is a known fact that r(Qn) —> 0 as n —•» oo if and only if 
g„ —» 0 in the strong operator topology (see, for instance, [11, Proposition 1.7.2]. Thus, 
if/ G M and n>m>M, then by (5) 

||(X„ -Xm) / l | = \\(Xn -Xm)QJ]\ < 2B\\Qmf\l 

which becomes arbitrarily small as m becomes large. Hence, {XW(/)}^M is Cauchy in 
the strong operator topology, and so has a strong limit X. A similar argument proves that 
{X~x } ^ M has a strong operator limit, Y. By Lemma 2.3,X~l = Y, and so bothXandX~l 

are in T(iA )̂. Using the facts thatX^Xn —• ^ in norm andX„ —-> Xin the strong operator 
topology, it is an elementary calculation to verify that A = X*X. 

Now suppose that A factors as T* T for some invertible T in T. Then there exists a 
sequence { Tn } ^ { of finite-dimensional operators converging in norm to T. For notational 
simplicity, we assume that Tn G %kn. Since A- T*T = X*X, then U = TX~l is a unitary 
with both U and £/* belonging to T(^) . Hence, [/ G îD(fA0- Let ef^Tn = A n ^ } for all 
n>M. 

Note that by (iii) and the strong convergence of Xn to X, P^X = PkXk for all k > M. 
Fix n > M. By Lemma 2.2, we can choose NQ > M such that if m > No, then 
|| Vm — \nPmU*\\ > \ sin j . Then for any such m, by (ii) and (iii), we have 

\\UX-T„\\ >\\e^(UX-Tn)\\ 

= \\e^X-\„e^U*\\ 

> \\Pm(e^X)-\nPme^U*\\ 

= \\PmX-XnPmU*\\ 

= \\pmxm-\„pmir\\ 
= \\vm-\npmir\\ 

l . l 

> 4 S m 2 ' 

a contradiction. Hence, A does not factor with respect to T, as desired. • 

One of Larson's main results in [13] (Theorem 4.7) was that in every complete 
uncountable nest, there exist positive invertible operators which do not factor with 
respect to the nest algebra. However, he showed that every positive invertible operator 
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admits a weak factorization, i.e., factors as 7* T for T in the nest algebra, without requiring 
T~x to belong to the nest algebra. 

Surprisingly, in AF C*-algebras the two notions of having a factorization and hav
ing a weak factorization with respect to a strongly maximal triangular AF algebra are 
equivalent. The key observation is that strongly maximal triangular AF subalgebras are 
inverse closed, i.e., if an operator belongs to such a subalgebra and is invertible, then its 
inverse is also in the subalgebra. 

THEOREM 4.2. Let T be a strongly maximal triangular AF subalgebra of an AF C*-
algebra A. Then a positive invertible operator A in !A factors as T*T with both T and 
T~x in T if and only if A factors as T*Twith only T in T. 

PROOF. Let T = lim(5«; </?«), where each Sn is a finite-dimensional upper triangular 
—> 

matrix algebra. Suppose A has a weak factorization as 7* T for some T in T. Then we can 
choose a sequence {Tn}n, with Tn in Sn, so that Tn converges in norm to T. Moreover, 
since the set of invertibles in <B(?{) is open, we can take each Tn to be invertible. 

Since the mapping^ i—> A~x is norm-continuous, then T~l converges in norm to T~l. 
Furthermore, since the inverse of an upper triangular matrix is upper triangular, then T~] 

belongs to Sn for each n. It follows that T~~{ is in T, and so A factors as T*T with T and 
r - M n T . • 

COROLLARY 4.3. The non-factorizable positive invertible operators constructed in 
Theorems 2.7 and 4.1 do not have weak factorizations as VT for any T in T. 
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