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ABSTRACT

We develop a novel approach for pricing cyber insurance contracts. The con-
sidered cyber threats, such as viruses and worms, diffuse in a structured data
network. The spread of the cyber infection is modeled by an interactingMarkov
chain. Conditional on the underlying infection, the occurrence and size of
claims are described by a marked point process. We introduce and analyze a
new polynomial approximation of claims together with a mean-field approach
that allows to compute aggregate expected losses and prices of cyber insurance.
Numerical case studies demonstrate the impact of the network topology and
indicate that higher order approximations are indispensable for the analysis of
non-linear claims.
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1. INTRODUCTION

Cyber risk has evolved as a major threat to businesses. For instance, Lloyd’s of
London estimates that the total extent of cyber attacks to businesses worldwide
comprises losses of USD 400 billion a year (Gandel, 2015). In addition, the
size of exposure to cyber risks might significantly grow in our interconnected
world. Although companies seem aware of these threats, recent studies find that
relatively few firms have yet built a formal cyber risk management system (Swiss
Re/IBM, 2016). Their management of cyber risks consists mostly of ad-hoc self-
protection mechanisms such as firewalls and anti-virus software, but very few
perform regular cyber risk assessments and possess risk management programs
that integrate cyber risk on an institutional level.

Cyber damage may occur accidentally, but might also be purposely caused.
As described in Swiss Re/IBM (2016), costs “are no longer confined to coping
with lost, stolen or corrupted data, but increasingly include potential damage
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to a firm’s property and reputation, and also the cost associated with business
interruption or severe disruption to critical infrastructure”. Even if future risk
management strategies were able to actively improve protection against the oc-
currence or impact of cyber events, some residual cyber risks would remain that
require insurance solutions.

From an actuarial point of view, cyber risk is challenging in three ways. First,
data is not available in the required amount or in the desired granularity to apply
standard statistical methods. Second, technology and cyber threats are evolv-
ing fast; the cyber environment is highly non-stationary. Third, infectious cyber
threats pose a large accumulation risk to an insurance company. The typical
insurance independence assumption does not hold and, moreover, there is no
geographical distinction between dependent groups as there is, for example, for
natural catastrophes. This requires new mathematical models that capture the
dependence structure of cyber networks in an appropriate way (see also Swiss
Re Institute, 2017).

This is the aim of the present paper. Causes and channels for cyber losses are
diverse. While an insider attack might cause substantial damage to a particular
firm, it might not affect other firms. However, if the originally attacked firm is
part of a larger network in which the operations of components depend on each
other, consecutive and coupled losses might occur. Another related example are
worms, viruses and Trojans that spread across data networks and facilitate at-
tacks throughout the network. Our paper focuses on cyber threats in networks,
i.e., infectious cyber threats.

From an insurance perspective, our main contributions are the following:

i. To the best of our knowledge, we develop the first mathematical model of
insured losses generated by infectious cyber threats. Dependence is modeled
as an undirected network where each node could represent a firm, a system
of computers or a single device; each edge constitutes a possible transmis-
sion channel in a network.

ii. We provide a new methodology to calculate expected aggregate losses of
a (re-)insurance company. Our method is applicable to a large variety of
contract designs including both linear and non-linear functions of the gen-
erated losses. The application is illustrated in numerical examples. Thus, our
approach can be used for pricing decisions.

iii. In numerical case studies, we analyze the role of the network topology. We
find that the insured network structure has a significant impact on the gen-
erated losses. This illustrates that the topology of the network is a key ingre-
dient for the pricing of cyber insurance contracts and for cyber risk man-
agement in general.

Our model consists of two parts: a stochastic process that captures cyber
infections, and amechanism that randomly generates the actual claims at the in-
fected nodes. To model the claims, we introduce a marked point process. This is
in spirit of the collective risk model of insurance (see, e.g., Burnecki et al., 2011).
In contrast to the standard setting, the claims in ourmodel depend on the spread
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of the cyber threat. The cyber infections are modeled by a susceptible-infected-
susceptible (SIS) network process (see, e.g., Pastor-Satorras et al., 2015, Section
V). For a network of size N, this approach results in a continuous-timeMarkov
chain with a very large state space of size 2N. In order to cope with the resulting
computational challenges, we develop a tractable mean-field approximation for
the Markov process. Approximations of its moments are derived as solutions
to systems of ordinary differential equations (ODEs) (see, e.g., Van Mieghem
et al., 2009 and VanMieghem, 2011). Combining these solutions with our claim
model, finally, yields approximations of the expected insured losses. For this
purpose, we develop a polynomial approximation approach to evaluate general,
possibly non-linear, claim functions. In the context of SIS-processes, we provide
the following contributions to the theory of mean-field approximations:

i. We suggest a general and rigorous framework for mean-field approxima-
tions of the moments of the spread process of arbitrary order n ≥ 1. We
show that there are two key ingredients defining the approximation: amean-
field function, and a splitting algorithm.

ii. We analyze twomean-field functions in detail that lead to different schemes:
the well-known independent approximation (also called NIMFA approxi-
mation, see Van Mieghem et al., 2009) and a new approximation type: the
Hilbert approximation.

iii. For the first-order independent approximation, we derive a time-dependent
accuracy result.

iv. For both approximation types, NIMFA and Hilbert, we provide splitting
algorithms and briefly address the question of splitting.

1.1. Literature

The paper connects three different research areas: mathematical modeling of
cyber insurance, epidemics on networks and marked point processes.

1.1.1. Cyber insurance. The literature on mathematical cyber insurance mod-
eling focuses mainly on simple game-theoretic models. These consider, e.g.,
the following questions: Does a cyber insurance market exist in equilibrium
(Böhme, 2005)? Does cyber insurance affect the incentives to self-protection
(Bolot andLelarge, 2008) and howdoes it influence social welfare (Schwartz and
Sastry, 2014)? A recent review of such game-theoretic approaches can be found
in the survey article Marotta et al. (2015). In contrast to these papers, we model
cyber insurance with the aim of simulating and evaluating losses and pricing
insurance contracts. To date, cyber loss models are mostly based on determin-
istic scenarios (see Swiss Re Institute, 2017). In contrast, we derive a stochastic
model and develop suitable approximation techniques to explicitly calculate the
losses.
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1.1.2. Epidemic models. We use the network-based SIS model, also known as
the contact process, to model the spread of the considered cyber threat. This
continuous time Markov chain has been extensively analyzed. A key topic in
the analysis is the long-term behavior of the system as a function of the model
parameter τ — the ratio of the infection to the curing rate. For networks of in-
finite size, both survival and extinction of the considered threat can occur. For
example, in the network Zk, there exists a critical value τc such that for τ ≤ τc,
the infection dies out, while for τ > τc, the infection survives (cf. Liggett (1985)
for the case k = 1, and Bezuidenhout and Grimmett (1990) and Liggett (1999),
Part I, Section 2, for k ≥ 1). For networks of finite size, however, the infection
will almost surely die out in finite time. This is due to the presence of the absorb-
ing healthy state in theMarkov chain. Still, there is a different kind of threshold
behavior of the system: There exists a critical value for τ that determines the
behavior of the expected extinction time as a function of the network size N.
Below this critical value, the expected extinction time increases logarithmically
for increasing N; above, it increases exponentially fast (see, e.g., Durrett and Liu
(1988) for an analysis of the chain graph {1, . . . , N} andMountford et al. (2016)
for bounds on the expected survival time for the homogeneous tree of bounded
degree). For a recent survey paper, including bounds in general graphs, we refer
to Nowzari et al. (2016, Theorems 4 and 5).

In our insurance application, we are mainly interested in the moments of the
Markovian spread process. These can be used to approximate expected losses
and to compute insurance premiums. Since the exact calculation of these mo-
ments requires the solution of a system of 2N − 1 ODEs, we use a lower order
mean-field approximation in the sense of Van Mieghem et al. (2009). In con-
trast to the degree-based mean-field approach (Pastor-Satorras and Vespignani,
2001; Boguñá and Pastor-Satorras, 2002), which builds on average degrees, this
individual-based approach captures the complete structure of the network. This
enables us to analyze the influence of the network topology on the spread of the
infection and on insured losses.

Van Mieghem et al. (2009) derive a first-order independent mean-field ap-
proximation called NIMFA. We add an analysis of its accuracy. In contrast to
earlier papers (such as Van Mieghem and van de Bovenkamp (2015)), we pro-
vide a time-dependent accuracy criterion that is able to qualitatively capture the
behavior of the approximation error over time, if the parameter τ is sufficiently
small. For larger values of τ , however, we observe that first-order approxima-
tions may lead to substantial errors. In this case, we propose not to use a first-,
but a higher order approximation.

The fact that the mean-field approximation approach can be generalized
to higher orders has already been noted previously; we refer to Cator and
VanMieghem (2012) for a second-order independent approximation with naive
single split, toMata and Ferreira (2013) for a second-order pair-approximation,
and to Pastor-Satorras et al. (2015, p.19) for a recent review. The present paper
provides the first explicit derivation of a general nth-order mean-field approxima-
tion, i.e., an approximation of the moments of the spread process up to order n.
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We show that our nth-order mean-field approximation is defined by two main
ingredients: a mean-field function and a splitting algorithm. Our framework
comprises the previous contributions VanMieghem et al. (2009) and Cator and
Van Mieghem (2012) as special cases. It is also more general than these papers
and enables us to introduce and analyze a newHilbert approximation and split-
ting algorithms.

1.1.3. Marked point processes. To model the claims, we use a marked point
process. A general introduction to this type of processes as well as the main
theoretical results can be found in Jacod (1975), Brémaud (1981) and Last and
Brandt (1995). Marked point processes have been applied in many different ar-
eas such as credit risk modeling (see, e.g., Bielecki and Rutkowski, 2004), sur-
vival analysis (see, e.g., Jacobsen, 2006, Chapter 8), and insurance loss modeling
(see, e.g., Burnecki et al., 2011). In this paper, we build on the latter approach;
however, our loss process is additionally coupled with the underlying spread
process of the cyber infection. This captures the idea that only infected nodes
may suffer losses. A similar approach is used in Giesecke andWeber (2004) and
Giesecke and Weber (2006) in the context of liquidity and credit risk.

1.2. Outline

The paper is organized as follows. Section 2 presents our exact loss model. Sec-
tion 2.1 introduces the SIS Markov chain as a model of the infection process.
Section 2.2 describes the marked point process that generates the claims at in-
fected sites. A formula for the expected aggregate losses of a reinsurer is derived.
Section 3 explains different approximations. Section 3.1 presents a polynomial
approximation approach to evaluate non-linear claim functions. Section 3.2 in-
troduces mean-field approximations of the moments of the spread process. We
first analyze first-order approximations and the corresponding ODE systems.
Second, we define the general nth-order approximation and its two key ingre-
dients: the mean-field function and the splitting algorithm. Section 4 illustrates
in numerical case studies how the suggested approach may be applied to the
pricing of different insurance contracts. This allows to study the influence of
the underlying network topology. Section 5 concludes. All proofs can be found
in an appendix.

2. EXACT LOSS MODEL

We consider a cyber threat that spreads via two consecutive channels. First, a
vulnerability is created by an infection in a given network of agents.More specif-
ically, each agent (a corporation, a system of computers or a single device) is rep-
resented by a node in the network; each edge constitutes a possible transmission
channel of the cyber infection. An edge could be a direct link between individ-
ual agents, or a link to a central server that stores data or supplies users with
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software updates. Second, infected agents are vulnerable to randomly occurring
attacks, triggering losses of random size. For example, an infected computer
may be attacked by collecting and abusing private information such as credit
card or banking information, or by disturbing operations on the computer via
ransomware. If agents are insured against cyber damage, insurance claims de-
pend on two different types of stochastic processes: first, the infectious spread
process of the vulnerability, and, second, the claim frequency and severity
processes.

2.1. Spread process

The cyber network consists of N agents, labeled 1, . . . , N. To begin with, we
focus in the current paper on a simple undirected graph. The suggested model
could easily be extended to directed and weighted graph structures. Such exten-
sions could provide more realistic models of cyber networks with asymmetric
infection channels of different strengths, but their analysis would be more in-
volved, and we thus leave a detailed analysis of complex networks to future
research. The undirected network is represented by a symmetric adjacency ma-
trix A ∈ {0, 1}N×N, with aii = 0 for all i , where ai j = 1 indicates a connec-
tion between nodes i and j and ai j = 0 signifies that i and j are not directly
connected.

To describe the dynamics of the first channel, the infectious spread of vul-
nerability to cyber events, we use the SIS model, as, for example, explained in
Pastor-Satorras et al. (2015, Section V). At any point in time, each node i can
be in one of two states: infected or susceptible. The state of node i at time t is
denoted by Xi (t), where Xi (t) = 1 indicates that node i is infected at time t and
Xi (t) = 0 indicates that node i is susceptible to an infection. We assume that
each node can be infected by its infected neighbors, but is cured independently
of all other nodes in the system. We assume that each node is endowed with an
independent exponential clock and changes its state when the exponential clock
rings. Letting β > 0 and δ > 0, the rates of these transitions are given as follows
(i = 1, 2, . . . , N):

Xi : 0 → 1 with rate β
∑N

j=1
ai j Xj (t) (1)

Xi : 1 → 0 with rate δ.

To be precise, we will from now on work on a probability space (�,F, P)

with filtration F = (Ft)t≥0 that satisfies the usual conditions, i.e., the filtration
is right-continuous and F0 contains all P-null sets (see, e.g., Protter, 2004). The
process X is a Markov-process with state space E = {0, 1}N with càdlàg paths
and X0 = x ∈ E. We assume that X is a Feller process with generator G :

https://doi.org/10.1017/asb.2018.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.23


PRICING OF CYBER INSURANCE CONTRACTS 1181

C(E) → R defined by

G f (x) =
N∑
i=1

⎛
⎝β(1 − xi )

N∑
j=1

ai j xj + xiδ

⎞
⎠ ( f (xi )− f (x)), x ∈ E, f ∈ C(E),

where xij = xj for i �= j and xii = 1 − xi . The family C(E) consists of all
functions on E. For details, we refer to Liggett (1985).

The continuous-time Markov process X is of pure jump-type with exponen-
tial waiting times between jumps. The dimension of the state space E is large,
i.e., E has cardinality 2N. In Section 3.2, we derive a tractable mean-field ap-
proximation in terms of a system of ODEs that can be applied to the valuation
of cyber insurance.

2.2. Claims processes

In our model of cyber losses and insurance, we assume that the process X does
not directly cause any damage. Instead, at each point in time, infected agents are
vulnerable to cyber attacks, while agents who are not infected are not. For ex-
ample, infected agents might constitute a botnet that enables a denial-of-service
or ransomware attack.

In order to model cyber losses, we assume that the attacks are counted by a
process M := (M(t))t≥0 with values in {0, 1, 2, . . . }. The corresponding jump
times are denoted by (Tn)n∈N. The size of possible losses at each site during
an attack is modeled by another N-dimensional process L := (L(t))t≥0, where
L(t) = (L1(t), . . . , LN(t))�. We assume that both M and L are independent
from the Markovian spread process X.

To be precise,M is a non-explosive counting process adapted to the filtration
F. We suppose that M has a stochastic intensity (λ(t))t≥0, i.e., λ is some non-
negative F-predictable process with M(t ∧ Tn) − ∫ t∧Tn

0 λ(s)ds is a martingale
for all n ∈ N (see Brémaud, 1981, T9/p. 28 & T13/p. 31). The loss process L is
assumed to be predictable and non-negative.

We consider a (re-)insurance contract covering cyber losses and compute
the expected aggregate losses over a fixed time window [0,T] with T > 0. We
suppose that for any time t the insurance contract is characterized by a function
f (·; ·) : R+ ×RN

+ → R+, where the first argument refers to time and the second
argument to the loss vector generated by a cyber attack. We suppose that f is
jointly measurable.

We denote the Hadamard product of vectors (i.e., the multiplication of the
components) by ◦. At time t, the insurance contract covers f (t; L(t) ◦ X(t)), if
a loss event occurs at time t. Neglecting interest rates or considering discounted
quantities, the expected aggregate losses of the contract over the time window
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[0,T] are thus given by

E

[∫ T

0
f (t; L(t) ◦ X(t))dM(t)

]
= E

[∫ T

0
f (t; L(t) ◦ X(t−))dM(t)

]

= E

[∫ T

0
f (t; L(t) ◦ X(t−))λ(t)dt

]
= E

[∫ T

0
f (t; L(t) ◦ X(t))λ(t)dt

]
.

(2)

The first equality is due to the fact that X and M are independent and never
jump at the same time with probability 1. The second equality follows from the
predictability of the integrand according to D7/p. 27 in Brémaud (1981). The
third equality holds, since the paths of X possess at most countably many jumps
on [0,T] and constitute a Lebesgue null set for each path.

The simplest contract f is a proportional insurance, i.e., f (t; z) = ∑N
i=1 αi zi .

In this case,

E

[∫ T

0
f (t; L(t) ◦ X(t))dM(t)

]
=

∫ T

0

N∑
i=1

αi · E[Xi (t)] · E[Li (t)λ(t)] dt, (3)

where the factorization follows from the independence of X and (M, λ, L).
For a linear claim function, the computation of the expected losses of the

insurance contract does not require full knowledge of the dynamics of the spread
process X, but only of its expectation, i.e., the first moment. If f is non-linear,
but continuous, a polynomial approximation can be used in order to evaluate
equation (2). This requires knowledge of the evolution of all moments of X up to
the degree that is desired for the evaluation. This will be explained in Section 3.1.

Due to Kolmogorov’s equations, using the fact that the components of X
are idempotent and commutative, the moments of X are described by a finite
system of ODEs consisting of

∑N
i=1

(N
i

) = 2N − 1 equations. For large N, this
coupled system of equations of first order becomes intractable.1 If the order
of the polynomial approximation is less N, say n, only moments of X up to
order n are needed. However, the ODEs for these moments depend on higher
order moments, i.e., the desired system of equations is not closed. We address
this problem in Section 3.2 by constructing a mean-field approximation of the
dynamics of the desiredmoments that significantly reduces the dimension of the
system of ODEs.

3. APPROXIMATIONS

3.1. Polynomial approximation of non-linear claim functions

In this section, we discuss a polynomial approximation of the claim function f
that facilitates the computation of expected insurance losses (2) in the non-linear
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case. In order to simplify themathematical analysis, we assume in this paper that
f does not depend on t.We do, however, stress that our analysis can be extended
to the time-dependent case at the expense of constructing approximations that
are sufficiently regular in time. This requires a more complicated notation. The
basic idea of the polynomial approximation is that any continuous function f
can be uniformly approximated by polynomials on any compact set according
to the Stone–Weierstraß theorem. We make the following assumptions.

Assumption 3.1.

i. The function f : RN
+ → R+ is decomposable, i.e., one can write

f (x1, . . . , xN) = g(�(x1, . . . , xN)),

where � : RN
+ → R+ is a linear and increasing aggregation function and

g : R+ → R+ is continuous and increasing.
ii. The function g is bounded on [0, ‖�(L)‖∞), where ‖ · ‖∞ denotes the L∞-

norm.

Example 3.2.

i. A first example is a catastrophe excess of loss per risk (Cat XL) contract
that covers cyber attacks with priority a ≥ 0 and limit b−a > 0. In this case,
insurance losses are described by

f Cat-XL(x1, . . . , xN) = gCat-XL(�	(x1, . . . , xN))

with�	(x1, . . . , xN) = ∑N
i=1 xi , and g

Cat-XL(y) = (y− a)+ − (y− b)+. This
shows that f Cat-XL satisfies Assumption 3.1.

ii. Another example is an excess of loss per risk contract (XL) that covers all
individual cyber losses. This is described by

fXL(x1, . . . , xN) :=
N∑
i=1

(
(xi − ai )+ − (xi − bi )+

)
,

where ai ≥ 0 is the priority of risk i and bi − ai > 0 its corresponding cover.
This function is neither linear nor does it satisfy Assumption 3.1. However,
with a small trick it fits into both frameworks. To this end, observe that

fXL(L(t) ◦ X(t)) =
N∑
i=1

(
(Li (t)Xi (t) − ai )+ − (Li (t)Xi (t) − bi )+

)
.

Since Xi (t) ∈ {0, 1}, this function can be rewritten in the following form:

fXL(L(t) ◦ X(t)) =
N∑
i=1

L̂i (t)Xi (t) =: f̂XL(L̂(t) ◦ X(t)),
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where L̂i (t) = (Li (t) − ai )+ − (Li (t) − bi )+ for i = 1, . . . , N. Then,

f̂XL(x1, . . . , xN) =
N∑
i=1

xi .

For the modified loss size process L̂, the function f̂XL describes a proportional
reinsurance. Assumption 3.1 is satisfied with � = f̂XL and g(λ) = λ for
λ ≥ 0.

Remark 3.3. The application of the Stone–Weierstraß theorem does not rely on
the existence of a decomposition of f as required in Assumption 3.1. The decompo-
sition guarantees that wemayworkwith polynomial approximations in one dimen-
sion. In this case, simple algorithms for the construction of the unique best approx-
imation are available. In contrast, due to the theorem of Mairhuber–Curtis, finite-
dimensional subspaces of the space of continuous functions on a multi-dimensional
compact set are notHaar spaces, implying that best approximations are not always
unique.

If Assumption 3.1 is satisfied, a polynomial approximation can be con-
structed as follows.

Approximation 3.4.

i. Choose a bound ε > 0 and the desired degree of the polynomial approximation
d ∈ N.

ii. Determine a constant u ∈ R+ such that the probability that an aggregated
loss (under a total infection) exceeds u is bounded from above by ε, i.e.,

P(�(L) > u) ≤ ε.

iii. Find the best uniform approximation pd(x) := ∑d
�=0 a�x� (a0, a1, . . . , ad ∈

R) of the function g on the compact interval [0, u] in the space of polynomials
up to degree d. We denote the resulting approximation error by

max
x∈[0,u]

|g(x) − pd(x)| = ‖g − pd‖∞,[0,u] =: ed(g).

iv. The dth degree polynomial approximation of f (L ◦ X) is given by

f̄d(L ◦ X) :=
{
pd(�(L ◦ X)), if �(L) ≤ u,
0, if �(L) > u.

Remark 3.5. Due to Assumption 3.1, there exists a real number m s.t.

| f (L ◦ X)| = |g(�(L ◦ X))| ≤ |g(�(L))| ≤ m

for all possible realizations of the random variable L. The L1-norm of the approx-
imation error for f̄d(L◦X) is bounded from above by ed(g)+m ·ε. This can easily
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be verified. Letting Z= L ◦ X, we obtain that
‖ f (Z) − f̄d(Z)‖L1 = ‖[ f (Z) − pd(�(Z))] · 1[0,u](�(L))

+ f (Z) · 1(u,∞)(�(L))‖L1

≤ E[|g(�(Z)) − pd(�(Z))| · 1[0,u](�(L))]

+ E[| f (Z)| · 1(u,∞)(�(L))]

(◦)≤ ‖g − pd‖∞,[0,u] · P(�(L) ≤ u) +m · P(�(L) > u)

≤ ed(g) +m · ε,

observing in step (◦) that 0 ≤ �(Z) ≤ �(L).

Finally, consider an insurance contract f = g(�) with �(x1, . . . , xN) =∑N
i=1 bi xi , b1, b2, . . . , bN ≥ 0, and polynomial approximation pd(x) :=∑d
�=0 a�x�. In this case,

E

[∫ T

0
f̄d(L(t) ◦ X(t))dM(t)

]
=

∫ T

0
E[ f̄d(L(t) ◦ X(t)) · λ(t)] dt.

Set G := σ {L(t), λ(t) : t ≤ T}, and observe that the process X is independent
of G. Thus,

E[ f̄d(L(t) ◦ X(t)) · λ(t)|G] = λ(t) · E[ f̄d(L(t) ◦ X(t))|G]. (4)

We evaluate the second factor. For simplicity, we suppress the dependence on t
in the notation.

E[ f̄d(L ◦ X) | G] = E[ pd(�(L ◦ X)) · 1[0,u](�(L)) | G]

=
d∑

�=0

a� · E[(�(L ◦ X))� | G] · 1[0,u](�(L))

=
d∑

�=0

a� · E[(
∑N

i=1
bi Li Xi )� | G] · 1[0,u](�(L))

= 1[0,u](�(L)) ·
⎡
⎣a0 + a1

N∑
i1=1

bi1Li1E[Xi1 ] + a2
N∑

i1=1

N∑
i2=1

bi1bi2Li1Li2E[Xi1Xi2 ]

+ . . . + ad
N∑

i1=1

N∑
i2=1

· · ·
N∑

id=1

bi1bi2 · · · bid · Li1Li2 · · · Lid · E[Xi1Xi2 · · · Xid ]
⎤
⎦ .

Here, we used the fact that the process L is G-measurable, while X is independent
of G. In the next step, we can now use the tower property on the conditional
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expectations in equation (4), i.e., E[E(·|G)] = E(·), to obtain the final result.
Thus, in summary, for the purpose of approximating the expected insurance
losses, we need to calculate

∫ T

0
E

⎛
⎝1[0,u](�(L)) · λ(t) ·

⎡
⎣a0 + a1

N∑
i1=1

bi1Li1E[Xi1 ] + a2
N∑

i1=1

N∑
i2=1

bi1bi2Li1Li2E[Xi1Xi2 ]

+ . . . + ad
N∑

i1=1

N∑
i2=1

· · ·
N∑

id=1

bi1bi2 · · · bid · Li1Li2 · · · Lid · E[Xi1Xi2 · · · Xid ]

⎤
⎦
⎞
⎠ dt.

(5)

The formula shows that full knowledge of the probabilistic evolution of the pro-
cess X is not required. Instead, an analysis of the dynamics of its moments up
to order d suffices to compute the sought quantity. As explained earlier, the
corresponding system of ODEs is obtained from Kolmogorov’s equations, but
involves 2N − 1 equations. A closed system for the required moments with a
smaller number of equations can be obtained by a mean-field approximation.
This method will be explained in the next section.

Remark 3.6.

i. If the network size N is not too large, the polynomial approximation enables
a flexible and efficient comparison of different contracts in a given network.
The mixed moments of the spread process need to be computed only once.
Afterwards, polynomial approximations of different contracts can be evalu-
ated. Since the number of mixed moments up to order d grows like Nd when
the number of nodes N increases, polynomial approximations are not efficient
anymore for very large networks.

ii. In this paper, approximations of the joint moments of the spread process are
computed from an ODE system. The methodology is explained in the next
section. Alternatively, joint moments could be computed from Monte Carlo
simulations of the spread process. A comparison of the advantages and dis-
advantages of these competing approaches is beyond the scope of the current
paper and constitutes an interesting topic for future research.

3.2. Mean-field approximation of moments

In order to evaluate formula (5), we need to compute the moments E[Xi1(t)],
E[Xi1(t)Xi2(t)], . . . , E[Xi1(t)Xi2(t) · · · Xin (t)], i1, . . . , in ∈ {1, . . . , N}, for the
desired n ≤ N. We construct an approximation of these moments and call
the parameter n its order. For this purpose, we denote by z(n)i1i2...ik the nth-order
approximation of the moment E[Xi1Xi2 · · · Xik ] for k ≤ n. Observe that both
z(n)i1i2...ik and E[Xi1Xi2 · · · Xik] are functions of t. In order to simplify the nota-
tion, we will sometimes drop the variable t in our notation. Since the variables
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Xi , i = 1, 2, . . . , n, are commutative and idempotent, we may assume that the
indices i1, . . . , ik are pairwise different and ordered, i.e., i1 < i2 < . . . < ik. Al-
ternatively, the nth-order approximation of all moments of X up to order n can
simply be enumerated by index sets I ⊆ {1, 2, . . . , N} with cardinality |I| ≤ n.
This will be the convention that we choose. As a final result of our construction,
we obtain the nth-order approximation of all moments of X up to order n, i.e.,(

z(n)I

)
I⊆{1,2,...,N}, |I|≤n

.

We begin with a detailed description of the first-order approximation, explain-
ing two strategies for its construction. This approach is later generalized to nth-
order approximations for n > 1.

3.2.1. First order. We derive the first-order mean-field approximation in detail
and analyze its accuracy.

Derivation of the approximations: The transition rates (1) describe the infinites-
imal dynamics of Xi (t)

E [Xi (t + 
t) − Xi (t)|Ft] = ((1−Xi (t))β
N∑
j=1

ai j Xj (t)−δXi (t))
t+o(
t). (6)

A susceptible node is infected by its neighbors at rate β; an infected node is
cured at rate δ, independently of the state of the others. Intuitively, dividing
by 
t, taking the expectation on both sides and letting 
t → 0, we obtain
the following exact expression for the derivative of the probability E[Xi (t)] =
P(Xi (t) = 1):

dE[Xi (t)]
dt

= −δE[Xi (t)] + β

N∑
j=1

ai jE[Xj (t)] − β

N∑
j=1

ai jE[Xi (t)Xj (t)], (7)

for i = 1, . . . , N. More precisely, these equations are a consequence of Kol-
mogorov’s forward equation.

The occurrence of the mixed terms E[Xi (t)Xj (t)] for i �= j signifies that the
dynamics of the first-order moments depend on higher order moments. The
system of ODEs (7) is not closed. An exact solution requires in addition the
dynamics of the second-order moments, third-order moments, etc. Instead of
increasing the number of equations, the aim of the first-order mean-field ap-
proximation is to keep the number of equations fixed, but to pay the price of
obtaining an approximate in lieu of an exact solution.

We choose a suitable function F : [0, 1] → [0, 1] and split the mixed terms
as

E[Xi (t)Xj (t)] ≈ F(E[Xi (t)]) · F(E[Xj (t)]).
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This leads to the following approximation:

dE[Xi (t)]
dt

≈ −δE[Xi (t)] + β

N∑
j=1

ai jE[Xj (t)]

− β

N∑
j=1

ai j F(E[Xi (t)]) · F(E[Xj (t)]). (8)

We denote by z(1)i (t) the corresponding approximation of E[Xi (t)] and arrive at
the following system of ODEs:

dz(1)i (t)
dt

= −δz(1)i (t) + β

N∑
j=1

ai j z
(1)
i (t)

− β

N∑
j=1

ai j F(z(1)i (t)) · F(z(1)j (t)) (i = 1, . . . , N). (9)

This is the first-order mean-field approximation corresponding to the mean-field
function F .

Next, we consider two examples of mean-field functions and the resulting
first-order approximations z(1)i (t) in more detail.

i. If we choose a mean-field function F1(x) = x, we obtain the first-order
independent approximation, also known as the “N-intertwined mean-field
approximation (NIMFA)”. This approximation is discussed in detail by
VanMieghem et al. (2009). The approximation factorizes the second-order
moments as if components were independent

E[Xi (t)Xj (t)] ≈ F1(E[Xi (t)]) · F1(E[Xj (t)]) = E[Xi (t)]E[Xj (t)].

Since E[Xi (t)Xj (t)] = E[Xi (t)]E[Xj (t)] + Cov(Xi (t), Xj (t)) with
Cov(Xi (t), Xj (t)) ≥ 0, as shown in Cator and Van Mieghem (2014), equa-
tion (8) leads to an upper bound

dE[Xi (t)]
dt

≤ −δE[Xi (t)] + β

N∑
j=1

ai jE[Xj (t)] − β

N∑
j=1

ai jE[Xi (t)]E[Xj (t)].

The upper boundmean-field approximation vi (t) := z(1)i (t) is characterized
by the ODEs

dvi (t)
dt

= −δvi (t) + β

N∑
j=1

ai jv j (t) − β

N∑
j=1

ai jvi (t)v j (t), (i = 1, . . . , N).

(10)
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Setting V := (v1, v2, . . . , vN)�, we may rewrite the system in matrix
notation

d
dt
V = (βA− δI)V − β diag(V)AV, (11)

where diag(V) denotes the diagonal matrix with entries v1, v2, . . . , vN and
I ∈ RN×N denotes the identity matrix.

ii. A mean-field function F2(x) := √
x leads to a new type of mean-field ap-

proximation. We call this the first-orderHilbert approximation that is moti-
vated by the following observations. The space of square-integrable ran-
dom variables L2, equipped with the scalar product 〈R, S〉 := E[R · S]
for R, S ∈ L2, forms a Hilbert space. The induced norm is denoted by
‖R‖ := √〈R, R〉 =

√
E[R2]. The scalar product in Hilbert spaces defines

the angle φ between vectors

〈R, S〉 = ‖R‖ · ‖S‖ · cosφ.

The idea is now to use ‖R‖ · ‖S‖ as an approximation for 〈R, S〉. The term
‖R‖ · ‖S‖ is never smaller than 〈R, S〉. The approximation is good, if the
angle of R and S is close to 0◦. Applying the approximation to equations
(7), we obtain

dE[Xi (t)]
dt

≥ −δE[Xi (t)] + β

N∑
k=1

aikE[Xk(t)]

− β

N∑
k=1

aik
√

E[Xi (t)]
√

E[Xk(t)], i = 1, 2, . . . , N.

(12)

Setting wi (t) := z(1)i (t), this leads to the following mean-field approxima-
tion:

dwi (t)
dt

= −δwi (t) + β

N∑
k=1

aikwk(t)

− β

N∑
k=1

aik
√

wi (t)
√

wk(t), (i = 1, . . . , N).

SettingW = (w1, . . . , wN)� and
√
W = (

√
w1, . . . ,

√
wN)�, wemay rewrite

the system in matrix notation

dW
dt

= (βA− δI)W− βdiag(
√
W)A

√
W. (13)
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A :=

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1 1 1
1 0 1 1 0 0 1
0 1 0 1 1 1 0
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 0 1 0 1 0 1
1 1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎠ 1

2

3

4

5

6

7

FIGURE 1: A regular network with N = 7 nodes and degree D = 4.

Properties of ODE systems: The following theorem summarizes key properties
of the mean-field approximations. Its proof can be found in Appendix A. Let
0 = (0, 0, . . . , 0)� ∈ RN and 1 = (1, 1, . . . , 1)� ∈ RN denote the all-zero and
the all-one vector, respectively.

Theorem 3.7.

i. Existence. For any choice of the parameters δ and β, there exist global so-
lutions of the ODE systems (11) and (13) with arbitrary non-negative initial
conditions.

ii. Uniqueness. The ODE system (11) possesses a unique solution in
C([0, ∞); RN).

iii. Sandwich property. Let W(t) be a solution of (13) and V(t) the solution to
(11). For every initial condition V(0) = W(0) = X(0) = v0 ∈ [0, 1]N, it holds
that

0 ≤ W(t) ≤ E[X(t)] ≤ V(t) ≤ 1,

for all t ≥ 0, where the inequalities are interpreted componentwise.
iv. Stability. Let μ̂ be the spectral radius of A and set τ (1)

c := 1/μ̂, a constant
that depends on the underlying network. Define τ = β/δ. If τ < τ (1)

c , then the
zero solutions V ≡ 0 and W ≡ 0 are exponentially stable solutions of (11)
and (13), i.e., there exist constants α, ε,C > 0 such that for any solution z of
(11) and (13), respectively, and all t ≥ 0

|z(t)| ≤ Ce−αt|z(0)|,

if |z(0)| ≤ ε.

We illustrate the two suggested approximation methodologies in the context
of a small cyber network.

Example 3.8. We consider a system of N = 7 agents that are connected in a cyber
network as described in Figure 1.

The network is regular, i.e., each node is connected to exactly D other nodes.
We choose D = 4, β = 0.5 and δ = 2.01. Then, τ = β/δ = 0.2488 <

1/D = τ (1)
c , thus V ≡ 0 and W ≡ 0 are exponentially stable according to
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FIGURE 2: Comparison of the aggregate infection probability of all nodes (A) and of initially healthy nodes
(B) for the network described in Figure 1.

Theorem 3.7 iv. We assume that initially only node 1 is infected, i.e., V(0) =
W(0) = (1, 0, 0, 0, 0, 0, 0)�. Figure 2 shows the aggregate infection probabilities
for all nodes (A), i.e.,

∑N
j=1 E[Xj (t)], and respectively for all initially healthy

nodes (B), here:
∑N

j=2 E[Xj (t)], for the original Markov process together with
the corresponding approximations. As explained in Theorem 3.7 iii., these pro-
vide lower and upper bounds. For both approximations, the error is quite substan-
tial. As we will see in the following sections, this can be improved by higher order
approximations.

Accuracy criterion: We derive a time-dependent estimate of the accuracy of
the first-order independent mean-field approximation. We focus on the correla-
tion matrix as a rough measure for the difference between the exact and approx-
imate dynamics of the E[Xi (t)].

The first step is to rewrite (7) as

d
dt

E[Xi (t)] = −δE[Xi (t)] + β(1 − E[Xi (t)])
N∑
k=1

akiE[Xk(t)] − βRi (t),

with error term

Ri (t) :=
N∑
k=1

akiCov(Xi (t), Xk(t)).

In Van Mieghem and van de Bovenkamp (2015), the authors consider Ri as
a measure for the accuracy of the approximation. They investigate numerical
examples and analytical criteria to assess the smallness of Ri in different situ-
ations. It is clear that in the independent case, yielding Ri (t) ≡ 0 for all i , the
exact dynamics and the approximation are identical. This is the reason for our
choice of the term independent approximation. Our result phrases the accuracy
of the approximation as a pointwise inequality in the time variable t.
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Theorem 3.9. Let yi (t) := E[Xi (t)]−vi (t) and denote by μ̂ the largest eigenvalue
of the adjacency matrix A. Then, for any t ≥ 0, we have

||y(t)||2 ≤ e(−2δ+4βμ̂+β)tβ

∫ t

0
||R(s)||2ds,

where y(t) = (y1(t), . . . , yN(t)) and R(t) = (R1(t), . . . , RN(t)).

The proof of Theorem 3.9 is given in Appendix A. To apply this result, we ap-
proximate the norm of the residual term R(t) by

‖R(t)‖2 =
N∑
i=1

(
N∑
k=1

akiCov(Xi (t), Xk(t))

)2

≤ 1
16

N∑
i=1

(
N∑
k=1

aki

)2

≤ N
16

N∑
i=1

N∑
k=1

aik = N�

8
,

using Cauchy’s inequality and denoting by � the total number of links within
the network. Hence, we find the following upper bound for the mean-field ap-
proximation error, expressed solely through known characteristics of the given
network:

‖y(t)‖2 ≤ βN�

8
· te(−2δ+4βμ̂+β)t. (14)

In the case that −2δ + 4βμ̂ + β < 0, i.e., for small τ = β/δ < 1
2μ̂+1/2 , the

approximation error becomes small quite quickly. This corresponds to a high
curing rate δ in comparison to the infection rate β. Observe that the stated ex-
ponential decay is a useful result for t sufficiently large. Since N� can be very
large, equation (14) does not provide substantial information regarding the ap-
proximation error for small t.

Example 3.10. We consider the network in Figure 1 with fixed infection rate
β = 0.5, but different curing rate δ. The initial state is V(0) = (1, 0, 0, 0, 0, 0, 0)�,
i.e., only node 1 is infected at time zero. Figure 3(A) depicts the exact approxima-
tion error ‖y(t)‖.2 The upper bound from equation (14) is shown in Figure 3(B).
Although quantitatively strongly different, both figures (A) and (B) exhibit the
exponential decay that we proved for the upper bound.

The observation that the approximation error decreases for an increasing curing
rate2 δ is in line with the heuristic arguments of Van Mieghem et al. (2009) who
describe a good performance of the first-order mean-field approximation for
small τ . For intermediate values of τ , however, these authors expect significantly
larger first-order approximation errors. In addition, if −2δ + 4βμ̂ + β ≥ 0,
the upper bounds from Theorem 3 and equation (14) are not useful anymore,
since they grow exponentially in time t. These facts motivate the higher order
approximations that we consider later.
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FIGURE 3: Exact approximation error and upper bound for different values of the curing rate δ and fixed
β = 1/2 in the regular network A (given in Figure 1) with initial state V(0) = (1, 0, 0, 0, 0, 0, 0)�.

Remark 3.11. From the point of view of an insurance company, cyber risk is man-
ageable for sufficiently small τ = β

δ
. The exact condition−2δ + 4βμ̂+β < 0 ⇔

τ < 1
2μ̂+1/2 depends on μ̂, i.e., on a characteristic of the underlying network. In

this situation, the infection quickly dies out, and the first-order mean-field approx-
imation provides an upper bound with known bound for the approximation error. It
might, thus, be used for pricing insurance contracts. For small t, however, the error
bound is large and in many cases not very precise, although the approximation
might be quite reasonable.

3.2.2. nth Order.
In this section, we construct a general nth-order mean-field approximation that
has the following two benefits:

• The approximation error of the first-order mean-field approximations may
be quite large for certain parameter choices. The nth-order approximation
provides improved approximations for all moments of order k ≤ n. In par-
ticular, it yields improved estimates of single infection probabilities z(n)i for
i = 1, . . . , N.

• On the basis of the nth-order mean-field approximation, expected insurance
losses of non-linear claims can be computed as described in Section 3.1.

Construction: Fix the order n ≤ N. By I ⊆ {1, 2, . . . , N} we denote a set of
indices. We define the product XI := �i∈I Xi . Since the components of X are
commutative and idempotent, we may neglect the order of the indices or powers
of its components.

The dynamics of all moments are described by coupled ODEs due to Kol-
mogorov’s forward equations. This system of equations is replaced by a smaller
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system of equations that involves only approximations of moments up to order
n:

i. Construct an approximation for the dynamics of the nth-order moments
E[Xi1 · · · Xin ] in terms of moments up to order n.

ii. Use the exact relations of the dynamics of E[Xi1 · · · Xik ] for 1 ≤ k ≤
n−1 and the approximation of the nth-ordermoments to estimate the lower
order moments.

The details are as follows.

Step i: Approximative dynamics of E[XI ] for |I| = n. Kolmogorov’s forward
equation implies that

d
dt

E[Xi1Xi2 · · · Xin ]

= E

⎡
⎣ n∑

l=1

Xi1 · · · Xil−1

⎛
⎝−δXil + β(1 − Xil )

N∑
jl=1

ail jl Xjl

⎞
⎠ Xil+1 · · · Xin

⎤
⎦

= −nδE [
Xi1 · · · Xin

] + βE

⎡
⎣ n∑

l=1

N∑
jl=1

ail jl Xi1 · · · Xil−1Xjl Xil+1 · · · Xin

⎤
⎦

− βE

⎡
⎣ n∑

l=1

N∑
jl=1

ail jl Xi1 · · · Xin · Xjl

⎤
⎦ .

Rewriting this, we have the exact expression

d
dt

E[XI ] = −nδE[XI ] + β
∑
i∈I

N∑
j=1

ai jE[XI\{i}∪{ j}] − β
∑
i∈I

N∑
j=1

ai jE[XI∪{ j}].

The expression E[XI\{i}∪{ j}] contains at most n factors of X: If j �∈ I \ {i}, it
contains n factors, and if j ∈ I \{i}, it contains n−1 factors. Thus, the first sum
can be expressed in terms of moments of order less than or equal to n.

Next, consider the termE[XI∪{ j}]. If j ∈ I, thenE[XI∪{ j}] = E[XI ]. However,
if j �∈ I, the expression contains n + 1 different indices. This means that the
dynamics of the moments up to order n are not described by a closed system of
ODEs. To deal with this difficulty, we extend the idea of the first-order mean-
field approximation and choose the following two objects:

i. a mean-field function F : [0, 1] → [0, 1] and
ii. a partition scheme (I1, I2) such that for j �= I, we have I ∪ { j} = I1(I, j) ∪

I2(I, j) with I1(I, j), I2(I, j) �= ∅. Since I is fixed for each equation, we
suppress the dependence on I in our notation.
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Specific choices of these two key ingredients are addressed in the next section.
When they are chosen properly, we approximate the rate of change for the nth-
order moments by

d
dt

E[XI ] ≈ − nδE[XI ] + β
∑
i∈I

N∑
j=1

ai jE
[
XI\{i}∪{ j}

] − β
∑
i∈I

N∑
j=1, j∈I

ai jE[XI ]

− β
∑
i∈I

N∑
j=1, j �∈I

ai j · F (
E[XI1( j)]

) · F (
E[XI2( j)]

)
. (15)

This translates to the ODE

ż(n)I = − nδz(n)I + β
∑
i∈I

N∑
j=1

ai j z
(n)
I\{i}∪{ j} − z(n)I β

∑
i∈I

N∑
j=1, j∈I

ai j

− β
∑
i∈I

N∑
j=1, j �∈I

ai j F
(
z(n)I1( j)

)
· F

(
z(n)I2( j)

)
,

describing the approximative dynamics of the nth-order moments.
Step ii: Exact dynamics of E[XI ] for |I| = k < n. For moments of order

k < n, we write according to Kolmogorov’s forward equation

d
dt

E[XI ] = −kδE[XI ] + β
∑
i∈I

N∑
j=1

ai jE
[
XI\{i}∪{ j}

] − β
∑
i∈I

N∑
j=1

ai jE
[
XI∪{ j}

]
,

and observe that all moments in this exact equation are of order less than or
equal to n.

Plugging in the approximations of order n, we obtain the ODE system of the
nth-order mean-field approximation

|I| = n : ż(n)I = −
⎛
⎝nδ + β

∑
i∈I

N∑
j=1, j∈I

ai j

⎞
⎠ z(n)I + β

∑
i∈I

N∑
j=1

ai j z
(n)
I\{i}∪{ j}

− β
∑
i∈I

N∑
j=1, j �∈I

ai j F
(
z(n)I1( j)

)
· F

(
z(n)I2( j)

)

|I| = k < n : ż(n)I = − kδz(n)I + β
∑
i∈I

N∑
j=1

ai j z
(n)
I\{i}∪{ j} − β

∑
i∈I

N∑
j=1

ai j z
(n)
I∪{ j},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(16)
The initial condition is the initial configuration of the Markovian system.
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Definition 3.12. For a mean-field function F and a partition scheme, we define the
nth-order mean-field approximation as a solution to the ODE system (16), i.e.,(

z(n)I

)
I⊆{1,2,...,N}, |I|≤n.

Remark 3.13. The structure of the ODEs in the nth-order case is analogous to the
first-order case. The matrix form of the ODE system (16) as well as the gener-
alization of the existence and uniqueness results of Theorem 3.7 to the nth-order
case is discussed in Appendix C.

Approximation types and splitting: In this section, we introduce two specific
types of higher order mean-field approximations and address the problem of
optimally splitting the set I ∪ { j} for |I| = n and j /∈ I consisting of n + 1
different indices into the two non-empty, disjoint subsets I1( j) and I2( j). In
contrast to the first-order case, this requires a specific choice that may influence
the quality of the resulting mean-field approximation. As before, we consider
the two mean-field functions F1(x) = x and F2(x) = √

x.

i. The choice of the mean-field function F1(x) = x leads to the nth-order
independent approximation. The approximationworks as follows: For j �∈ I,

E[XI∪{ j}] = E[XI1( j)] · E[XI2( j)] + Cov(XI1( j), XI2( j)) ≈ E[XI1( j)] · E[XI2( j)].

No error corresponds to a split of XI∪{ j} into XI1( j) and XI2( j) such that
Cov(XI1( j), XI2( j)) is zero. The factors should thus be as uncorrelated as
possible.

ii. Choosing F2(x) = √
x leads to the nth-order Hilbert approximation.

In this case, we set

E[XI∪{ j}] =
√

E[XI1( j)] ·
√

E[XI2( j)] · cosφ ≈
√

E[XI1( j)] ·
√

E[XI2( j)],

for j �∈ I. The angle φ is defined via the scalar product 〈R, S〉 := E[RS]
for R, S ∈ L2 in the usual Hilbert space. The split is good whenever the
angle φ between XI1( j) and XI2( j) is close to 0◦. This corresponds to highly
dependent factors.

A naive single split partitions the set I ∪ { j} into the subsets I1( j) = I and
I2( j) = { j}. Note that the sets are enumerated and, thus, the naive single split is
uniquely determined. This approach may not always be ideal, if small or strong
dependence of the factors is desired in order to keep the error of the approxi-
mation small. Hence, we sketch an alternative approach that is based on a mea-
surement of the nodes’ distances in the graph.

The graph structure is described by the adjacency matrix A ∈ RN×N, i.e.,
there exists a link between i, j ∈ {1, 2, . . . , N}, if ai j = a ji = 1. If two agents
are not directly connected, they might be connected indirectly. We define πi j as
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the length of the shortest path in the graph that connects two agents i �= j , i.e.,

πi j := min{l ∈ N : aik1 = ak1k2 = ak2k3 = · · · = akl−1 j = 1}.
We set � = (πi j )i, j=1,2,...,N with πi i = 0 for all i = 1, 2, . . . , N. The splitting
algorithm is described by the following pseudocode.

Algorithm 3.14.

INPUT An index set I with |I| = n and j /∈ I is given.
OUTPUT The output is a partition I1( j), I2( j) of I ∪ { j} constructed as fol-

lows.
Step 1. Consider a set of partitions J1( j), J2( j) of I ∪ { j}.
Step 2. Choose some α ∈ (0, 1) and calculate for each partition the fol-

lowing distance measure:

mα(J1( j), J2( j)) :=
∑

i∈J1( j)

∑
i ′∈J2( j)

απi i ′ . (17)

Step 3. We consider four alternative choices.
a. Minimal single split:

We choose the partition I1( j), I2( j) with |I2( j)| = 1 that minimizes
mα.

b. Maximal single split:
We choose the partition I1( j), I2( j) with |I2( j)| = 1 that maximizes
mα.

c. Minimal equal split:
We choose the partition I1( j), I2( j) with |I1( j)| = |I2( j)|, if n + 1 is
even, or |I1( j)| = |I2( j)| + 1, if n + 1 is odd, that minimizes mα.

d. Maximal equal split:
We choose the partition I1( j), I2( j) with |I1( j)| = |I2( j)|, if n + 1 is
even, or |I1( j)| = |I2( j)| + 1, if n + 1 is odd, that maximizes mα.

Observe that large values of our distance measuremα correspond to small graph
distances. In line with our heuristic arguments above, we thus apply choices a.
and c. to the independent approximation and choices b. and d. to the Hilbert
approximation.

Example 3.15. To illustrate higher order mean-field approximations, we consider
two different networks: the network with adjacency matrix A defined in Figure
1 with fixed infection rate β = 1/2 and curing rate δ = 2.01, and the network
with adjacency matrix B defined in Figure 4 with β = δ = 1/2. For both net-
works, nodes 1, 3 and 7 are initially infected. Figure 5 displays the evolution of
the aggregate infection probability of initially healthy nodes, i.e.,

∑
j∈{2,4,5,6} z

(n)
j ,

for the original Markov chain together with mean-field approximations of order
n = 2, 3, 4 in both networks under the different splitting choices. We observe
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B :=

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

1

2

3

4

5

6

7

FIGURE 4: A network with N = 7 nodes and spectral radius μ̂ ≈ 2.3429.

(a) Alg. 3.14 a. (dashed), c. (dotted) (b) Alg. 3.14 b. (dashed), d. (dotted)

(c) Alg. 3.14 a. (dashed), c. (dotted) (d) Alg. 3.14 b. (dashed), d. (dotted)
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FIGURE 5: Aggregate infection probability of initially healthy nodes. Solid lines represent naive single split
approximations; dashed lines correspond to the results of Algorithm 3.14 (α = 0.5) under a single split; dotted

lines represent the results of Algorithm 3.14 (α = 0.5) under an equal split.

that the higher the order of the mean-field approximation, the better is the ap-
proximation. In examples (A), (B) and (C), a fourth-order mean-field approxi-
mation already provides a reasonably good fit to the exact infection probabilities.

https://doi.org/10.1017/asb.2018.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.23


PRICING OF CYBER INSURANCE CONTRACTS 1199

(a) Homogeneous (b) Clustered (c) Star-shaped

FIGURE 6: Stylized regular network scenarios. Quantities that are kept constant are the number of nodes
N = 50 and the degree of each node D = 7. In particular, this yields a constant total number of edges

ND/2 = 175 and a constant spectral radius μ̂ = D = 7.

However, increasing the order of the approximation, also substantially increases
its computational cost. In comparison to the naive single split, the optimized single
split of Algorithm 3.14 leads to moderate improvements in all four cases. A split
into subsets of equal size, however, impairs the approximation quality3 in the cases
(A), (B) and (D). In contrast to that, in part (C), the fourth-order equal split
performs slightly better than the optimized single split. A possible reason for this
is the special distance structure for subsets of size three in the network B. This
indicates that the structure of the network topology is key to finding a splitting
algorithm. Future research should investigate this issue further, analyze how Algo-
rithm 3.14 might be improved, e.g., by choosing a better distance measure instead
of mα, and how computational cost and precision can be optimally balanced.

4. CASE STUDIES

4.1. Model setting

In this section, we compute the expected insurance losses for different insurance
contracts in numerical case studies. We consider three network topologies, illus-
trated in Figure 6. All networks consist of N = 50 agents or nodes which are
all connected to D = 7 other nodes. This means that the degree of each node is
7. The number of edges in each of the networks equals ND/2 = 175, and the
spectral radius of the three corresponding adjacency matrices is μ̂ = D = 7.

A. Homogeneous network: The first network that we consider consists of agents
of the same type that are homogeneously connected to each other. The cor-
responding adjacency matrix of this and the other two considered networks
can be found in Appendix D. In the homogeneous cyber networks, there is
no hierarchy of nodes in terms of data flow and related cyber threats.

B. Clustered network: The key feature of the clustered network is that agents
form groups that are closely connected. In contrast, agents within a cluster
are less connected to agents from other clusters. This structure might be a
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(a) Homogeneous (b) Clustered (c) Star

FIGURE 7: Infection scenario: The black nodes (3,5,13,15,23,25,33,35,43,45) are initially infected.

more realistic model of cyber networks than a homogeneous network: Con-
sider, e.g., different firms or divisions that are internally densely connected,
but less densely connected with other firms or divisions. Qualitatively, the
model captures different levels of security for internal and external connec-
tions.

C. Star-shaped network: Unlike the clustered network, the star-shaped cyber
network possesses a clear hierarchy between central nodes that provide a
hub for the data flow, and a number of periphery clusters that are internally
homogeneously connected, but apart from the connections via the hub iso-
lated from agents in other clusters.

The cyber networks are the channel for the spread of the cyber infection that
makes agents vulnerable to cyber attacks. Cyber attacks affect all vulnerable
agents at times that are modeled by a point process. The incurred losses are
random. We will provide the parameters of the numerical case studies below.

In this setting, we compute the expected losses for three types of contracts:
proportional insurance, XL insurance, and Cat-XL insurance. The functions
that map physical losses to insured losses were described in equation (3) and
Example 3.2. Exact expected contract losses can be computed according to (2).
We will apply the mean-field approximation to estimate this quantity.

In our numerical case studies, we use the following parameters. The param-
eters of the infection dynamics (1) are β = 0.5 and δ = β · μ̂ + 0.01 = 3.51.
Initially, 10 nodes, i.e., 20% of all nodes, are infected. The location of the initially
infected nodes is shown inFigure 7. These were sampled from an initial infection
that is uniformly distributed across the network. Cyber attacks that cause losses
at infected, i.e., vulnerable nodes occur at the jumps of a homogeneous Poisson
process with rate λ = 3. A cyber event causes a loss at each vulnerable node that
is exponentially distributed with mean μ = 2, i.e., with parameter 1/2. For the
insurance contracts, we choose a policy period T = 3.

For the numerical simulation, we exploit the mean-field approximation
to analyze the spread process. In order to generate the losses due to cyber
attacks, we use a simple Monte-Carlo approach. We simulate 100,000 sample
paths of the homogeneous Poisson process and corresponding random losses
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in the time interval [0,T]. For each simulation we compute the integrand of
equation (5). Averaging over these results yields our Monte-Carlo estimator of
the expected aggregate losses of the reinsurance company; its standard error is
stated in brackets.

4.2. Model results

We comment on the results of the simulation.

4.2.1. Infection probabilities and mean-field approximations. We first analyze
the spread process of the cyber infection for the three different network struc-
tures. At this stage, we do not consider any cyber losses. We consider the inde-
pendent approximation with naive single split. The aggregate infection probability
of initially healthy nodes is a measure of the strength of the infection, i.e.,

APh
(n)(t) :=

∑
i∈H

z(n)i (t),

whereH denotes the set of initially healthy nodes and n is the order of the mean-
field approximation.

Figure 8 displays the approximation results for n = 1, 2, 3, 4: First, for all
networks, the fourth-order mean-field approximation and the third-order ap-
proximation are reasonably close to each other. This indicates that a mean-field
approximation of order four provides a relatively good proxy for the exact prob-
ability of infection. Second, we find that the infection probability in the homo-
geneous network tends to be the highest (for t > 0.5), while the star exhibits
the lowest infection probability. This result will be of key importance for the
expected losses of a reinsurance company.

4.2.2. Expected aggregate losses of the insurance company. We now study cy-
ber losses.

Proportional reinsurance: For simplicity, we consider full insurance; other per-
centages lead to similar results. The results are shown in Table 1. These indicate
that the homogeneous network constitutes the highest risk, while the star net-
work exhibits the lowest average losses.

XL: In this case, we assume that the limit per loss is equal to 2. We
consider only the lowest tier with priority 0. Using the notation intro-
duced in Example 3.2, the random insurance losses are

∑N
i=1 L̂i (t)Xi (t) with

L̂i (t) = Li (t)+ − (Li (t) − 2)+ = min{Li (t), 2}. Apart from the modified losses
L̂i instead of Li , we are again in the situation of a proportional contract. As
expected, the numerical results in Table 2 show that the homogeneous network
produces the highest expected losses, while the losses are lowest in the star
network.
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FIGURE 8: Mean-field approximations of order n = 1, 2, 3, 4 for the aggregate infection probability of
initially healthy nodes in the homogeneous (A), clustered (B) and star network (C). Part (D) compares the

fourth-order mean-field approximations for the different network structures.

TABLE 1

PROPORTIONAL INSURANCE.

Losses: Total Coverage Homogeneous Clustered Star

First-order MFA 96.4671 (0.1039) 97.6170 (0.1105) 96.5425 (0.1095)
Second-order MFA 51.4911 (0.0836) 39.7776 (0.0797) 39.4127 (0.0782)
Third-order MFA 77.8349 (0.0943) 70.6588 (0.0901) 68.0767 (0.0883)
Fourth-order MFA 68.0676 (0.0890) 61.3693 (0.0855) 59.9005 (0.0843)

Cat-XL: Finally, we consider an excess of loss per event contract. We con-
sider coverage of the lowest tier, i.e., a priority 0, and choose a cover of 60.
Of course, the numerical results in Table 3 exhibit again the same ordering of
the networks in terms of risk. But, more importantly, the numerical analysis
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TABLE 2

EXCESS OF LOSS PER RISK (XL).

Losses: XL Homogeneous Clustered Star

First-order MFA 60.9795 (0.0684) 61.7036 (0.0692) 61.0247 (0.0686)
Second-order MFA 32.5475 (0.0522) 25.1401 (0.0497) 24.9105 (0.0488)
Third-order MFA 49.2010 (0.0589) 44.6618 (0.0563) 43.0300 (0.0552)
Fourth-order MFA 43.0265 (0.0556) 38.7894 (0.0534) 37.8615 (0.0526)

TABLE 3

EXCESS OF LOSS PER EVENT (CAT-XL).

Losses: Cat-XL Homogeneous Clustered Star

d = 1 169.6693 (0.5733) 166.6429 (0.5638) 165.9828 (0.5616)
d = 2 64.5432 (0.3047) 56.5714 (0.2942) 54.9458 (0.2906)
d = 3 52.4555 (0.2867) 44.0598 (0.2796) 42.3615 (0.2764)
d = 4 59.2664 (0.8249) 52.8354 (0.7905) 51.0151 (0.7765)

shows very clearly that the first-order mean-field approximation is not able to
capture this type of contract. Due to its non-linearity, this is not surprising, but
the extreme size of the error could not be expected a priori. This demonstrates
that higher order mean-field approximations are necessary for the computation
of the expected insurance losses and are thus also needed for pricing contracts
within our model setting.

To be more specific, the contract function of the Cat-XL is given by

f Cat-XL(L(t) ◦ X(t)) = gCat-XL(�	(L(t) ◦ X(t))),

where �	(x1, . . . , xN) := ∑N
i=1 xi , and gCat-XL(y) := (y)+ − (y − 60)+ =

min(y, 60). We follow Algorithm 3.4 and approximate the non-linear claim
function gCat-XL on a compact interval by a polynomial of chosen degree d.

• Compact approximation interval. We choose ε = 0.05 and determine a con-
stant u ∈ R+ such that

P(�	(L) > u) ≤ ε. (18)

We use the compact interval [0, u] for the polynomial approximation. Setting
St := �	(L(t)) = ∑N

i=1 Li (t), we define ut := F−1
St (1 − ε). Since St is inde-

pendent of t and Gamma-distributed with parameters N = 50 and μ = 2,
we obtain u = ut ≈ 124.3412.

• Polynomial approximation. For degrees d ∈ {1, 2, 3, 4}, we determine the
best uniform approximation of gCat-XL on [0, u]. Figure 9 depicts the result-
ing polynomial approximations for d ∈ {1, 2, 3, 4}. The error ed(gCat-XL) =
‖gCat-XL − pd‖∞,[0,u] of the approximations on the interval is e1(gCat-XL) =
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FIGURE 9: Best uniform polynomial approximations of gCat-XL for different polynomial degrees in the
compact interval [0, 124.3412].

15.5189, e2(gCat-XL) = 4.0187, e3(gCat-XL) = 3.8741 and e4(gCat-XL) =
2.1740.

According to Section 3.1, the total L1-error is bounded from above by Ed :=
ed(gCat-XL) + 60 · ε, which yields E1 ≈ 18.5189, E2 ≈ 7.0187, E3 ≈ 6.8741
and E4 ≈ 5.1740. We combine the polynomial approximations of gCat-XL with
the fourth-order independent mean-field approximation with naive single split.
The fourth-order approximation is more accurate for lower order moments, but
the linear polynomial approximation is of such a low quality that the resulting
error is very large. In particular, a first-order mean-field approximation is not
able to deliver appropriate results for the Cat-XL. The expected losses are given
in Table 3. We reduced the number of Monte-Carlo samples to 10,000 for d =
1, 2, 3 and to 1,000 for d = 4 due to the higher computational complexity.

The fact that the first-order approximation performs very badly can be seen
by comparing the result to full insurance in Table 1. Clearly, full insurance
should provide an upper bound on the Cat-XL. The polynomial approximation
of degree 1 of the Cat-XL is, however, far larger.

Let us finally mention that we considered insurance of all agents in the net-
work and an initial distribution of the infection that was uniformly sampled
across the network. This implied a clear ranking of the three network structures
in terms of the risk. The spread of the infection will be different, if specific nodes
— e.g., the core nodes of the star network— are the origin of the infection. Our
model is capable of identifying critical nodes from which the infection spreads.
The effect can explicitly be quantified. Another interesting analysis concerns the
elimination of links and its impact on aggregate losses. Thereby, connections
can be identified (and potentially modified) that are critical for the spread of
the infection.
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Remark 4.1. The implementation of the suggested methodology is based on sev-
eral approximations that lead to approximation errors. First, the claim function is
approximated by polynomials. Second, not the exact ODE system is solved, but
only a mean-field approximation. Third, further sources of approximation errors
are the numerical ODE solver and the Monte-Carlo simulation of the processes
Mand L. This needs to be taken into account when cyber insurance contracts are
evaluated.

5. CONCLUSION

We developed a model of cyber losses that are triggered by two underlying risk
processes. First, a cyber infection spreads in a network, modeled by an inter-
actingMarkov process. Second, infected, i.e., vulnerable agents incur losses due
to cyber attacks that occur according to a point process. Due to the large di-
mension of the system, the computation of expected aggregate insurance losses
and pricing of cyber contracts is extremely challenging. We constructed a poly-
nomial approximation for claim functions and higher order mean-field approx-
imations that make these problems tractable. We demonstrated that for non-
linear claim functions, higher order polynomial approximations and mean-field
approximations are indispensable. We also showed that, if the initial infection is
uniformly distributed and all agents in the network are insured, homogeneous
networks are themost risky and star networks the least. Our techniques can also
be applied to identify critical initial infections and critical links in networks that
augment expected losses. A key role is played by the network topology. While
this paper focuses on fixed undirected graphs, future research could investigate
more realistic structures such as directed or random graphs.

NOTES

1. On the computing cluster that we used, we were able to numerically solve the coupled system
of ODEs for networks with N ≤ 13 agents.

2. Similar results of decreasing error are found for decreasing infection rate β and spectral
radius μ̂.

3. Obviously, the optimized single and equal split coincide for the second-order approxima-
tions, since sets of cardinality three are split in this case.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 3.7

We define the two functions

G1(x) := (βA− δI)x− βdiag(x)Ax, and

G2(x) := (βA− δI)x− βdiag(
√
x)A

√
x,

for x ∈ R
N.

i. Existence. For G1, the Picard–Lindelöf theorem (Theorem B.1) used in the proof of ii.
also yields existence of a solution to (11).
For G2, i.e., for the ODE describing the first-order Hilbert approximation, we use The-
orem B.2 to prove existence of a solution. Define a non-linear map Ḡ2 : R

N → R
N by

Ḡ2 = (βA− δI)x − β diag
√|x|A√|x|, where the absolute value and square root are

taken componentwise. Now consider the ODE system Ẋ(t) = Ḡ2(X(t)). This enlarges
the domain of definition of Ḡ2 compared to the original function in (13), G2, but does
not do any harm for initial conditions in R

N
≥0.

We now estimate the norm of Ḡ2. The matrix A = (ai j )1≤i, j≤N has zeros on the main
diagonal so we find

diag
√

|x|A
√

|x| =
⎛
⎝∑

j �=1

a1 j
√|x1xj |, . . . ,

∑
j �=N

aNj
√|xNxj |

⎞
⎠�

.

With |xi | ≤ ||x||∞ and noting that ai j ∈ {0, 1}, we have∑
j �=i

ai j
√|xi xj | ≤

∑
j �=i

||x||∞ = (N− 1)||x||∞.

Moreover, ||Ax||∞ ≤ ||A||·||x||∞ for the operator normof Awith respect to the l∞-norm.
Thus, overall,

||Ḡ2(x)||∞ ≤ (β||A|| + δ + N− 1)||x||∞.

Now let x0 ∈ R
N and choose r > 0. The previous inequality translates to

||Ḡ2(x)||∞ ≤ C(||x0||∞ + r).

on Br (x0) = {x ∈ R
N : ||x− x0|| < r} with C = β||A|| + δ + N − 1. Then, consider the

reciprocal fraction M/r with M= supx∈Br (x0) ||Ḡ2(x)||
M
r

≤ C(||x0||∞ + r)
r

.

Thus,
r
M

≥ 1
C

r
||x0||∞ + r

.

Theorem B.2 now shows that existence of a solution to (13) holds for any T satisfying
the inequality T < r/M.
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The global existence of a solution now follows from an iteration argument where in the
j th step we have initial condition x( j)

0 and radius r ( j). Start with any given initial con-
dition x(1)

0 = W(0) and set r (1) = ||x(1)
0 ||∞. Then, by Theorem B.2 there is a solution to

(13), W, on the time interval (0, 1
2C ]. Repeat this process with the new initial condition

x(2)
0 = W( 1

2C ) and with r (2) = ||x(2)
0 ||∞. This will again have a solution on an interval of

length at least 1
2C . Iterating this process and concatenating the solutions yields a solution

on [0,T] for arbitrary T.
ii. Uniqueness. Let BR(0) be the open ball of radius R in R

N endowed with the Euclidean
norm. We prove uniqueness using the Picard–Lindelöf theorem (Theorem B.1). Thus,
we need to show that there exists a Lipschitz constant L > 0 such that

||G1(x1) − G1(x2)||2 ≤ L||x1 − x2||2 (A.1)

for all x1, x2 ∈ BR(0). Then, Theorem B.1 states that the ODE has a unique solution on
some small time interval [0, t0]. Since the Lipschitz constant L does not depend on time,
the solution exists on the time interval [0, ∞). The solution is smooth by Proposition 6.2
of Taylor (2011) so in particular belongs to C([0,∞), R

N).
To prove the Lipschitz condition (A.1), first recall that the operator norm ||A||op of a
matrix A acting R

N → R
N endowed with the Euclidean norm is given by the spectral

radius μ̂ of A. Thus, it follows that the operator norm of diag(x) is bounded by ||x||2.
The claim now follows from a direct calculation. Let x1, x2 ∈ BR(0). Then,

||G1(x1) − G1(x2)||2
=||(βA− δI)x1 − β diag(x1)Ax1 − (βA− δI)x2 + β diag(x2)Ax2||2
=||(δI − βA)(x1 − x2) + β (diag(x1 − x2)Ax1 + β diag(x2)A(x1 − x2)) ||2
≤δ||x1 − x2||2 + β||A||op||x1 − x2||2 + β|| diag(x1 − x2)||op||A||op||x1||2

+ β|| diag(x2)||op||A||op||x1 − x2||2
=(δ + βμ̂(1 + 2R)||x1 − x2||2,

where we used the facts that || diag(x1 − x2)||op ≤ ||x1 − x2||2 and ||xi ||2 < R for i = 1, 2.
iii. Sandwich property.

a. First, we prove W(t) ≥ 0 for all t ≥ 0. By definition, all components of W(0) are
non-negative. Now, by inspection of (13), we can immediately deduce that whenever
a component, say wi , at some time t′ is zero, then its derivative ẇi (t′) is non-negative.
Thus, the trajectory of wi (t) will be non-negative for some time by the fundamental
theorem of calculus. By the continuity of the solution, it follows thatW(t) ≥ 0 for all
t ≥ 0.

b. Second, we prove the lower inequality for the exact dynamics, i.e., W(t) ≤ E[X(t)]
for all t ≥ 0. The proof of the upper inequality E[X(t)] ≤ V(t) is analogous. To
begin with, we know that W(0) = E[X(0)] = V(0) ∈ [0, 1]N by definition and
that dW(t)/dt ≤ dE[X(t)]/dt (see equation (12)). Let H(t) := E[X(t)] − W(t), i.e.,
hi (t) = E[Xi (t)] − wi (t) for all i = 1, . . . , N. Then, dH(t)/dt ≥ 0 for t ≥ 0 and
H(0) = 0. Now consider the interval [0, t] ⊂ R for t > 0. From the mean-value
theorem for vector-valued functions (cf. Matkowski, 2012), it follows that there exist
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constants m1, . . . ,mN ∈ [0, t] such that:

H(t) − H(0) = (t − 0) · (
dh1
dt

(m1), . . . ,
dhN
dt

(mN))� ≥ 0.

Thus, we have that H(t) ≥ 0 for all t ≥ 0, which provesW(t) ≤ E[X(t)] for all t ≥ 0.
c. Third, we show that V(t) ≤ 1 for all t ≥ 0. By definition, all components of V(0)

are not larger than 1. Now, by inspection of (11), we can immediately deduce that
whenever a component at some time t′ is 1, e.g., vi (t′) = 1, the reaction term vanishes
so that v̇i (t′) = −δ < 0. Thus, the function is pushed away from 1 toward 0. By the
continuity of the solution, it follows that V(t) ≤ 1 for all t ≥ 0.

iv. Stability. We apply Theorem B.3 to the function G1. First, V∗ ≡ 0 is an obvious fix-point
of G1. Second, the Jacobi matrix of G1 at any point V ∈ R

N is given by

JG1(V) = βA− δI − β (diag(V)A+ diag(AV)) .

In particular, at the fix-point V∗ ≡ 0, the Jacobi matrix reduces to

JG1(0) = βA− δI = −δ(I − τ A),

with τ = β/δ. JG1(0) is real and symmetric and, thus, possesses only real eigenvalues.
Let λ1, . . . , λN denote the eigenvalues of A. Then, the eigenvalues of JG1(0) are given by
−δ(1 − τλi ) for i = 1, . . . , N. Hence, all eigenvalues of JG1(0) are negative if and only
if τ < 1/max1≤i≤N λi = 1/μ̂ =: τ (1)

c . Thus, in this case, it follows from Theorem B.3
that the fix-point V∗ ≡ 0 is exponentially stable. Finally, since W(t) ≤ V(t) (part iii.), it
follows that the zero solution is also exponentially stable for (13).

A.2. Proof of Theorem 3.9

The difference yi (t) = E[Xi (t)] − vi (t) satisfies the ODE

d
dt
yi (t) = − δyi (t) + β(1 − yi (t))

N∑
k=1

aki yk(t)

− βRi (t) − βyi (t)
N∑
k=1

akivk(t) − βvi (t)
N∑
k=1

aki yk(t),

with initial condition yi (0) = 0. We want to apply Gronwall’s inequality to the l2-norm
1
2 ||y(t)||22. As a first step, we note that

d
dt

1
2 yi (t)

2 =yi (t) · d
dt
yi (t)

= − δyi (t)2 + βyi (t)(1 − yi (t))
N∑
k=1

aki yk(t)

− βyi (t)Ri (t) − βyi (t)2
N∑
k=1

akivk(t) − βyi (t)vi (t)
N∑
k=1

aki yk(t).
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Summing over all i , we obtain

d
dt

1
2 ||y(t)||2 = − δ||y(t)||2 + β

N∑
i=1

yi (t)(1 − yi (t))
N∑
k=1

aki yk(t)

− β〈y(t), R(t)〉 − β

N∑
i=1

yi (t)2
N∑
k=1

akivk(t) − β

N∑
i=1

yi (t)vi (t)
N∑
k=1

aki yk(t),

where 〈·, ·〉 denotes the standard inner product on R
N.

We now estimate the terms on the right-hand side. Recall that E[Xi (t)] and vi (t) only
take values in the interval [0, 1] so that also |yi (t)| ≤ 1. Denote by |y(t)| the vector
(|y1(t)|, . . . , |yN(t)|).
• We find that ∣∣∣∣∣β

N∑
i=1

yi (t)(1 − yi (t))
N∑
k=1

aki yk(t)

∣∣∣∣∣ ≤ β

N∑
i=1

|yi (t)|
N∑
k=1

aki |yk(t)|

≤ β〈|y(t)|, A|y(t)|〉
≤ β||A||op||y(t)||2.

• Clearly, −β
∑N

i=1 yi (t)
2
∑N

k=1 akivk(t) ≤ 0.
• It holds that −β〈y(t), R(t)〉 ≤ |β〈y(t), R(t)〉| ≤ β||y(t)||||R(t)|| ≤ β

2 ||y(t)||2 + β

2 ||R(t)||2
• As for the first term, we find∣∣∣∣∣β

N∑
i=1

yi (t)vi (t)
N∑
k=1

aki yk(t)

∣∣∣∣∣ ≤ β

N∑
i=1

|yi (t)|
N∑
k=1

aki |yk(t)|

≤ β〈|y(t)|, A|y(t)|〉
≤ β||A||op||y(t)||2.

As before, ||A||op denotes the operator norm of the matrix A; it is given by the largest eigen-
value μ̂ of A.
Collecting these estimates we arrive at

d
dt

1
2 ||y(t)||2 ≤ (−δ + 2β||A||op + β

2

) ||y(t)||2 + β

2 ||R(t)||2

or
d
dt

||y(t)||2 ≤ (−2δ + 4β||A||op + β
) ||y(t)||2 + β||R(t)||2.

We now apply Gronwall’s inequality in its differential form for which the sign of the term in
brackets is immaterial. This yields

||y(t)||2 ≤ e(−2δ+4β||A||op+β)tβ

∫ t

0
||R(s)||2ds,

as claimed.
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APPENDIX B: BASIC ODE THEORY
For convenience of the reader, this section contains the basic results fromODE theory used in
the proofs of Appendix A. To begin with, we need the following twomain results on existence
and uniqueness (cf. (Taylor, 2011, Theorem 2.1) and (Hille, 1968, Theorem 2.4.1)).

Theorem B.1 (Picard–Lindelöf-Uniqueness). Consider the general ODE system

dy
dt

= F(t, y), y(t0) = y0, (B.1)

with F : Dom(F) ⊂ R
N+1 → R

N defined in a neighborhood of (t0, y0). Let y0 ∈ O be an open
subset ofR

n and I ⊂ R an interval containing t0. Suppose F is continuous on I×O and satisfies
the Lipschitz condition

‖F(t, y1) − F(t, y2)‖ ≤ L‖y1 − y2‖,
for t ∈ I, yj ∈ O. Then, equation (B.1) has a unique solution on some t-interval containing t0.
Theorem B.2 (Peano-Existence). Suppose F(y) is defined and continuous in Br (y0) where
Br (y0) = {y ∈ R

n : ||y − y0|| < r} and suppose that ||F(y)|| ≤ M on Br (y0). Then, the
autonomous differential equation dy

dt = F(y) with initial condition y0 has at least one solution
y defined on the time interval (−T,T) where T < r/M.

In addition to the key questions of existence and uniqueness, one is also interested in equi-
libria, i.e., fix-points y∗ with F(t, y∗) = 0, and their stability, i.e., the behavior of solutions
near them. For the autonomous differential system,

dy
dt

= F(y), y(0) = y0,

a fix-point y∗ is called exponentially stable, if there exist constants α, ε,C > 0 such that for
all t ≥ 0

|y(t) − y∗| ≤ Ce−αt|y(0)−y∗|,

for any |y(0) − y∗| ≤ ε (Teschl, 2012, Chapter 6.5). Exponential stability is the strongest
type of equilibrium stability and can be proven using the following basic result (Teschl, 2012,
Theorem 6.10):

Theorem B.3. (Exponential stability via linearization). Suppose F ∈ C1 has a fix-point y∗

and suppose that all eigenvalues of the Jacobian matrix at y∗ have negative real part. Then, y∗

is exponentially stable.
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APPENDIX C: MATRIX FORM OF THE
nTH-ORDERMEAN-FIELD

APPROXIMATION
Let M := ∑n

k=1

(N
k

)
and denote the nth-order mean-field approximation by

z(n) := (z(n)
1 , z(n)

2 , . . . , z(n)
N , z(n)

12 , . . . , z(n)
1N, . . . , z(n)

1···n, . . . )
� ∈ R

M,

i.e., by the vector of solutions to the ODE system (16) in lexicographical order. Written in
matrix form, (16) reads

ż(n) = (βA(n) − δdiag(c))z(n)︸ ︷︷ ︸
Linear term

−β Q(z(n); F, Split)︸ ︷︷ ︸
Quadratic term

. (C.1)

As in the first-order case, the matrix equation is given as the difference of a linear and a
quadratic term. Note that the linear term is independent of the mean-field function F and
the chosen split, whereas the quadratic term crucially relies on these parameters. We now
describe both terms in detail.

Linear term: The matrix A(n) ∈ R
M×M is a tridiagonal block matrix

A(n) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D1,1 U1,2 0
L2,1 D2,2 U2,3

L3,2 D3,3 U3,4

. . .
. . .

. . .

Ln−1,n−2 Dn−1,n−1 Un−1,n

0 Ln,n−1 Dn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

with diagonal blocks

Dk,k ∈ R(Nk)×(Nk) with entries

Dk,k
I,I = A(n)

I,I = −
∑
i∈I

∑
j∈I

ai j ,

Dk,k
I,I\{i}∪{ j}(i∈I, j �∈I) = A(n)

I,I\{i}∪{ j}(i∈I, j �∈I) = ai j ,

for |I| = k, and k = 1, . . . , n,

upper diagonal blocks

Uk,k+1 ∈ R(Nk)×( N
k+1) with entries

Uk,k+1
I,I∪{ j}( j �∈I) = A(n)

I,I∪{ j}( j �∈I) = −
∑
i∈I

ai j ,

for |I| = k, k = 1, . . . , n − 1,
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and lower diagonal blocks

Lk,k−1 ∈ R(Nk)×( N
k−1) with entries

Lk,k−1
I,I\{i}(i∈I) = A(n)

I,I\{i}(i∈I) =
∑
j∈I

ai j ,

for |I| = k, k = 2, . . . , n.

The matrix diag(c) ∈ R
M×M is a diagonal matrix with vector c ∈ R

M on the diagonal. The
vector indicates the cardinality of the underlying index set, i.e., cI = k if and only if |I| = k.

Quadratic term: The quadratic term Q(z(n); F, Split) depends on the mean-field func-
tion F and on the chosen split I ∪ { j} = I1( j) ∪ I2( j) (for all subsets I ⊆ {1, . . . , N} of size
|I| = n and all indices j ∈ {1, . . . , N} with j �∈ I). We denote the split in matrix form by N
pairs of matrices

(I1(1), I2(1)) , . . . , (I1(N), I2(N)) ,

where I�( j) ∈ {0, 1}M×M (� = 1, 2) is defined by its entries

(I�( j))I,J :=
{
1, if |I| = n, j �∈ I, J = I�( j),

0, otherwise,

i.e., the row of the matrices I1( j) and I2( j) that corresponds to the set I encodes the subset
split of I∪{ j}, i.e., I1( j) and I2( j), respectively. Using this notation for the split, we can write
the quadratic term in matrix form as

Q(z(n); F, (I1( j), I2( j)) j=1,...,N) =
N∑
j=1

diag
(
I1( j) · F(z(n))

) · C(n)( j) · I2( j) · F(z(n)),

where

F(z(n)) := (F(z(n)
1 ), F(z(n)

2 ), . . . , F(z(n)
N ), F(z(n)

12 ), . . . , F(z(n)
1N), . . . , F(z(n)

1···n), . . . )
� ∈ R

M,

and for j = 1, . . . , N, the diagonal matrix C(n)( j) ∈ R
M×M is defined by its entries

(C(n)( j))I,I :=
{∑

i∈I ai j , if |I| = n, j /∈ I

0, otherwise.

Remark C.1 Plugging the derived expression for Q(z(n); F,Split) into equation (C.1), we imme-
diately see that the matrix equations for the nth- and first-order mean-field approximations (cf.
equations (11) and (13)) possess an analogous structure. Hence, the existence of a solution to the
nth-order mean-field approximation (for the mean-field functions F(x) = x and F(x) = √

x)
as well as its uniqueness (for F(x) = x) follow analogously to the proof of Theorem 3.7 i. and
ii., respectively.

Example C.2 As a concrete example, we consider the quadratic term for the naive single split.
Recall that this split is defined by I1( j) = I and I2( j) = j for all possible subsets I of size n
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and indices j /∈ I. In this case, the matrices I
single
1 ( j) become diagonal matrices, i.e.,

(I
single
1 ( j))I,I =

{
1, if |I| = n, j /∈ I,

0, otherwise,

and the matrices I
single
2 ( j) have non-zero entries only in the lower left corner, i.e.,

(I
single
2 ( j))I, j =

{
1, if |I| = n, j /∈ I,

0, otherwise.

This leads to the following quadratic term:

Q(z(n); F,Single Split) =
N∑
j=1

diag
(
I
single
1 ( j) · F(z(n))

)
· C(n)( j) · I

single
2 ( j) · F(z(n))

=
N∑
j=1

diag
(
F(z(n))

) · I
single
1 ( j) · C(n)( j) · I

single
2 ( j) · F(z(n))

= diag
(
F(z(n))

) ·
⎛
⎝ N∑

j=1

I
single
1 ( j) · C(n)( j) · I

single
2 ( j)

⎞
⎠ · F(z(n))

= diag
(
F(z(n))

) · B(n) · F(z(n)),

where the first step follows since I
single
1 ( j) is diagonal and the matrix B(n) ∈ R

M×M is defined by
its entries in the lower left corner

(B(n))I, j =
{∑

i∈I ai j , if |I| = n, j /∈ I

0, otherwise.

Note that in this special case, the quadratic term possesses the exact same structure as in the
first-order case.

APPENDIX D: ADJACENCYMATRICES
We explicitly give the adjacency matrices for the three example networks depicted in
Figure 6. The corresponding MATLAB-files are available upon request.
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AHomogeneous =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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AClustered =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0

⎞
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