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Abstract In this article, we functorially associate definable sets to k-analytic curves, and definable maps
to analytic morphisms between them, for a large class of k-analytic curves. Given a k-analytic curve X , our
association allows us to have definable versions of several usual notions of Berkovich analytic geometry

such as the branch emanating from a point and the residue curve at a point of type 2. We also characterize
the definable subsets of the definable counterpart of X and show that they satisfy a bijective relation with
the radial subsets of X . As an application, we recover (and slightly extend) results of Temkin concerning

the radiality of the set of points with a given prescribed multiplicity with respect to a morphism of
k-analytic curves. In the case of the analytification of an algebraic curve, our construction can also be
seen as an explicit version of Hrushovski and Loeser’s theorem on iso-definability of curves. However,

our approach can also be applied to strictly k-affinoid curves and arbitrary morphisms between them,
which are currently not in the scope of their setting.
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1. Introduction

Let (k, | · |) be a complete rank 1 non-Archimedean algebraically closed non-trivially

valued field. In this article we further develop the interplay between Berkovich spaces

and the model theory of algebraically closed valued fields by functorially associating a

definable set to a k-analytic curve in a large class, including analytifications of algebraic

curves as well as strictly k-affinoid curves. Our approach is direct and geometric: it is

based on the local structure of Berkovich curves (or equivalently the semistable reduction

theorem for curves), which enables us, in particular, to find definable counterparts of

several usual notions in Berkovich analytic geometry such as the branch emanating from

a point, the residue curve at a point of type 2, etc. In addition, the concrete nature of

our construction also allows us to provide an explicit description of the definable subsets

of our model-theoretic version of Berkovich curves.

Our results are deeply inspired by the foundational work of Ehud Hrushovski and

François Loeser [18]. Let us recall that, given an algebraic variety X , they introduced a

model-theoretic avatar of its Berkovich analytication X an, denoted by X̂ and called the

stable completion of X . This model-theoretic setting allows them to deduce, among others,

striking results about the homotopy type of X an, under quasi-projectivity assumptions

but removing assumptions from [3] such as smoothness, compactness and the existence

of a polystable model.

A crucial property of the space X̂ is that it carries a strict pro-definable structure,

that is X̂ is a projective limit of definable sets with definable surjective transition maps.

When X is a curve, Hrushovski and Loeser prove that X̂ is in fact iso-definable [18,

Theorem 7.1.1], namely in pro-definable bijection with a definable set. However, their

proof is not constructive and one cannot explicitly extract from their arguments a

particular definable set to identify X̂ with. As a result, in the case of the analytification of

an algebraic curve, our construction can also be seen as an explicit version of Hrushovski

and Loeser’s result on iso-definability of curves. Note that we show (Theorem 8.7) that

the definable set we associate to X an is in pro-definable bijection with X̂ . Although

restricted to one-dimensional spaces, an interesting advantage of our approach is that

it can handle some non-algebraic curves (and non-algebraic morphisms between them),

which currently lie beyond the scope of [18]. In addition, our methods make no use of

elimination of imaginaries in algebraically closed valued fields, which plays an important

role in [18].

In the setting of Berkovich curves, Michael Temkin introduced a notion of “radial

set” in his work about ramification of finite morphisms of k-analytic curves [28]. The

explicit nature of our construction allows us to characterize the definable subsets of the

definable set associated to a k-analytic curve X (Theorem 6.9) and to deduce that they
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are in canonical bijection with radial subsets of X (Theorem 7.5). As an application, we

are able to recover (and slightly extend), via model-theoretic methods, one of the main

results of [28]: given a flat morphism h : X → Y of strictly k-analytic curves of relative

dimension 0, the set Nh,d := {x ∈ X : degx (h) = d} is radial (Theorem 7.21).

It is worthy to note that the relation between definability and radiality is not new.

Using results from [18], John Welliaveetil has recently studied it in [29]. His results are

somehow complementary to ours. On the one hand, he only works with definable sets

which are definably path-connected, a restriction which is not present in our approach.

On the other hand, some of his results hold in families, a step which, even if it might

work in our setting, has not been developed in this article.

The article is laid out as follows. In § 2 we fix the notation and provide the needed

background both on Berkovich spaces and on the model theory of algebraically closed
valued fields. Section 3 provides a local–global analysis of k-analytic curves which will

constitute the core of our construction. The definable set associated to a Berkovich curve

is introduced in § 4, in which we also prove the functoriality of our construction. Definable

subsets of curves are described in §§ 5 and 6. Radiality and definability are discussed in

§ 7. Finally, the comparison with Hrushovski–Loeser spaces is presented in § 8.

Further directions

There are at least two interesting topics for further research in the direction of this article.

The first one is to extend the construction to fields of higher rank in the spirit of [13].
The second is to show that the construction can be made uniform in families.

2. Preliminaries

Throughout this article, (k, | · |) will be a complete rank 1 non-Archimedean algebraically

closed non-trivially valued field. We denote by k◦ its valuation ring, by k◦◦ its maximal

ideal and by k̃ its residue field. We denote by |k| and |k×| the images of k and k×

respectively by the absolute value | · |.

We set R>0 := R>0 ∪ {+∞} and R>0 := R>0 ∪ {+∞}. For a ∈ k and r ∈ R>0, we let

Dk(a, r) := {x ∈ k : |x − a| 6 r}

denote the closed disc centered at a of radius r , and for r ∈ R>0, we let

D−k (a, r) := {x ∈ k : |x − a| < r}

denote the open disc centered at a of radius r . We will often remove k from the notation

when no confusion arises. Note that points of k are closed discs of radius 0 and that k is

an open disc of radius +∞.

A Swiss cheese is a set of the form B \ (
⋃m

i=1 Bi ) where B is either k or a disc (open or

closed), each Bi is a disc (open or closed) properly contained in B such that Bi ∩ B j = ∅

for i 6= j and all discs have radius in |k|.
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2.1. Berkovich spaces

Recall that the Berkovich affine line A1,an
k is the space of multiplicative seminorms on the

polynomial ring in one variable k[T ] which extend the norm on k. Given x ∈ A1,an
k , H (x)

denotes the completion of the fraction field of k[T ]/ker(x), and is called the completed

residue field at x . The valued field extension H (x)|k determines the four possible types

of points of the line (see [1, § 1.4.4] for more details). Note that this classification can also

be applied to any given analytic curve. In the case of the Berkovich affine line, we will

use the η notation to denote points of type 1, 2 and 3 which we briefly recall. For a ∈ k
and r ∈ R>0, we let ηa,r denote the seminorm defined by

n∑
i=1

ai (T − a)i 7→ max{|ai |r i
: 1 6 i 6 n}.

The point ηa,r is of type 1 if r = 0, of type 2 if r ∈ |k×| and of type 3 if r ∈ R>0 \ |k×|. Since

k is algebraically closed, all points of type 1,2 or 3 are of the form ηa,r for some a ∈ k
and r ∈ R>0. Points of type 4 are all remaining points. Note that if k is maximally

complete, no point of type 4 exists.

We will fix from now on a point at infinity ∞ in P1(k) and a coordinate T on A1
k =

P1
k \ {∞}.

For a ∈ k and r ∈ R>0, we denote the closed Berkovich disc with center a and radius r
by

Dk(a, r) := {x ∈ A1,an
k : |(T − a)(x)| 6 r}

and, for a ∈ k and r ∈ R>0, we denote the open Berkovich disc with center a and radius r
by

D−k (a, r) := {x ∈ A1,an
k : |(T − a)(x)| < r}.

In particular, the affine line is an open disc of infinite radius. We set Dk := Dk(0, 1) and

D−k := D−k (0, 1). We will often remove k from the notation when no confusion arises.

Definition 2.1. A k-analytic curve is a purely one-dimensional separated reduced

k-analytic space. A nice curve is a curve that is isomorphic to the complement of finitely

many k-rational points in a compact strictly k-analytic curve.

Let X be a k-analytic curve. For i ∈ {1, 2, 3, 4}, we let X (i) denote the set of points of

type i in X . For i, j ∈ {1, 2, 3, 4}, we let X (i, j) denote X (i) ∪ X ( j), etc. For example, we

have

D(1,2)k = {ηa,r ∈ A1,an
k : a ∈ k◦, r ∈ |k| ∩ [0, 1]}

and

(D−k )
(1,2)
= {ηa,r ∈ A1,an

k : a ∈ k◦◦, r ∈ |k| ∩ [0, 1)}.

To simplify notation, we will write A1,(i)
k instead of A1,an,(i)

k , etc.

In what follows, we will often identify the set X (1) of points of type 1 with the set X (k)
of k-rational points.
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2.1.1. Residue curves and branches. Let X be a k-analytic curve. Let x ∈ X be

a point of type 2. The residue field H̃ (x) of H (x) has transcendence degree 1 over k̃,

hence it is the function field of a well-defined connected smooth projective curve over k̃.

We call the latter the residue curve at x and denote it by Cx .

The set of branches emanating from x is defined as

Bx := lim
←−
U

π0(U \ {x}),

where U runs through the neighborhoods of x in X . If x belongs to the interior of X ,

there is a natural bijection between the set of branches and the set of closed points of

the residue curve (see [11, 4.2.11.1]). We denote it by βx : Bx
∼
−→ Cx (k̃).

Let x ∈ X (2). A connected affinoid domain V of X is said to be a tube centered at x
if it contains x and if each connected component of V \ {x} is an open disc. Let V be a

tube centered at x . Then, to each connected component E of V \ {x}, one may associate

a unique branch βE emanating from x . We denote by

ρV : V → Cx

the map that sends x to the generic point of Cx and whose restriction to E is the constant

map with value βx (bE ), for each connected component E of V \ {x}.
We denote by UV the image of ρV . It is a Zariski-open subset of Cx . Note that V

cannot contain all the branches emanating from x (otherwise it would be boundaryless),

hence UV is a proper subset of Cx . In particular, it is an affine curve over k̃.

Let us make this construction more explicit in the case where X = P1,an
k and x = η0,1.

Then the closed unit disc V = Dk is a tube centered at η0,1. Denoting by t the image

of T in H̃ (η0,1), we have H̃ (η0,1) = k̃(t), hence Cη0,1 = P1
k̃
, and the natural map Bη0,1 →

π0(P1,an
k \ {η0,1}) is a bijection. It is not difficult to check that, in this case, the map ρV

coincides with the reduction map red : Dk → A1
k̃

from [1, § 2.4]. In particular, we have

UV = A1
k̃
.

Let f : X → Y be a morphism from X to a k-analytic curve Y that is finite at x .

Set y := f (x). We have an induced finite morphism f̃x : Cx → Cy . Moreover, by [11,

Théorème 4.3.13] for each a ∈ Cx (k̃), the ramification index ea of f̃x at a coincides with

the degree of f on the corresponding branch (i.e., the degree of the restriction of f to the

corresponding connected component of U \ {x} for every small enough neighborhood U
of x in X).

2.1.2. Triangulations. In this subsection we recall different concepts from [11] and [7]

that will be needed in the following sections. For convenience, we slightly change some

of the definitions and notation used in those references. Nonetheless, it will be very easy

to switch between our setting and theirs.

From now on, by an interval I , we mean a topological space homeomorphic to a

non-empty interval of R (closed, open, or semi-open). Graphs will be denoted by the

letter 0. The set of vertices of a graph 0 will be denoted by S and its set of edges by

E , each edge being isomorphic to an open interval. We do not require edges to have

endpoints. In particular, we allow the graph with one edge and no vertices. The arity of

a vertex x ∈ S is the number of edges to which x is attached.
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Definition 2.2 (Triangulation). Let X be a strictly k-analytic curve. A triangulation of X
is a locally finite subset S of X (1,2) such that

(i) S meets every connected component of X ;

(ii) X \ S is a disjoint union of open discs and open annuli (possibly punctured open
discs).

We consider the affine line (respectively the punctured affine line) to be an open disc
(respectively an open annulus).

Remark that any triangulation necessarily contains the singular points of X , its
boundary points and its points of type 2 where the residue curve has positive genus.

Let X be a strictly k-analytic curve endowed with a triangulation S. The set AS of
connected components of X \ S that are annuli is locally finite. Recall that the skeleton 0A
of an open annulus A is defined as the set of points with no neighborhoods isomorphic
to an open disc. It is homeomorphic to an open interval. We define the skeleton of the
triangulation S to be

0S := S ∪
⋃

A∈AS

0A.

It is a locally finite graph. We define its set of vertices as S and its set of edges as
ES := {0A : A ∈ AS} (in a loose sense, since some edges may have only one endpoint).
Remark that 0S contains no points of type 4 and that X \0S is a disjoint union of open
discs.

There exists a deformation retraction from the curve X to its skeleton 0S .

Lemma 2.3. The map

τ
(1,2,3)
D : [0, 1] × D(1,2,3)k → D(1,2,3)k

(t , ηa,r ) 7→ ηa,max(r,t)

is well-defined and continuous. It extends by continuity to a map τD : [0, 1]×Dk → Dk
that is a deformation retraction of Dk onto {η0,1}.

Let x ∈ S(2). Denote by WS,x the union of the connected components of X \ {x} that
are discs with boundary point x . Assume that WS,x misses at least one branch emanating
from x . Then, there exists a continuous injective map f : WS,x → Dk sending x to η0,1.
Since f is a homeomorphism onto its image, the map τD induces a deformation retraction
τS,x : [0, 1]×WS,x → WS,x of WS,x onto {x}. Moreover, τD does not depend on f .

If WS,x contains every branch emanating from x , we can still prove the existence of the
deformation retraction τS,x by covering WS,x by two smaller subsets of the kind we had
before and applying the argument to them.

Lemma 2.4. Let u < v ∈ R>0 and consider the annulus A := D−k (0, v) \Dk(0, u). The map

τ
(1,2,3)
A : [0, 1] × A(1,2,3) → A(1,2,3)

(t , ηa,r with r 6 |a|) 7→ ηa,max(r,t |a|)

is well-defined and continuous. It extends by continuity to a map τA : [0, 1]× A→ A that
is a deformation retraction of A onto 0(A) = {η0,r : r ∈ (u, v)}.
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Let us now consider the map

τS : [0, 1]× X → X

(t, y) 7→


τS,x (t, y) if y ∈ Wx for some x ∈ S(2);

τA(t, y) if y ∈ A for some A ∈ AS;

y if y ∈ S(1).

It is a deformation retraction of X onto 0S .

Convention 2.5. In this article, all triangulations will be assumed to be finite except in
§ 7. In particular, all skeleta will be finite graphs.

Let X be a nice curve. By definition, there exists a compact strictly k-analytic curve X
containing X such that X \ X is a finite set of k-rational points. Such a curve will be
called a compactification of X . Let us fix such a compactification X . Note that X is dense
in X .

We will denote by X̃ the normalization of X and by nX : X̃ → X the corresponding
morphism (see [9, § 5.2] for details). The curve X̃ is compact and quasi-smooth (which
is the same as rig-smooth or geometrically regular, see [10, Chapter 5] for a complete
reference). We will denote by s(X) the singular locus of X . Since X is reduced and k is
algebraically closed, X is generically smooth, hence s(X) is a finite set of k-rational points.
Moreover, the morphism X̃ \ n−1

X (s(X))→ X \ s(X) induced by nX is an isomorphism.

Lemma 2.6. Let S be a triangulation of X . Then S := S ∪ (X \ X) is a triangulation of X
with skeleton 0S = 0S ∪ (X \ X).

Let S′ be a triangulation of X containing X \ X . Then S′ ∩ X is a triangulation of X
with skeleton 0S′∩X = 0S′ ∩ X .

Let S′ be a triangulation of X . Then n−1
X (S′) is a triangulation of X̃ and nX induces an

isomorphism 0n−1
X (S′) \ n−1

X (s(X))
∼
−→ 0S′ \ s(X).

Let S′′ be a triangulation of X̃ containing n−1
X (s(X)). Then nX (S′′) is a triangulation

of X and nX induces an isomorphism 0S′′ \ n−1
X (s(X)))

∼
−→ 0nX (S′′) \ s(X).

Theorem 2.7. Let X be a nice curve. Let S0 be a finite subset of X (1,2). Then, there exists
a finite triangulation S of X containing S0.

Proof. Lemma 2.6 shows that we may replace X by X̃ , hence assume that X is compact
and quasi-smooth. In this case, the result follows from the semistable reduction theorem
(see [1, Theorem 4.3.1] or [11, Théorème 5.1.14]).

Definition 2.8. Let X be a strictly k-analytic curve and let S1, S2 be two triangulations
of X . We say that S2 refines S1 if S1 ⊆ S2.

Note that if S2 refines S1, the associated skeleta 0S1 and 0S2 have the same homotopy
type.
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Lemma 2.9. Let X be strictly k-analytic curve and S1, S2 ⊆ X be two triangulations of X
such that S2 refines S1. If S1 6= S2, then there is x ∈ S2 \ S1 of arity 6 2. Moreover, for
every such x, S2 \ {x} is a triangulation that refines S1.

Proof. We split in cases.
Case 1: Suppose there is y ∈ S2 ∩ (X \0S1). Then, the connected component E of y in

X \0S1 is isomorphic to an open disc. Since 0S1 and 0S2 have the same homotopy type,
there cannot be a loop in 0S2 containing y. Therefore, E ∩ S2 must contain a point x of
arity 1 in 0S2 .

Case 2: Suppose S2 ⊆ 0S1 . For x ∈ S2 \ S1, since 0S1 \ S1 is a disjoint union of open
intervals, x is contained in only one of such intervals. Therefore its arity is 2.

We leave to the reader the proof of the final assertion of the lemma.

Definition 2.10 (Compatibility). Let f : X1 → X2 be a morphism of strictly k-analytic
curves. A pair of triangulations (S1, S2), where Si is a triangulation of X i , is said to be
f -compatible if we have f −1(S2) = S1 and f −1(ES2) = ES1 .

In the compact case, compatible triangulations always exist, as a consequence of
Theorem 2.7 (see the proof of the simultaneous semistable reduction theorem in [7,
§ 3.5.11] for more details).

Theorem 2.11. Let f : X1 → X2 be a morphism of compact strictly k-analytic curves of
relative dimension 0. Then, there exists an f -compatible pair of triangulations (S1, S2).

Moreover, we may assume that S1 (respectively S2) contains any given finite subset

of X (1,2)1 (respectively X (1,2)2 ).

We now prove a similar result under slightly less restrictive hypotheses.

Definition 2.12. A morphism f : X1 → X2 of nice curves is said to be compactifiable if
there exist compactifications X1 and X2 of X1 and X2 and a morphism f : X1 → X2 such
that the diagram

X1 X1

X2 X2

f f

commutes.

Remark 2.13. Let C1 be a reduced algebraic curve over k. Then, it admits a (unique)
compactification C1 such that C1 \C1 is a finite set of smooth k-rational points. In
particular, the local ring at each point of C1 \C1 is a discrete valuation ring. Let C2
be an algebraic curve over k and let C2 be any compactification of it. Then the
valuative criterion of properness ensures that any morphism f : C1 → C2 extends to a
morphism f : C1 → C2. In particular, the morphism f an

: Can
1 → Can

2 is compactificable

(with compactification f
an

).
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Remark 2.14. Let f : X1 → X2 be a compactifiable morphism of nice curves of relative
dimension 0 and let f : X1 → X2 be a compactification of it. Then f̄ is still of relative
dimension 0, since curves and their compactifications only differ by finitely many
k-rational points.

By normalizing around the points of X2 \ X2, we get another compactification X
′

2
with the property that X

′

2 \ X2 contains only smooth k-points. Similarly, we can define

another compactification X
′

1 of X1. The universal property of normalization ensures

that f extends to a morphism f
′
: X
′

1 → X
′

2. Since the points in X
′

2 \ X2 are smooth,

the morphism f
′

is flat above those points. In particular, if f is flat, then f
′

is flat.

Corollary 2.15. Let f : X1 → X2 be a compactifiable morphism of nice curves of relative
dimension 0. Then, there exists an f -compatible pair of triangulations (S1, S2).

Moreover, we may assume that S1 (respectively S2) contains any given finite subset

of X (1,2)1 (respectively X (1,2)2 ).

We end this section with two lemmas that will be useful later.

Lemma 2.16. Let a0, b0 ∈ k and r0, s0 ∈ R>0. Let h : D−(a0, r0)→ D−(b0, s0) be a
non-constant morphism. Let r ∈ (0, r0), s ∈ (0, s0) and a, b ∈ k with |a− a0| < r0 and
|b− b0| < s0.

Then, the following conditions are equivalent:

(i) h(ηa,r ) = ηb,s ;

(ii) h(D(a, r)) = D(b, s);

(iii) h(D(a, r)) = D(b, s).

In particular, the image of D(a, r) is a closed disc.

Proof. (i) H⇒ (ii) Recall that we can define a partial order on the points of a Berkovich
disc D−(α, ρ) by setting x 6 y when we have | f (x)| 6 | f (y)| for each f ∈ O(D−(α, ρ)).
Remark that the order is preserved by morphisms of discs, since functions pull back. In
what follows, we will consider this order on the discs D−(a0, r0) and D−(b0, s0).

Let x ∈ D(a, r). We then have x 6 ηa,r , hence h(x) 6 h(ηa,r ) = ηb,s , and it follows that
h(x) ∈ D(b, s). We have proven that h(D(a, r)) ⊆ D(b, s).

Let us now prove the converse inclusion. Up to changing coordinates, we may assume
that a0 = a = 0 and b0 = b = 0. The morphism h is then given by a power series H ∈ k[[T ]]
of radius of convergence at least r0. Set c = H(0). We have |c| < s0.

Recall that the Newton polygon of a power series F =
∑

n>0 fn T n
∈ k[[T ]] of radius

of convergence at least R is defined as the lower convex hull of the set of points
{(n,− log(| fn|)) : n > 0} and that, for any ρ ∈ (0, R), F has a root of absolute value ρ if,
and only if, the Newton polygon has an edge of slope log(ρ).
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Set K :=H (η0,s). Let z ∈ D(0, s)(K ) whose image in D(0, s) is η0,s . By assumption,
the power series H − z ∈ K [[T ]] has a zero of absolute value r (over η0,r ) in some extension
of K , hence the corresponding Newton polygon has an edge of slope log(r).

Let y ∈ D(0, s). Let L be a complete valued extension of K such that y ∈ D(0, s)(L).
We want to prove that y ∈ h(D(0, r)). If H(0) = y, then we are done, so we assume that
this is not the case. It is enough to prove that the power series H − y ∈ L[[T ]] has a zero
(in some extension of L) with absolute value less than or equal to r , or equivalently that
the Newton polygon of H − y has an edge with slope less than or equal to log(r). Since
the Newton polygons of H − y and H − z have the same endpoint, it is enough to prove
that the former lies above the latter.

The coefficients of the power series H − y and H − z are the same except for the
constant ones, which are c− y and c− z, respectively. To prove the result, it is enough
to show that |c− y| 6 |c− z|. If |c| > s, then we have |c− y| = |c− z| = |c|, and we are
done. If |c| 6 s, then we have |c− y| 6 s and |c− z| = s, because z lies over η0,s , so we
are done too.

Note that the final part of the statement follows from this implication. Indeed, since h
is quasi-finite, the image of the point ηa,r is of type 2 or 3, hence of the form ηb′,s′ , so we
have h(D(a, r)) = D(b′, s′).
(ii) H⇒ (iii) This is obvious.
(iii) H⇒ (i) There exist s′ ∈ (0, s0) and b′ ∈ k with |b′− b0| < s0 such that h(ηa,r ) =

ηb′,s′ . It follows from the former implications that we have D(b′, s′) = h(D(a, r)) =
D(b, s). Over a field whose valued group is dense in R>0, a Berkovich disc is characterized
by its rational points. We deduce that D(b′, s′) = D(b, s) and ηb′,s′ = ηb,s .

Lemma 2.17. Let a1, a2 ∈ k and r1, r2, r ′1, r
′

2 ∈ R>0 with r1 < r ′1 and r2 < r ′2. For i = 1, 2,

consider the annulus Ai := {x ∈ A1,an
k : ri < |(T − ai )(x)| < r ′i } with skeleton 0Ai = {ηai ,s :

ri < s < r ′i }. Let h : A1 → A2 be a surjective morphism such that h−1(0A2) = 0A1 .
Then, for s1 ∈ (r1, r ′1)∩ |k

×
| and s2 ∈ (r2, r ′2)∩ |k

×
|, the following conditions are

equivalent:

(i) h(ηa1,s1) = ηa2,s2 ;

(ii) h(D(a1, s1) \D−(a1, s1)) = D(a2, s2) \D−(a2, s2);

(iii) h(D(a1, s1) \ D−(a1, s1)) = D(a2, s2) \ D−(a2, s2).

and, for b1, b2 ∈ k with r1 < |b1− a1| < r ′1 and r2 < |b2− a2| < r ′2, s1 ∈ [0, |b1− a1|) and
s2 ∈ [0, |b2− a2|), the following conditions are equivalent:

(i′) h(ηb1,s1) = ηb2,s2 ;

(ii′) h(D(b1, s1)) = D(b2, s2);

(iii′) h(D(b1, s1)) = D(b2, s2).

Proof. By assumption, we have h−1(0A2) = 0A1 . It follows that the connected
components of A1 \0A1 (which are discs) are sent to connected components of A2 \

0A2 (which are discs). The equivalence between (i′), (ii′) and (iii′) now follows from
Lemma 2.16.
(i) H⇒ (ii) For i = 1, 2, the union of the connected components of Ai \0Ai whose
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closure contains ηai ,si is equal to D(ai , si ) \D−(ai , si ). We deduce that h(D(a1, s1) \

D−(a1, s1)) ⊆ D(a2, s2) \D−(a2, s2). By [11, 3.6.24], the restriction of h to 0A1 is injective,
and the other inclusion follows.
(ii) H⇒ (iii) This is obvious.
(iii) H⇒ (i) The union of the connected components of A1 \0A1 containing D(a1, s1) \

D−(a1, s1), which is equal to D(a1, s1) \D−(a1, s1) is sent by h to the union of the
connected components of A2 \0A2 containing D(a2, s2) \ D−(a2, s2), which is equal to
D(a2, s2) \D−(a2, s2). By continuity, the boundary of the former set, which is {ηa1,s1} is
sent to the boundary of the latter, which is {ηa2,s2}.

2.2. Model theory of algebraically closed valued fields

Let L0 be a first order one-sorted language. We write L0-structures in bold letters like M
or k and we let M and k be their underlying universes. We also use the notation (k,L0)

to indicate that k is an L0-structure. All multi-sorted languages L that will be considered
in this article will be reducts of Leq

0 for some one-sorted language L0, and we suppose
that L contains the home sort from L0. As such, we will also write L-structures with
bold letters like M or k where M and k denote respectively the universe of the home sort
L0. We write a ∈ k and C ⊆ k to say that a is an element of some sort in L and that C
is a subset of the (disjoint) union of all sorts.

Let k be a (possibly multi-sorted) L-structure and let θ(x) be a formula where x is a
tuple of variables ranging over possibly different sorts. We let θ(k) denote the set of tuples
in k that satisfy θ . For sorts S1, . . . , Sn in L, a subset X ⊆ S1× · · ·× Sn is L-definable if
X = θ(k) for some L-formula with parameters in k. In particular when X is L-definable
(over k) and k′ is an elementary extension of k, we use X (k′) to denote the set of tuples in
k′ that satisfy the formula that defines X . If needed, we sometimes write X (k) redundantly
to express that we work over the points of X in k. Note that we use X (k) and not X (k),
as the latter expression will usually have a different meaning (see Convention 2.19).

2.2.1. Algebraic structure. We will study the valued field (k, | · |) as a first order
structure using different languages. The first one is the three-sorted language L3 defined
by:

• a sort VF for the valued field k (the home sort) in the language of rings Lring :=

{+,−, ·, 0, 1},

• a sort VG for |k| (that is, the value group |k×| extended with an infinitely small element
denoted by 0) in the language {6, ·, 1, 0};

• a sort RF for the residue field k̃ in the language Lring;

• the valuation | · | : k → |k| map and the residue map res(x, y) : K 2
→ k̃, sending (x, y)

to the residue of xy−1 if |x | 6 |y| 6= 0, and to 0 otherwise.

We will also consider a language LB extending L3 in which we add a sort for the
interpretable set of closed discs with radius in |k|. Formally, consider the L3-definable
equivalence relation ∼ on VF×VG given by

(a, r) ∼ (b, s)⇔ r = s ∧ |a− b| 6 r ⇔ D(a, r) = D(b, s).

We let the set B denote the quotient (VF×VG)/ ∼. The language LB corresponds to L3
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extended by a new sort for B and a symbol b for the quotient map b : (VF×VG)→ B.

Let k be a valued field and k be its associated LB-structure. The set B(k) is in bijection
with A1,(1,2)

k via the map (a, r)/∼ 7→ ηa,r . Using this identification, in what follows we will

treat A1,(1,2)
k as the LB-definable set B(k) and we will use the notation ηa,r to denote its

elements. The reader should think of A1,(1,2)
k as the LB-definable avatar of the Berkovich

affine line. This identification will be further strengthened in § 8. As usual, when k is
clear from the context, we will write B instead of B(k).

The canonical injection from k to B sending a to ηa,0 and the map ηa,r 7→ r are clearly

LB-definable. Similarly, the map red : (D(1,2)k \ {η0,1})→ k̃ given by ηa,r 7→ res(a, 1) is
LB-definable. Note that the function red agrees with the usual reduction map in the
sense of [1, § 2.4].

Remark 2.18. For every automorphism σ : A1
k → A1

k , the restriction of σ an to A1,(1,2)
k is

LB-definable. Indeed, σ an can be defined by

σ an(ηa,r ) = ηb,s ⇔ σ(D(a, r)) = D(b, s).

The theory of algebraically closed valued fields does not eliminate imaginaries in the
language LB. By a result of Haskell, Hrushovski and Macpherson [16], it does in the
so-called geometric language which we now recall. The geometric language, denoted by
LG , corresponds to the extension of L3 by adding the following sorts:

• for each n > 0, a sort Sn of k◦-lattices in kn (free k◦-submodules of rank n), which
corresponds to the quotient GLn(k)/GLn(k◦);

• for each n > 0, a sort Tn for the union of all quotients s/k◦◦s, where s is a k◦-lattice in
kn (they are k̃-vector spaces of dimension n).

We finish this subsection with the following convention concerning algebraic varieties.

Convention 2.19. By elimination of imaginaries in algebraically closed fields, all varieties
(algebraic and projective) and all finite algebraic morphisms over k (respectively over
k̃) may be identified with Lring-definable sets defined over k (respectively over k̃). If X
is a variety, we let X (k) be some Lring-definable set which is in bijection with the set
of k-points of X . The association X 7→ X (k) is functorial up to definable bijections. We
refer the reader to [22, Remark 3.10] and [15, Chapter II, Propositions 2.6 and 4.10] for
the necessary background on this identification.

2.2.2. Analytic structure. We will also consider expansions of (k,L3) and (k,LB)
by adding analytic structure to the valued field sort VF as defined in [6] by Cluckers
and Lipshitz. Following their terminology, an analytic structure is given by a separated
Weierstrass system, that is, a family

⋃
m,n Am,n of rings Am,n ⊆ k◦[[X, Y ]] with X =

(X1, . . . , Xm), Y = (Y1, . . . , Yn), satisfying further analytic properties such as Weierstrass
preparation and division theorems, among others (see [6, § 4.1]). Here we will work over
the analytic structure defined in [6, Example (3), § 4.4] which goes back to Lipshitz [20].
The key property for our purposes is that each Am,n contains k◦{X1, . . . , Xm}, the ring of
power series with coefficients in k◦ which converge to 0. The language Lan corresponds to
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the language of rings Lring together with a function symbol for each f ∈
⋃

m,n Am,n and

a new unary function symbol ·−1. We interpret the language Lan on k as follows:

• the symbol ·−1 is interpreted as the function sending x ∈ k× to its multiplicative inverse
x−1 and 0−1

:= 0 by convention;

• to each f ∈ Am,n the corresponding function symbol f L
an

is interpreted by

f L
an
(x, y) =

 f (x, y) if (x, y) ∈ (k◦)m × (k◦◦)n

0 otherwise.

The languages Lan
3 and Lan

B correspond respectively to the extensions of L3 and LB in
which Lring is replaced by Lan in the valued field sort VF. They are interpreted in k in
the obvious way.

Let A be a strictly k-affinoid algebra. By definition, it admits a presentation of the
form

A = k{T1, . . . , Tn}/( f1, . . . , fm),

with f1, . . . , fm ∈ k{T1, . . . , Tn}. We let f denote the tuple ( f1, . . . , fm) and we treat f
as a given presentation of A.

Definition 2.20. Let A = k{T1, . . . , Tn}/( f1, . . . , fm) be a strictly k-affinoid algebra.

(i) The given presentation is said to be Lipshitz if f1, . . . , fm ∈ k◦{T1, . . . , Tn}.

(ii) The given presentation is said to be distinguished if the spectral norm on A
coincides with the residue norm induced by the supremum norm on the Tate algebra
k{T1, . . . , Tn}.

Lemma 2.21. (i) Any strictly k-affinoid algebra admits a Lipshitz presentation.

(ii) Any reduced strictly k-affinoid algebra admits a distinguished Lipshitz presentation.

Proof. Let A = k{T1, . . . , Tn}/( f1, . . . , fm) be a strictly k-affinoid algebra. Multiplying
the elements f1, . . . , fm by a constant does not change the algebra A, which proves
point (i).

Assume that A is reduced. By [4, Theorem 6.4.3/1 and Proposition 6.2.1/4], it admits a
distinguished presentation, which we can turn into a distinguished Lipshitz presentation
as before.

Suppose from now on that A = k{T1, . . . , Tn}/( f1, . . . , fm) is a strictly k-affinoid algebra
with a Lipshitz presentation. Set X :=M(A). We associate to this data the Lan-definable
subset

{(x1, . . . , xn) ∈ kn
: |xi | 6 1, f j (x1, . . . , xn) = 0, 1 6 i 6 n, 1 6 j 6 m}.

The given presentation induces a bijection between this set and the set X (k) of k-rational
points of X . We will therefore abuse notation and denote the former set by X f (k) to keep
in mind that it depends on the choice of a presentation of A.

Let B = k{U1, . . . ,Up}/(g1, . . . , gq) be a strictly k-affinoid algebra with a Lipshitz
presentation g = (g1, . . . , gq). Set Y :=M(B) and define Yg(k) as before.
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A bounded morphism ϕ∗ : B→ A is determined by the data of h1 = ϕ
∗(U1), . . . , h p =

ϕ∗(Up) in A. Note that we have ∀i ∈ {1, . . . , p}, ‖hi‖sp 6 1;

∀ j ∈ {1, . . . , q}, g j (h1, . . . , h p) = 0,
(1)

where ‖·‖sp denotes the spectral seminorm on A.
Conversely, given h1, . . . , h p ∈ A satisfying (1), there exists a bounded

morphism ϕ∗ : B→ A such that, for each i ∈ {1, . . . , p}, ϕ∗(Ui ) = hi .
Let ϕ : X → Y denote the morphism induced by ϕ∗ and ϕ f g : X f (k)→ Yg(k) be the

map induced by ϕ.

Lemma 2.22. Assume that the presentation of A is distinguished. Then, the map
ϕ f g : X f (k)→ Yg(k) is Lan-definable.

Proof. Let i ∈ {1, . . . , p}. Since the presentation of A is distinguished, we may find a
representative Hi ∈ k{T1, . . . , Tn} of hi ∈ A with ‖Hi‖ = ‖hi‖sp. Since ‖hi‖sp 6 1, we have
Hi ∈ k◦{T1, . . . , Tn} which are elements of Am,0.

The map ϕ f g : X f (k)→ Yg(k) now coincides with the map

(x1, . . . , xn) ∈ X f (k) 7→ (H1(x1, . . . , xn), . . . , Hp(x1, . . . , xn)) ∈ Yg(k),

which is Lan-definable.

Corollary 2.23. The map ϕ f g : X f (k)→ Yg(k) induced by ϕ is Lan-definable.

Proof. Let Ared be the reduction of A. By Lemma 2.21, Ared admits a distinguished
Lipshitz presentation h that we use from now on. Set X ′ :=M(Ared) and let ψ : X ′→ X
be the natural morphism.

By Lemma 2.22, the map ψh f : X ′h(k)→ X f (k) is Lan-definable. Note that it is also
bijective and that its inverse is necessarily Lan-definable too.

By Lemma 2.22 again, the map ϕ f g ◦ψh f : X ′h(k)→ Yg(k) is Lan-definable. The result

now follows by writing ϕ f g = (ϕ f g ◦ψh f ) ◦ψ
−1
h f .

Convention 2.24. Thanks to those results, in the rest of the text, we will not choose
presentations for the affinoid algebras we consider. We will implicitly assume that they
are endowed with Lipshitz presentations and, in this case, the associated definable sets
will only depend on those presentations up to definable bijections. In particular if A is a
strictly k-affinoid algebra and X :=M(A) we will write X (k) to denote the Lan-definable
set X f (k) for some Lipshitz presentation f of A.

2.3. Common results:

We refer the reader to [16, Theorem 7.1] and [6, Theorem 4.5.15] for the proof of the
following results.

Theorem 2.25. The theories of (k,L3) and (k,Lan
3 ) have quantifier elimination.
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Theorem 2.26 [21, Theorem 1.6]. The structure (k,Lan
3 ) is C-minimal, that is, every

Lan
3 -definable subset of X ⊆ k is a finite disjoint union of Swiss cheeses (and this condition

also holds in every elementarily equivalent structure).

The following are some consequences of quantifier elimination (which also follow from
C-minimality, see [17] or [12]).

Lemma 2.27. Consider a structure (k,Lan
3 ). Then

(i) the value group is o-minimal, that is, every Lan
3 -definable set Y ⊆ |k| is a finite

union of intervals with endpoints in |k| ∪ {+∞} and points.

(ii) The residue field is strongly minimal, that is, every Lan
3 -definable set Y ⊆ k̃ is either

finite or cofinite. As a consequence, every Lan
3 -definable subset Y ⊆ C(k̃), for C an

algebraic curve over k̃, is also either finite or cofinite.

In fact, one can show both |k| and k̃ are stably embedded : every Lan
3 -definable subset of

|k|n is already definable in the language {6, ·, 0, 1}, and analogously, every Lan
3 -definable

subset of (k̃)n is already Lring-definable.

3. Local and global structure of curves

In this section, we will state structure results for k-analytic curves. Those results are
mostly well known and derive from the semistable reduction theorem (see for instance
[1, Theorem 4.3.1]). In [11], Antoine Ducros provided a thorough reference on those
questions, including full purely analytic proofs. We heavily borrow from his presentation
and our proofs are often inspired by his. The main novelty of our presentation lies in the
formalism we introduce, that fits our needs, and in making more precise the categories
in which we can find the various isomorphisms coming into play, which will be crucial
for us in the following.

3.1. Algebraic curves

Convention 3.1. In what follows, an algebraic curve will be a separated reduced purely
one-dimensional scheme of finite type over k.

Note that the analytification of an algebraic curve is nice in the sense of Definition 2.1.

3.1.1. Local structure. Let C be an algebraic curve over k. We will prove local
structure results around smooth points of Can. Note that, since Can is reduced and k is
algebraically closed, each point of type 2, 3 or 4 is automatically smooth.

We will denote by M the sheaf of meromorphic functions on C . Note that, in our case,
a meromorphic function is locally a quotient of regular functions.

Proposition 3.2. Let x ∈ Can be a smooth point of type 1. Let U be a neighborhood of x
in Can. There exist a Zariski-open subset O of C, a morphism f : O → A1

k and an open
neighborhood V of x in U such that
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(i) V ⊆ Oan;

(ii) f an(V ) is an open disc with radius in |k×| in A1,an
k ;

(iii) f an
|V induces an isomorphism onto its image.

Proof. Since C is smooth at x , there exists a Zariski-open subset O of C containing x
and an étale morphism f : O → A1

k . By the inverse function theorem, f an induces an
isomorphism around x and the result follows.

Lemma 3.3. Let x ∈ Can and ε > 0. For each α0 ∈H (x), there exists α ∈M (C) such
that α is regular at x, non-constant around x and satisfies |α(x)−α0| < ε.

Proof. We may reduce to the case where C is affine, say C = Spec(A). In this case, the
result follows from the density of the total ring of fractions of A in H (x).

Proposition 3.4. Let x ∈ Can be a smooth point of type 4. Let U be a neighborhood of x
in Can. There exist a Zariski-open subset O of C, a morphism f : O → A1

k and an open
neighborhood V of x in U such that

(i) V ⊆ Oan;

(ii) f an(V ) is an open disc with radius in |k×| in A1,an
k ;

(iii) f an
|V induces an isomorphism onto its image.

Proof. By [11, Théorème 4.5.4], there exists an isomorphism f0 : U ′→ D from a
neighborhood U ′ of x in U to a disc D. In particular, there exists α0 ∈H (x) such that
k(α0) is dense in H (x). By [27, Lemma 3.1.6] and Lemma 3.3, there exists α ∈M (C)
such that α is non-constant, regular at x and k(α(x)) is still dense in H (x).

The element α induces a non-constant morphism f : O → P1
k , where O is a Zariski-open

subset of C containing x . Note that it is étale at x . Up to composing by an automorphism
of P1

k , we may assume that f an(x) 6= ∞. Up to replacing O by O \ f −1(∞), we may
assume that we have a morphism f : O → A1

k . By construction, f induces an isomorphism

H ( f an(x))
∼
−→H (x). By [2, Theorem 3.4.1], it is an isomorphism around x and the result

follows.

Proposition 3.5. Let x ∈ Can be a point of type 3. Let U be a neighborhood of x
in Can. There exist a Zariski-open subset O of C, a morphism f : O → A1

k and an open
neighborhood V of x in U such that

(i) V ⊆ Oan;

(ii) f an(V ) is an open annulus with radii in |k×| in A1,an
k ;

(iii) f an
|V induces an isomorphism onto its image.

Proof. By [11, Théorème 4.5.4], there exists an isomorphism f0 : U ′→ A from a
neighborhood U ′ of x in U to an annulus A. We can then argue as in the preceding
proof.

In order to handle points of type 2, we will need the following result.
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Lemma 3.6. Let x ∈ Can be a point of type 2. Let f̃ : Cx → P1
k̃

be a finite morphism. There

exist a Zariski-open subset O of C and a morphism f : O → A1
k such that

(i) x ∈ Oan, f an(x) = η0,1 and f an is finite at x;

(ii) f̃x = f̃ .

Proof. Denote by t the image of T in H̃ (η0,1). Remark that k̃(t) ' H̃ (η0,1).
Set α̃ := f̃ ∗(t). Choose α ∈M (C) such that |α(x)| = 1 and α̃(x) = α̃. There exists a

Zariski-open subset O of C and a morphism f : O → P1
k such that f ∗(T ) = α. As in the

proof of Proposition 3.4, up to composing by an automorphism of P1
k and shrinking O,

we may assume that we have a morphism f : O → A1
k . The required properties are now

satisfied by construction.

The following result is essentially a reformulation of [11, Théorème 4.4.15] in a more
precise form. We include the proof for the reader’s convenience.

Proposition 3.7. Let x ∈ Can be a point of type 2. Let U be a neighborhood of x in Can.
There exist a Zariski-open subset O of C, a morphism f : O → A1

k and an affinoid
domain V of U with Shilov boundary {x} such that

(i) V ⊆ Oan;

(ii) f an(x) = η0,1 and f an(V ) is equal to Dk deprived of finitely many open unit discs;

(iii) for each connected component E of V \ {x}, f an(E) is a connected component
of f an(V ) \ {η0,1} and the morphism f an induces an isomorphism between E
and f an(E).

In particular, every connected component of V \ {x} is an open disc.

Proof. Let f̃ : Cx → P1
k̃

be a finite generically étale morphism and lift it to a morphism

f : O → A1
k as in Lemma 3.6.

Let U ′ be a connected open neighborhood of x in Oan. Up to restricting U ′, we may
assume that f an induces a finite morphism from U ′ to an open subset of A1,an

k and that
each connected component of U ′ \ {x} contains only one branch emanating from x (see
[11, Theorem 4.5.4]). In this case, the degree of the restriction of f an to such a connected
component is equal to the ramification index of f̃ on the corresponding rational point.

Denote by E the set of connected components of Dk \ {η0,1}. For each finite subset F
of E , the set VF := {η0,1} ∪

⋃
E∈E\F E is an affinoid domain of Dk . More precisely, it

is equal to Dk deprived of finitely many open unit discs. Moreover, each neighborhood
of η0,1 contains such a set VF . In particular, by choosing F big enough, we may assume
that the connected component V of ( f an)−1(VF ) containing x is contained in U ′ and that
the morphism f̃ is étale, hence unramified, over Ux := f̃ −1(UF ), where UF denotes the
complement of the image of F in Cη0,1 = P1

k̃
. The result follows.

We give names to the notions we have just introduced.

Definition 3.8. An algebraic open disc is the data of a Zariski-open subset O of C , an
open subset V of Can and a morphism f : O → A1

k such that
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(i) V ⊆ Oan;

(ii) f an(V ) is an open disc with radius in |k×| in A1,an
k ;

(iii) f an
|V induces an isomorphism onto its image.

An algebraic open annulus is the data of a Zariski-open subset O of C , an open subset V
of Can and a morphism f : O → A1

k such that

(i) V ⊆ Oan;

(ii) f an(V ) is an open annulus with radii in |k| in A1,an
k ;

(iii) f an
|V induces an isomorphism onto its image.

An algebraic tube centered at a point x ∈ Can of type 2 is the data of a Zariski-open
subset O of C , an affinoid domain V of Can with Shilov boundary {x} and a morphism
f : O → A1

k such that

(i) V ⊆ Oan;

(ii) f an(x) = η0,1 and f an(V ) is equal to Dk possibly deprived of finitely many open
unit discs;

(iii) for each connected component E of V \ {x}, f an(E) is a connected component
of f an(V ) \ {η0,1} and the morphism f an induces an isomorphism between E
and f an(E).

We call algebraic brick any triple (O, V, f ) of one of the three preceding sorts.

We will sometimes abusively say that a subset V of Can is an algebraic open disc
(respectively algebraic open annulus, etc.) if there exist a Zariski-open subset O of C
and a morphism f : O → A1

k such that (O, V, f ) is an algebraic open disc (respectively
algebraic open annulus, etc.).

Remark 3.9. Let (O, V, f ) be an algebraic open disc or annulus. Let V ′ be a subset
of V isomorphic to an open disc with radius in |k×| (respectively an open annulus in V
with radii in |k|). Then (O, V ′, f ) is an algebraic open disc (respectively algebraic open
annulus). Similar results hold for tubes. For instance, if V ′ is a closed disc with radius
in |k×| or a closed annulus with equal inner and outer radii belonging to |k×|, then there
exists an automorphism α of A1

k such that (O, V ′, α ◦ f ) is an algebraic tube. Note that
the automorphism α is needed to ensure that the image of V ′ lies in the closed unit disc
centered at 0.

Let (O,W, f ) be an algebraic tube centered at x . Let E be a connected component of
W \ {x}. Then (O, E, f ) is an algebraic open disc and (O,W \ E, f ) is still an algebraic
tube centered at x .

We will use freely the results of this remark in the rest of the text.

In the setting of Proposition 3.7, V is a tube in the sense of § 2.1.1 and we have an
associated reduction map ρV : V → Cx whose image UV is an affine curve over k̃. We fix
a closed embedding ιV : UV ↪→ Ar

k̃
.
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Lemma 3.10. There exist a Zariski-open subset O of C and morphisms f1, . . . , fr : O →
A1

k such that

(i) x ∈ Oan;

(ii) for each i ∈ {1, . . . , r}, f an
i (x) = η0,1 and f an

i (Oan
∩ V ) ⊆ Dk ;

(iii) the map
z ∈ Oan

∩ V \ {x} 7→ (red( f an
1 (z)), . . . , red( f an

r (z))) ∈ k̃r

coincides with the restriction of ιV ◦ ρV to Oan
∩ V \ {x}.

Proof. Let i ∈ {1, . . . , r}. Denote by f̃i : UV → A1
k̃

the composition of ιV with the ith

projection map. It extends uniquely to a finite morphism f̃ ′i : Cx → P1
k̃
. Let us lift the

latter to a morphism fi : Oi → A1
k as in Lemma 3.6. Up to shrinking the Oi ’s, we may

assume that they are all equal to some common O. We have f an
i (x) = η0,1 as required.

Moreover, since, by construction, each connected component of V \ {x} is sent into UV ,
we have

f an
i (Oan

∩ V \ {x}) ⊆ β−1
η0,1
( f̃ ′i (UV )) ⊆ β

−1
η0,1
(A1

k̃
) = Dk,

where we have used the identification Bη0,1 = π0(P1,an
k \ {η0,1}). This proves property i).

Property (ii) follows directly from the choice of the morphisms f̃i and the explicit
description of the map βη0,1 in terms of red.

Proposition 3.11. Let x ∈ Can be a point of type 2. Let U be a neighborhood of x in Can

and let B be a connected component of U \ {x}. There exist a Zariski-open subset O of C,
a morphism f : O → A1

k and an open subset V of B whose closure contains x such that

(i) V ⊆ Oan;

(ii) f an(V ) is an open annulus with radii in |k×| in A1,an
k ;

(iii) f an
|V induces an isomorphism onto its image.

Moreover, given a finite set B′ of connected components of U \ {x} not containing B, we
may ensure that ( f an)−1( f an(V )) does not meet any element of B′.

Proof. Let b be a branch emanating from x whose projection on π0(U \ {x}) is B. Let a
be the k̃-rational point of Cx corresponding to b. Pick a uniformizer of the local ring at a.
Seeing it as a meromorphic function on Cx , it gives rise to a finite morphism f̃ : Cx → P1

k
with a simple zero at a. Let us lift it to a morphism f : O → A1

k as in Lemma 3.6.

Since f̃ is unramified at a, the morphism f induces an isomorphism between a section
of b and its image, i.e., an open subset U ′ of B whose closure contains x and its image. The
image f (U ′) is an open subset of A1,an

k whose closure contains f an(x) = η0,1. We deduce
that f (U ′) contains an open annulus with radii in |k×| whose closure contains η0,1. The
result follows.

To prove the final part, it is enough to choose the morphism f̃ in such a way that it
does not vanish on any of the k̃-rational points of Cx corresponding to the elements of B′.
This may be done thanks to the independence of the associated valuations (see [5, VI,
§7, n◦2, Théorème 1]).
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Lemma 3.12. Let x and y be distinct points of Can. Then, there exist a Zariski-open
subset O of C, a morphism g : O → A1

k and an open disc or open annulus A in A1,an
k

with radii in |k×| such that

(i) (gan)−1(A) contains x;

(ii) y does not belong to the closure of (gan)−1(A) in Can.

Proof. Let O be an affine Zariski-open subset of C such that Oan contains x and y. This
is easy to construct by removing at most finitely many closed points from C , since every
curve with no proper irreducible component is affine.

Consider a closed embedding i : O ↪→ AN
k of O into an affine space AN

k and its

analytification ian
: Oan ↪→ AN ,an

k . Since x and y have different images in AN ,an
k , there

exists P ∈ k[T1, . . . , TN ], where T1, . . . , TN denote coordinates on AN
k , such that |P(x)| 6=

|P(y)|. If P(x) = 0, then, by density of |k×| in R>0, we can find r ∈ |k×| such that
|P(x)| < r < |P(y)|. If P(x) 6= 0, then, similarly, we can find r < s ∈ |k×| such that
|P(x)| ∈ (r, s) and |P(y)| /∈ [r, s]. The result follows by noting that the polynomial P
induces a morphism AN

k → A1
k , hence by restriction a morphism O → A1

k .

It follows from the definition of an algebraic brick (O, V, f ) that V is a connected
component of the pre-image by f of a subset of the affine line of a rather simple
kind. However, we will soon turn to definability questions, and the definability of
the corresponding subset of the affine line will not be enough to provide a definable
counterpart of the brick. Indeed, connected components of definable spaces are not
definable as a rule, since such a purely topological notion need not be expressible in
the language. The aim of the following technical result is to prove that, under some
finiteness hypotheses at the boundary, such a result will hold nonetheless in our setting.

Definition 3.13. We say that two subsets A and B of a k-analytic curve X are equal up
to a finite set of k-rational points if there exist two finite subsets A0 and B0 of X (k) such
that

A∪ A0 = B ∪ B0.

Proposition 3.14. Let ϕ : C → C ′ be a morphism of algebraic curves over k, let U ′ be a
connected analytic domain of (C ′)an whose boundary is a finite set of points of type 1
or 2 and let U be a connected component of (ϕan)−1(U ′) such that ϕan is finite at each
point of U . Then, there exist a Zariski-closed subset Z of C, a finite set M, for each
m ∈ M, a finite set Nm and, for each n ∈ Nm , a Zariski-open subset On of C, a morphism
fn : On → A1

k and an open subset An of A1,an
k that is either an open disc with radius in

|k×| or an open annulus with radii in |k×| such that

U = (ϕan)−1(U ′)∩ Z an
∩

⋃
m∈M

⋂
n∈Nm

( f an
n )−1(An)

up to a finite set of k-rational points.

Proof. We want to express the connected component U in a “definable way” with respect
to U ′. Here by “definable way” we simply mean to be a finite boolean combination as in
the statement. Note however that at the level of k-points we do obtain a true definability
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transfer: if U satisfies the identity of the statement and the k-points of U ′ are L-definable
(for L either LB or Lan

B ), then the k-points of U will also be L-definable.
The strategy is as follows: we first reduce to the case where C and C ′ are smooth and

proper, then to the case where the boundary of U ′ contains only points of type 2. The
next step of the proof is to locally isolate U in a definable way above a given point of U ′

or of its closure. We conclude by a compactness argument.

Let Z be the union of the irreducible components of C on which ϕ is not constant. It
is a Zariski-closed subset of C whose analytification contains U by assumption. Up to
replacing C by Z , we may assume that ϕ has relative dimension 0.

Since the curves C and C ′ are generically smooth and we may work up to finitely many
k-rational points, up to shrinking C and C ′, we may assume that they are smooth. The
morphism ϕ extends to a morphism ϕ̄ between smooth compactifications C̄ and C̄ ′ of C
and C ′. Since we may work up to finitely many k-rational points, up to shrinking U ′, we
may assume that (ϕ̄an)−1(U ′) is contained in Can. We may now replace C and C ′ by C̄
and C̄ ′ respectively and ϕ by ϕ̄ without changing U and U ′, so we may assume that C
and C ′ are smooth and projective. Note that ϕ is then finite and Can and (C ′)an compact.

Let x be a point of type 1 at the boundary of U . There exists a neighborhood D of x
in Can that is isomorphic to an open disc and such that D ∩U = D \ {x}. In particular,
U ∪ {x} is still a connected analytic domain of Can and x does not belong to its boundary
anymore.

Denote by U1 the set of type 1 points at the boundary of U . By assumption, it is
finite. Using the previous argument repeatedly, we show that U ∪U1 is still a connected
analytic domain of Can and that its boundary contains no points of type 1.

Let us define the set U ′1 similarly. Since each point in U ′1 is smooth, it cannot belong

to the closure of another connected component of (ϕan)−1(U ). It follows that U ′ ∪U ′1 is a

connected component of ϕ−1(U ∪U1). Up to replacing U and U ′ by U ∪U1 and U ′ ∪U ′1,
we may assume that U ′ has no points of type 1 in its boundary.

For each subset W of Can, denote by W the closure of W in Can. Set V := (ϕan)−1(U ′).
It follows from the assumptions that U \U and V \ V are finite sets of points of type 2.

For each point x ∈ Can of type 2 and each analytic domain W of Can, denote
by Bx (W ) the set of branches emanating from the point x that belong to W . Note
that, for each x of type 2, we have Bx (U ) ⊆ Bx (V ) and that, if x ∈ U \U (respectively
x ∈ V \ V ), then the set Bx (U ) (respectively Bx (V )) is finite, because U is connected
(respectively V has finitely many connected components). Set B(U ) :=

⋃
x∈U\U Bx (U )

and B(V ) :=
⋃

x∈V \V Bx (V ). Those are finite sets too.

Let x ∈ U \U be a point of type 2 and let b ∈ Bx (U ). By Proposition 3.11, there exist
a Zariski-open subset Ob of C , a morphism fb : Ob → A1

k and an open annulus Ab with

radii in |k×| in A1,an
k such that ( f an

b )−1(Ab) contains the branch b but no other element

of Bx (V ). In particular, the closure Fb of ( f an
b )−1(Ab)∩ (V \U ) in Can does not contain

the point x . By Lemma 3.12, for each y ∈ Fb, there exist a Zariski-open subset Oy of C , a

morphism gy : Oy → A1
k and an open disc or open annulus Ay with radii in |k×| in A1,an

k
such that x belongs to (gan

y )
−1(Ay) and y does not belong to the closure of (gan

y )
−1(Ay)

in Can. Since Can is compact, Fb is compact too, hence there exists a finite subset F0
b
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of Fb such that

Fb ⊆
⋃

y∈F0
b

Can
\ (gan

y )
−1(Ay).

The set

Ub := V ∩ ( f an
b )−1(Ab)∩

⋂
y∈F0

b

(gan
y )
−1(Ay)

is an open subset of U containing b and the set

U− := U \
⋃

b∈B(U )
Ub

is compact.
Let x ∈ U−. The closure of V \U in Can is a compact set that does not contain x .

Using Lemma 3.12 as before, we deduce that there exist a finite set Ex and, for each
e ∈ Ex , a Zariski-open subset Oe of C , a morphism ge : Oe → P1

k and an open disc or

open annulus Ae with radii in |k×| in A1,an
k such that

Ux := V ∩
⋂

e∈Ex

(gan
e )
−1(Ae)

is an open subset of U containing x .
Since U− is compact, there exists a finite subset U 0 of U− such that U− ⊆

⋃
x∈U 0 Ux .

We conclude by writing

U =
⋃

b∈B(U )
Ub ∪

⋃
x∈U 0

Ux .

Corollary 3.15. For each algebraic brick (O, V, f ) of Can, the set V (k) is a definable
subset of C(k) and the map V (k)→ k induced by f is definable.

Proof. Apply Proposition 3.14 with ϕ = f , U ′ = f (V ) and U = V .

Corollary 3.16. For each point x ∈ Can of type 2 and each algebraic tube (O, V, f )
centered at x, the map V (k)→ Cx (k̃) induced by ρV is definable.

Proof. By Corollary 3.15, V (k) is a definable subset of C(k). By Lemma 3.10, there exists
a Zariski-open subset O ′ of C such that (O ′)an contains x and the map ((O ′)an

∩ V )(k)→
Cx (k̃) induced by ρV is definable.

The set W of connected components of V \ {x} that are not contained in (O ′)an is finite.
By Proposition 3.14, for each W ∈W, the set W (k) is definable. Since the map of the
statement is constant on such a W , the result follows.

3.1.2. Global decomposition. Let C be an algebraic curve.

Lemma 3.17. Let V and V ′ be algebraic bricks of Can. Then V ∩ V ′ is a finite disjoint
union of algebraic bricks of Can.
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Proof. Assume that V or V ′ is an algebraic open disc or annulus. Without loss of
generality, we may suppose that V ′ is. In this case, V ∩ V ′ is an open subset of V with
finitely many boundary points in V . Denote by E this set of boundary points. The set
V ∩ V ′ is a disjoint union of connected components of V \ E . Note that all the connected
components of V \ E are finite disjoint union of algebraic bricks and that only finitely
many of them are not open discs. But if an open disc is contained in V (respectively V ′),
then either it is equal to the whole V (respectively V ′) or its closure is contained in V
(respectively V ′). We deduce that no connected component of V \ E that is an open disc
may be contained in V ∩ V ′, except when this connected component is equal to V ∩ V ′

itself. The result follows.
It remains to consider the case where V and V ′ are algebraic tubes. If V and V ′ have

the same center, then their intersection is an algebraic tube (with the same center). If V
and V ′ have different centers, say x and x ′ respectively, denote by D (respectively D′) the
unique connected component of V \ {x} (respectively V ′ \ {x ′}) containing the center of V ′

(respectively V ). Note that the algebraic tubes T := V \ D and T ′ := V ′ \ D′ are disjoint
and that T ⊂ D′ and T ′ ⊂ D. Writing V ∩ V ′ = T t T ′ t (D ∩ D′), we are reduced to the
case of an intersection of two discs, which we already dealt with.

Lemma 3.18. Let V and V ′ be algebraic bricks of Can. Then V \ V ′ is a finite disjoint
union of algebraic bricks of Can.

Proof. Since V \ V ′ = V \ (V ∩ V ′) and V ∩ V ′ is a finite disjoint union of algebraic bricks
by Lemma 3.17, we may assume that V ′ ⊆ V . We may also assume that V ′ 6= V . We
distinguish several cases.

• V is an algebraic open disc and V ′ is an algebraic open disc
Then V \ V ′ is an algebraic open annulus.

• V is an algebraic open disc and V ′ is an algebraic open annulus
Then V \ V ′ is the disjoint union of a closed disc (hence an algebraic tube) and a
semi-open annulus (hence the disjoint union of an algebraic open annulus and an
algebraic tube).

• V is an algebraic open annulus and V ′ is an algebraic open disc
If V ′ is a maximal open disc in V , then V \ V ′ is the disjoint union of an algebraic tube
(centered at the boundary point of V ′ in V ) and two algebraic open annuli.
In general, V ′ is contained in a maximal disc D of V . Writing V \ V ′ = (V \ D)t (D \
V ′), we are reduced to the previous cases.

• V is an algebraic open annulus and V ′ is an algebraic open annulus
If V ′ is contained in a disc D of V , then, writing V \ V ′ = (V \ D)t (D \ V ′), we are
reduced to the previous cases.
Assume that V ′ is not contained in a disc of V , i.e., V ′ ∩0V 6= ∅. Let x ∈ V ′ ∩0V .
Then, the connected components of V \ {x} are open discs, except for exactly two of
them that are open annuli. If x /∈ 0V ′ , then the connected components of V ′ \ {x} are
open discs with boundary {x}, except for exactly one of them. As a consequence, one
of these open discs with boundary {x} is contained in an open annulus whose boundary
contains {x}, which is impossible. We deduce that V ′ ∩0V ⊆ 0V ′ .

https://doi.org/10.1017/S1474748019000495 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000495


1298 P. Cubides Kovacsics and J. Poineau

The argument above also shows that, for a point x ∈ 0V ′ ∩0V , the two connected
components of V ′ \ {x} that are not discs lie inside the two connected components
of V \ {x} that are not discs. In other words, the two branches emanating from x
corresponding to 0V ′ coincide that corresponding to 0V . It follows that 0V ′ ⊆ 0V , and
we deduce that V \ V ′ is a semi-open annulus or a disjoint union of two semi-open
annuli.

• V is an algebraic open disc and V ′ is an algebraic tube
Then V \ V ′ is the disjoint union of an algebraic open annulus and finitely many
algebraic open discs.

• V is an algebraic tube and V ′ is an algebraic open disc
Since V ′ ⊆ V and the center x of V is a boundary point of V , it cannot belong to V ′,
which has no boundary. It follows that V ′ is contained in a connected component D
of V \ {x}. Writing V \ V ′ = D \ V ′, we are reduced to a previous case.

• V is an algebraic open annulus and V ′ is an algebraic tube
If V ′ is contained in a disc D of V , then, writing V \ V ′ = (V \ D)t (D \ V ′), we are
reduced to the previous cases.
Assume that V ′ is not contained in a disc of V , i.e., V ′ ∩0V 6= ∅. Arguing as in the case
where V and V ′ are open algebraic annuli, we prove no point other than the center x
of V ′ may belong to 0V . It follows that V ′ ∩0V = {x} and we deduce that V \ V ′ is
a disjoint union of two algebraic open annuli and finitely many algebraic open discs
(with boundary {x}).

• V is an algebraic tube and V ′ is an algebraic open annulus
By the same argument as in the case where V is an algebraic tube and V ′ is an algebraic
open disc, we prove that V ′ is contained in a connected component D of V \ {x},
where x is the center of V . Noting that T := V \ D is an algebraic tube and writing
V \ V ′ = T t (D \ V ′), we are reduced to a previous case.

• V is an algebraic tube and V ′ is an algebraic tube
Let x be the center of V . If V ′ is contained in a connected component D of V \ {x},
then, noting that T := V \ D is an algebraic tube and writing V \ V ′ = T t (D \ V ′),
we are reduced to a previous case.
Otherwise, a boundary argument as above shows that V and V ′ have the same center. It
follows that V \ V ′ is a disjoint union of finitely many connected components of V \ {x},
hence a finite union of algebraic open discs.

Corollary 3.19. Let V be a finite set of algebraic bricks of Can. Then, there exists a finite
set W of disjoint algebraic bricks of Can such that⋃

V∈V
V =

⊔
W∈W

W.

Theorem 3.20. Assume that C is proper and smooth. Then, there exists a finite
partition V of Can into algebraic bricks.

Proof. Since C is proper and smooth, Can is proper and smooth too. In particular, it is
compact.
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By Proposition 3.5, each point of type 3 in Can has a neighborhood that is an algebraic
open annulus. By Propositions 3.2 and 3.4, each point of type 1 or 4 in Can has a
neighborhood that is an algebraic open disc. By Propositions 3.7 and 3.11, each point
of type 2 in Can has a neighborhood that is the union of an algebraic tube centered at
that point and finitely many algebraic annuli (corresponding to the branches missing in
the algebraic tube). By compactness of Can, it follows that there exists a finite cover T
of Can made of algebraic bricks. The result now follows from Corollary 3.19.

We now extend the result to arbitrary algebraic curves. By using the same kind of
arguments as in the proofs of Lemmas 3.17 and 3.18, it is not difficult to prove the
following result.

Lemma 3.21. Let V be an algebraic brick of Can and let F be a finite subset of C(k).
Then V \ F admits a finite partition into algebraic bricks.

Corollary 3.22. There exists a finite subset E of C(k) such that Can
\ E admits a finite

partition into algebraic bricks.

Proof. We may identify C to an open subset of a projective curve C̄ over k such that
E1 := C̄ \C is a finite subset of C̄(k).

Denote by E2 the singular locus of C̄ . Since k is algebraically closed and C̄ is reduced,
C̄ is generically smooth, hence E2 is also a finite subset of C̄ . Let C̃ be the normalization
of C̄ and denote by n : C̃ → C̄ the corresponding morphism. Set F := E1 ∪ E2 and F̃ :=
n−1(F). Then n induces an isomorphism C̃ \ F̃ → C \ T , hence, to conclude, it is enough
to find a finite subset Ẽ of C̃(k) containing F̃ such that C̃ \ Ẽ admits a finite partition
into algebraic bricks. Since C̃ is smooth and projective, the result now follows from
Theorem 3.20 and Lemma 3.21.

3.2. Analytic curves

In this section, we give analogues of the results we obtained in the analytic setting. We
will first handle the smooth case and then allow singularities.

3.2.1. Quasi-smooth curves. We first adapt the definition of bricks. We fix a
quasi-smooth connected strictly k-affinoid curve X =M(A).

Definition 3.23. An analytic open disc is the data of a strict affinoid domain W of X , an
open subset V of W and a morphism f : W → Dk such that

(i) f (V ) is an open disc with radius in |k×| in Dk ;

(ii) f|V induces an isomorphism onto its image.

An analytic open annulus is the data of a strict affinoid domain W of X , an open
subset V of W and a morphism f : W → Dk such that

(i) f (V ) is an open annulus with radii in |k| in Dk ;

(ii) f|V induces an isomorphism onto its image.
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An analytic tube centered at a point x ∈ X is the data of a strict affinoid domain W
of X , an affinoid domain V of W with Shilov boundary {x} and a morphism f : W → Dk
such that

(i) f an(x) = η0,1 and f an(V ) is equal to Dk possibly deprived of finitely many open
unit discs;

(ii) for each connected component E of V \ {x}, f (E) is a connected component of
f (V ) \ {η0,1} and the morphism f induces an isomorphism between E and f (E).

We call analytic brick any triple (W, V, f ) of one of the three preceding sorts.
When we speak about the topological properties of an analytic brick, we will mean the

topological properties of V .

We have analogues of the results of § 3.1.1 in the analytic setting.

Proposition 3.24. Let x ∈ X be a point of type 1. For each neighborhood U of x in X ,
there exists an analytic open disc of X that contains x and is contained in U .

Proof. Since X is smooth at x , there exists an open neighborhood U0 of x and an
étale morphism f0 : U0 → A1,an

k . The result now easily follows from the inverse function
theorem.

For other types of points, as before, the key point is a density statement.

Lemma 3.25. Let x ∈ X and ε > 0. For each α0 ∈H (x), there exists an affinoid
neighborhood V of x and a morphism

f : V =M(AV )→ Dk =M(k{T })

such that, if we denote by α the image of the coordinate T on Dk by the map

k{T } → AV →H (x),

we have |α−α0| < ε.

Proof. By definition, the fraction field of A is dense in H (x). It follows that there
exists a, b ∈ A with b(x) 6= 0 such that

∣∣ a(x)
b(x) −α0

∣∣ < ε. Let V =M(AV ) be an affinoid
neighborhood of x in X such that b does not vanish on V . Then the image of b in AV is
invertible, hence a/b defines an element α of AV .

Let c ∈ k× such that |c| > ‖α‖V . We have a bounded morphism k{|c|−1T } → AV
sending T to α. Since multiplication by c induces an isomorphism between k{T } and
k{|c|−1T }, the result follows.

The next results are then proven exactly as in the algebraic case by using Lemma 3.25
instead of Lemma 3.3.

Proposition 3.26. Let x ∈ X be a point of type 4. For each neighborhood U of x in X ,
there exists an analytic open disc of X that contains x and is contained in U .

Proposition 3.27. Let x ∈ X be a point of type 3. For each neighborhood U of x in X ,
there exists an analytic open annulus of X that contains x and is contained in U .
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Proposition 3.28. Let x ∈ X be a point of type 2. For each neighborhood U of x in X ,
there exists an analytic tube (W, V, f ) of X centered at x that is contained in U .

As in the discussion following Proposition 3.7, in the setting of Proposition 3.28, V is a
tube and we have an associated reduction map ρV : V → Cx whose image UV is an affine
curve over k̃. We fix a closed embedding ιV : UV ↪→ Ar

k̃
.

Lemma 3.29. There exist an affinoid domain Y of X containing x and morphisms
f1, . . . , fr : Y → Dk such that

(i) for each i ∈ {1, . . . , r}, fi (x) = η0,1;

(ii) the map
z ∈ Oan

∩ V \ {x} 7→ (red( f an
1 (z)), . . . , red( f an

r (z))) ∈ k̃r

coincides with the restriction of ιV ◦ ρV to Oan
∩ V \ {x}.

Proposition 3.30. Let x ∈ X be a point of type 2. For each neighborhood U of x in X and
each connected component B of U \ {x}, there exists an open analytic annulus (W, V, f )
of X contained in B and whose closure contains x. Moreover, given a finite set B′ of
connected components of U \ {x} not containing B, we may ensure that f −1( f (V )) does
not meet any element of B′.

We can now adapt the arguments given in § 3.1.2 to obtain the following result.

Theorem 3.31. There exists a finite subset E of X (k) such that X \ E admits a finite
partition into analytic bricks.

The separation results are easier in the analytic setting since two distinct points
of a curve may be put into disjoint affinoid domains. It follows that the analogue of
Lemma 3.12 holds. Using this remark, we may derive an analogue of Proposition 3.14.

Proposition 3.32. Let ϕ : X → X ′ be a morphism of smooth strictly k-affinoid curves,
let U ′ be a connected analytic domain of X ′ whose boundary is a finite set of points of
type 1 or 2 and let U be a connected component of ϕ−1(U ′) such that ϕ is finite at each
point of U . Then, there exist a Zariski-closed subset Z of X , a finite set M, for each
m ∈ M, a finite set Nm and, for each n ∈ Nm , an affinoid domain Wn of X , a morphism
fn : Wn → D1

k and an open subset An of D1,an
k that is either an open disc with radius in

|k×| or an open annuli with radii in |k×| such that

U = ϕ−1(U ′)∩ Z ∩
⋃

m∈M

⋂
n∈Nm

f −1
n (An)

up to a finite set of k-rational points.

Corollary 3.33. For each analytic brick (W, V, f ) of X , the set V (k) is a definable subset
of X (k) and the map V (k)→ k◦ induced by f is definable.

Corollary 3.34. For each point x ∈ X of type 2 and each analytic tube (W, V, f ) centered
at x, the map V (k)→ Cx (k̃) induced by ρV is definable.
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3.2.2. Arbitrary curves. We now adapt our definitions to be able to handle
non-smooth curves as well. Let X =M(A) be a reduced irreducible strictly k-affinoid
curve.

Definition 3.35. Let X be a strictly k-affinoid space and Y be k-analytic space. A
compactifiable rational map f : X 99K Y is the data of

(i) a nowhere dense Zariski-closed subset S of X ;

(ii) a strictly k-affinoid space X ′;

(iii) a morphism n : X ′→ X such that the induced morphism X ′ \ n−1(S)→ X \ S is an
isomorphism;

(iv) a morphism f ′ : X ′→ Y .

We will call X \ S the regularity locus of f and say that f is regular on an analytic
domain U of X if U ⊆ X \ S.

We will commonly use f as a shortcut for f ′ ◦ n−1
|X\S and use the following

representation:

X ′ Y.

X

n

f ′

f

Remark 3.36. In the previous setting, if Y is strictly k-affinoid, then the restriction of f
to X (k) \ S(k) is Lan-definable.

Definition 3.37. Let X be a k-analytic curve.
A rational analytic open disc is the data of a strict affinoid domain W of X , an open

subset V of W and a compactifiable rational map f : W 99K Dk such that

(i) f is regular on V ;

(ii) f (V ) is an open disc with radius in |k×| contained in Dk ;

(iii) f|V induces an isomorphism onto its image.

A rational analytic open annulus is the data of a strict affinoid domain W of X , an
open subset V of W and a compactifiable rational map f : W 99K Dk such that

(i) f is regular on V ;

(ii) f (V ) is an open annulus with radii in |k| contained in Dk ;

(iii) f|V induces an isomorphism onto its image.

A rational analytic tube centered at a point x ∈ X is the data of a strict affinoid
domain W of X , an affinoid domain V of W with Shilov boundary {x} and a compactifiable
rational map f : W 99K Dk such that

(i) f is regular on V ;

(ii) f an(x) = η0,1 and f an(V ) is equal to Dk possibly deprived of finitely many open
unit discs;
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(iii) for each connected component E of V \ {x}, f (E) is a connected component of
f (V ) \ {η0,1} and the morphism f induces an isomorphism between E and f (E).

We call rational analytic brick any triple (W, V, f ) of one of the three preceding sorts.

As in the discussions following Propositions 3.7 and 3.28, in the setting of
Proposition 3.28, V is a tube and we have an associated reduction map ρV : V → Cx .

The following results are easily derived from Corollaries 3.33 and 3.34.

Corollary 3.38. For each rational analytic brick (W, V, f ) of X , the set V (k) is a definable
subset of X (k) and the map V (k)→ k◦ induced by f is definable.

Corollary 3.39. For each point x ∈ X of type 2 and each rational analytic tube (W, V, f )
centered at x, the map V (k)→ Cx (k̃) induced by ρV is definable.

It is not difficult to check that if a strictly k-affinoid curve X admits a finite partition
into analytic bricks, then, for each finite subset S of X (k), X \ S admits a finite partition
into rational analytic bricks. Using this kind of arguments, together with the fact that
the normalization of a strictly k-affinoid space is a strictly k-affinoid space isomorphic to
the first one outside a finite number of k-rational points, we obtain the following analogue
of Theorem 3.31.

Corollary 3.40. There exists a finite subset E of X (k) such that X \ E admits a finite
partition into rational analytic bricks.

4. Definable analytic curves and morphisms

Through this section we let L denote either LB or Lan
B .

4.1. Facades

Given a k-analytic curve X , we use the notation X (k) to denote the set of k-rational
points of X . We will often identify X (1) and X (k).

Let Defk(L) denote the category of L-definable sets with L-definable maps as
morphisms.

Definition 4.1. An L-definable category of k-analytic curves consists in the data of

(i) a subcategory C of the category of k-analytic curves;

(ii) a functor j : C → Defk(L);
(iii) for every object X of C, a bijection jX : X (k)→ j (X)

such that, for any morphism f : X → Y of C, the following diagram commutes:

X (k) j (X)

Y (k) j (Y )

f

jX

j ( f )
jY .
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We will often refer to an L-definable category of k-analytic curves abusively as C.
Given an object X of C, we identify the set X (k) with j (X) and freely speak of X (k) as
an L-definable set. For example, a subset A ⊆ X (k) is said to be L-definable if jX (A) is
L-definable.

Two main examples of definable categories will be considered in this article:

(1) The category of analytifications of algebraic curves with morphisms the
analytifications of algebraic morphisms. Given f an

: X an
→ Y an, the corresponding

LB-definable map j ( f an) : j (X an)→ j (Y an) corresponds to the Lring-definable map
induced by f : X (k)→ Y (k) as explained in Convention 2.19. Since in this situation
X an(k) = X (k), this provides the desired bijections.

(2) The category of strictly k-affinoid curves with morphisms the morphisms induced
by bounded morphisms of the corresponding affinoid algebras. If X =M(A)
is a strictly k-affinoid curve, to any Lipshitz presentation f of A there is an
associated Lan

B -definable set X f (k) which is in bijection with X (k) as explained in
Convention 2.24. The functoriality of such an association follows from Lemma 2.22.

Definition 4.2. Let X be a k-analytic curve in an L-definable category of k-analytic
curves C. An L-facade S of X consists of the following data:

(i) a finite triangulation S with an associated skeleton 0S = (S, E) of X and an
associated retraction map τS : X → 0;

(ii) for each edge I of E , a pair (VI , f I ) such that

(a) VI = τ
−1
S (I ),

(b) f I : VI → A1,an
k is a morphism, f I (VI ) is an open annulus and f I induces an

isomorphism between VI and its image,

(c) VI (k) is an L-definable subset of X (k),

(d) the restriction f I : VI (k)→ k is L-definable;

(iii) for each vertex x ∈ S(2), an integer m(x) > 0, tuples (Wx , fx ) and (Vx,i , fx,i ) with
1 6 i 6 m(x) such that

(a) τ−1
S (x) = Wx t

⊔m(x)
i=1 Vx,i ,

(b) Wx is a tube centered at x (see § 2.1.1),

(c) fx : Wx → Dk is a morphism such that fx (x) = η0,1, fx (Wx ) is equal to Dk
deprived of finitely many open unit discs, for each connected component C
of Wx \ {x}, fx (C) is an open unit disc and fx induces an isomorphism between C
and its image,

(d) fx,i : Vx,i → A1,an
k is a morphism, fx,i (Vx,i ) is an open unit disc and fx,i induces

an isomorphism between Vx,i and its image,

(e) Wx (k) and Vx,i (k) are L-definable subsets of X (k),

(f) the restrictions fx : Wx (k)→ k◦, fx,i : Vx,i (k)→ k and ρWx : Wx (k)→ Cx (k̃) are
L-definable (see § 2.1.1).

We show the existence of L-facades in the following cases:
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Theorem 4.3. Let X be a k-analytic curve.

(i) If X = Y an for an algebraic curve Y , then there exists an LB-facade of X .

(ii) If X is a strictly k-affinoid curve, then there exists an Lan
B -facade of X .

Proof. For part (i), by Corollary 3.22 there is a finite triangulation S of X which induces a
partition of X into algebraic bricks. The data of this partition provides the ingredients of
the required LB-facade. That the restriction to k of all this data is LB-definable follows
both from the definition of algebraic brick and Corollaries 3.15 and 3.16. The proof
of part (ii) is analogous: we obtain a partition of X into rational analytic bricks by
Corollary 3.40, and the definability assumption follows from the definition of rational
analytic brick together with Corollaries 3.38 and 3.39.

Remark 4.4. Let X be a k-analytic curve that admits an L-facade associated to some
triangulation S with associated skeleton 0S and retraction τS . For each subgraph 0′ of 0S ,
the analytic curve τ−1

S (0′) admits an L-facade induced by that of X .

Question 4.5. Are there other L-definable categories of k-analytic curves admitting
L-facades?

Definition 4.6. Let S1,S2 be facades of X , for X a k-analytic curve. For i = 1, 2, we let
0i = (Si , Ei ) denote the associated skeleton of Si and τi the corresponding retraction
map. We say that S2 is a refinement of S1 if

(i) the triangulation S2 refines S1;

(ii) if I ∈ E2, one of the following holds
( f I )|VI = ( f I ′)|VI if I ⊆ τ−1

1 (I ′) for some I ′ ∈ E1,

( f I )|VI = ( fx )|VI if I ⊆ Wx for some x ∈ S(2)1 ,

( f I )|VI = ( fx,i )|VI if I ⊆ Vx,i for some x ∈ S(2)1 ;

(iii) if x ∈ S(2)2 \ S1 then m(x) = 0;

(iv) if x ∈ S(2)2 , there exists an automorphism σ of A1
k such that

( fx )|τ−1
2 (x) = (σ

an
◦ f I )|τ−1

2 (x) if x ∈ τ−1
1 (I ) for some I ∈ E1,

( fx )|τ−1
2 (x) = (σ

an
◦ fy)|τ−1

2 (x) if x ∈ Wy for some y ∈ S1,

( fx )|τ−1
2 (x) = (σ

an
◦ fy,i )|τ−1

2 (x) if x ∈ Vy,i for some y ∈ S1.

Remark 4.7. Let X be a k-analytic curve and S1 be an L-facade of X . Let S2 be a finite
triangulation refining S1. Then there is an L-facade S2 with underlying triangulation S2

which refines S1. Indeed, one just defines the functions f I for I ∈ E2 and fx for x ∈ S(2)2
as imposed by Definition 4.6 with a suitable choice of an algebraic automorphism of A1

k .
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Lemma 4.8. Let X be a k-analytic curve and S1 be an L-facade of X . There is an L-facade

S2 refining S1 such that for all x ∈ S(2)2 , m(x) = 0.

Proof. Let x ∈ S(2)1 with mS1(x) > 0. By induction, it suffices to build an L-facade S2

refining S1 in which mS2(x) < mS1(x) and mS2(x
′) 6 mS1(x

′) for all x ′ ∈ S(2)1 \ {x} (note

that by the definition of refinement, mS2(y) = 0 for all y ∈ S(2)2 \ S(2)1 ). Take any y ∈ V (1)
x,1

and let S2 be the triangulation S2 := S1 ∪ {y}. The associated skeleton has one new edge
corresponding to the path from x to y. Setting f I := fx,1, gives an L-facade S2 refining
S1 for which mS2(x) = mS1(x)− 1.

4.2. Definable set associated to a facade

We will now associate an L-definable set to a given L-facade S of a k-analytic curve X .
Let 0S = (S, E) be the skeleton associated to S. Note that the curve X can be written
as the following disjoint union

X = S(1) t
⊔
I∈E

VI t
⊔

x∈S(2)

Wx t

m(x)⊔
i=1

Vx,i

 .
We will associate a definable set to each part of the previous disjoint union. To that end,
we need to introduce some notation concerning residue curves. Let x ∈ S(2), Wx be its
associated tube and fx be the corresponding morphism. As explained in § 2.1.1, we have
a map ρWx : Wx → Cx with image a Zariski-open subset UWx of Cx . For simplicity, we will
denote from now on UWx by Ux . Let

εx : Wx \ {x} → Ux (k̃)×Dk z 7→ (ρWx (z), fx (z)). (E1)

The map εx is injective and its image is equal to the set

Zx := {(α, y) ∈ Ux (k̃)×Dk : f̃x (α) = red(y)}.

We define the set ZS
x as the L-definable set given by:

ZS
x := {(α, ηa,r ) ∈ Ux (k̃)×D(1,2)k : f̃x (α) = red(ηa,r )}. (E2)

Definition 4.9. Let X be a k-analytic curve and S be an L-facade of X . Let 0S = (S, E)
be the skeleton associated to S. We define the L-definable set XS as

XS
:=

⊔
x∈S(1)

η1,0 t
⊔
I∈E

f I (VI )
(1,2)
t

⊔
x∈S(2)

η0,1 t ZS
x t

m(x)⊔
i=1

fx,i (Vx,i )
(1,2)

 (E3)

Definition 4.10. For X as in the previous definition, we let ϕS : X (1,2)→ XS be the
bijection given by:

• for x ∈ S(1), ϕS(x) is the corresponding copy of η1,0,

• (ϕS)|V (1,2)
I
= ( f I )

|V (1,2)
I

,

• for x ∈ S(2), ϕS(x) is the corresponding copy of η0,1,
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• for x ∈ S(2), (ϕS)|V (1,2)
x,i
= ( fx,i )

|V (1,2)
x,i

,

• for x ∈ S(2), (ϕS)|(Wx\{x})(1,2) = (εx )|(Wx\{x})(1,2) .

Definition 4.11. For i = 1, 2, let X i be a k-analytic curve and Si be an L-facade of X i .

Let h : X1 → X2 be a k-analytic morphism. We define the map hS1S2 : XS1
1 → XS2

2 as the
unique map that makes the following diagram commute

X (1,2)1 X (1,2)2

XS1
1 XS2

2

ϕS1

h

ϕS2

hS1,S2
.

We say that the pair (S1,S2) is h-compatible if the underlying pair of triangulations
(S1, S2) is h-compatible.

The main theorem of this section is the following:

Theorem 4.12. Let X1 and X2 be k-analytic curves and let h : X1 → X2 be a k-analytic
morphism. Suppose that

(i) for any L-facades S1 and S2 of X1 and X2 there exists an h-compatible pair (S ′1,S
′

2)

where S ′1 and S ′2 respectively refine S1 and S2.

(ii) the restriction h : X1(k)→ X2(k) is L-definable.

Then, for any L-facades S1 and S2 of X1 and X2, the map hS1S2 : XS1
1 → XS2

2 is
L-definable.

Before going into the proof of this theorem, let us show some instances where its
hypotheses are satisfied.

Lemma 4.13. Let h : X1 → X2 be a compactifiable morphism of nice curves of relative
dimension 0. If the restriction h : X1(k)→ X2(k) is L-definable then all hypotheses of
Theorem 4.12 are satisfied. In particular:

(i) if X1 and X2 are analytifications of algebraic curves and h is the analytification of
an algebraic morphism of relative dimension 0 between the latter, or

(ii) if X1, X2 are strictly k-affinoid curves and h is any morphism of relative
dimension 0,

then all hypotheses of Theorem 4.12 are satisfied.

Proof. This follows from Corollary 2.15 and Remark 4.7. Point (i) follows from
Remark 2.13 and point (ii) is obvious.

Question 4.14. Are there other L-definable categories of k-analytic curves whose objects
and morphisms satisfy the hypotheses of Theorem 4.12?

Let us now prove Theorem 4.12. We need to show first the following lemma:

https://doi.org/10.1017/S1474748019000495 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000495


1308 P. Cubides Kovacsics and J. Poineau

Lemma 4.15. Let X be k-analytic curve. Let S1,S2 be L-facades of X such that S2 is a
refinement of S1. Then the function idS1S2 is LB-definable.

Proof. We proceed by induction on the number of points in S2 which are not in S1,
n := |S2| − |S1|. If n = 0, the map idS1S2 corresponds to the identity map and there is
nothing to show. Suppose the result holds for n and assume that |S2| − |S1| = n+ 1. By
Lemma 2.9, there is x ∈ S2 \ S1 of arity6 2 and S′1 := S2 \ {x} is a triangulation refining S1.
The facade S2 induces by restriction a facade S ′1 refining S1 with associated triangulation
S′1. By induction idS1,S ′1 is definable and idS1,S2 = idS ′1,S2

◦ idS1,S ′1 . Hence, it suffices to

show the result for S1 = S ′1 and n = 1. Let {x} = S2 \ S1. Note that it suffices to show
definability up to a finite set, since functions with a finite domain are always definable.
We split in cases:

Case 1: x ∈ I for I ∈ E1. Then there are I1, I2 ∈ E2 such that I1 ∪ {x} ∪ I2 = I . The map
idS1,S2 is the identity map on XS1 \ f I (VI ). Let ηa,r := f I (x). The set f I (VI ) partitions
as

f I1(VI11
)t f I2(VI2)t Y,

where Y is the remaining part f I (VI ) \ ( f I1(VI11
)t f I2(VI2)). It suffices to show that

idS1,S2 is definable in each piece. For i = 1, 2, the map idS1,S2 on f Ii (VI1i
)(1,2) is the

identity. For Y , let σ be an automorphism of A1
k such that ( fx )|Wx = (σ

an
◦ f I )|Wx . We

have (idS1,S2)|Y\{ηa,r } = σ
an
|Y\{ηa,r }, which is an LB-definable function (see Remark 2.18).

Case 2: x ∈ Wy for y ∈ S(2)1 . Let I ∈ E2 be the edge between y and x . Among our data
we have (VI , f I ), (Wx , fx ) and (W ′y, f ′y) such that

(1) Wy is partitioned as W ′y t VI tWx ;

(2) ( f ′y)|W ′y = ( fy)|W ′y , ( f I )|VI = ( fy)|VI and ( fx )|Wx = (σ
an
◦ fy)|Wx , where σ is an

automorphism of A1
k .

The map idS1,S2 is the identity map on XS1 \ ZS1
y . Let ηa,r := fy(x) and α0 ∈ Uy(k̃) be

such that f̃y(α0) = red(ηa,r ). Since m(x) = 0, the set η0,1 t ZS1
y partitions as (η0,1 t ZS2

y )t

Y1 t Y2, where

Y1 := {(α0, ηb,s) ∈ ZS1
y : D(b, s) 6⊆ D(a, r)} and

Y2 := {(α0, ηb,s) ∈ ZS1
y : D(b, s) ⊆ D(a, r)}.

Since Y1 and Y2 are definable, it suffices to show that the restriction of idS1,S2 to each
piece is definable. The reader can check that

• (idS1,S2)|(η0,1tZ
S2
y )

is the identity;

• (idS1,S2)|Y1 is the projection to the second coordinate;

• (idS1,S2)|Y2 is the definable function

(α0, ηb,s) 7→ ( f̃x
−1
(res(σ an(ηb,s))), σ

an(ηb,s)),

where f̃x : Cx → P1
k̃

is the morphism induced by fx = σ
an
◦ fy at x , which in this case is

an isomorphism.
Case 3: x ∈ Vy,i for y ∈ S1 and 1 6 i 6 m(y). This case is analogous to Case 2.
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Proof of Theorem 4.12: Let S1 and S2 be L-facades of X1 and X2, respectively.

Claim 4.16. We may suppose that

(1) for every x ∈ S(2)i , mSi (x) = 0;

(2) the pair (S1,S2) is h-compatible.

Suppose that the result holds for every pair of L-facades satisfying the claim. By
Lemma 4.8, for i = 1, 2, there is a refinement S ′i of Si such that for every x ∈ (S′i )

(2),
mS ′i (x) = 0. By assumption (i) of the theorem, there are L-facades S∗1 and S∗2 of X1

and X2 respectively, refining S ′1 and S ′2 respectively, such that the pair (S∗1 ,S
∗

2 ) is

h-compatible. Note that by definition of refinement, for i = 1, 2 and every x ∈ (S∗i )
(2),

we have mS∗i (x) = 0, thus (S∗1 ,S
∗

2 ) satisfies the conditions of the claim. We have then the
following commutative diagram:

X (1,2)1 X (1,2)2

XS1
1 XS2

2

X
S∗1
1 X

S∗2
2

ϕS1

ϕS∗1

h

ϕS2

ϕS∗2

idS1S∗1

hS1,S2

idS2S∗2
hS∗1 ,S

∗
2

.

By Lemma 4.15, idSiS∗i is a definable bijection for i = 1, 2. Therefore, since hS∗1 ,S∗2 is
definable by assumption, hS1,S2 is defined by

hS1,S2(x) = (id
−1
S2S∗2

hS∗1 ,S∗2 idS1S∗1 )(x),

which shows the claim.
We suppose from now on that the pair (S1,S2) satisfies conditions (1) and (2) of

Claim 4.16. It suffices to show that the restriction of hS1,S2 to

(1) ϕS1(τ
−1
S1
(I )∩ X (1,2)1 ) for each I ∈ E1 and

(2) ϕS1(τ
−1
S1
(x)∩ X (1,2)1 ) for each x ∈ S(2)1

are L-definable. We split the argument in these two cases.

Case 1: Let I ∈ E1. By the definition of XS1 , ϕS1(V
(1,2)
I ) is equal to f I (V

(1,2)
I ) ⊆ B. Let

A1 denote the set f I (V
(1,2)
I ). By h-compatibility, there is an interval J ∈ E2 such that

h(VI ) = VJ . Let A2 denote the set f J (V
(1,2)
J ) ⊆ B. We have the following commutative

diagram

V (1,2)
I A1

V (1,2)
J A2

h

f I

hS1S2

f J .

Let I ′ := f I (I (2)), J ′ := f J (J (2)). Abusing notation, we identify A1(k) with the set
{a ∈ k : ηa,0 ∈ A1}. Note that the restriction of hS1S2 to A1(k) is L-definable. Indeed,
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( f I )|VI (k) is L-definable and L-definably invertible, h|X1(k) is L-definable, ( f J )|VJ (k) is
L-definable and we have

∀a ∈ A1(k), hS1S2(a) = f J (h( f −1
I (a))).

Let us first show that hS1S2 restricted to I ′ is L-definable. For i = 1, 2, let ai ∈ k and
ui , vi ∈ |k| be such that

I ′ = {ηa1,r : u1 < r < v1} and J ′ = {ηa2,r : u2 < s < v2}.

Note that both I ′ and J ′ are definable sets. By Lemma 2.17, for r ∈ (u1, v1)∩ |k×| and
s ∈ (u2, v2)∩ |k×|, we have

hS1S2(ηa1,r ) = ηa2,s ⇔ D(a2, s) \ D−(a2, s) = {hS1S2(x) ∈ k : x ∈ D(a1, r) \ D−(a1, r)}
(E4)

and, for ηb1,r ∈ A1 \ I ′ and ηb2,s ∈ A2 \ J ′, we have

hS1S2(ηb1,r ) = ηb2,s ⇔ D(b2, s) = {hS1S2(x) ∈ k : x ∈ D(b1, r)}. (E5)

Case 2: Let x ∈ S(2)1 and y = h(x). Set B1 := W (1,2)
x \ {x} and B2 := W (1,2)

y \ {y}. In this
case, by part (1) of Claim 4.16, (ϕS1)|B1 (respectively (ϕS2)|B2) is equal to εx (respectively
εy) as defined in (E1) and we have the following commutative diagram

B1 ZS1
x

B2 ZS2
y

h

εx

hS1S2

εy .

Abusing notation, consider the set

ZS1
x (k) := {(α, a) ∈ Ux (k̃)× k : (α, ηa,0) ∈ ZS1

x }. (E6)

Let us first show that the restriction of hS1S2 to ZS1
x (k) is L-definable. By definition of

facade, the restriction of εx to Wx (k) is L-definable since both fx and ρWx restricted to

Wx (k) are L-definable. Recall that εx induces a bijection from Wx (k) to ZS1
x (k) and that

its inverse is automatically L-definable. For all (α, a) ∈ ZS1
x (k), we have

hS1S2(α, a) = εy(h(ε−1
x (α, a)) = (ρWy (h(ε

−1
x (α, a))), fy(h(ε−1

x (α, a)))).

Then, as in Case 1, for any (α, ηa,r ) ∈ ZS1
x , we have

hS1S2(α, ηa,r ) = (β, ηb,s)⇔

 β = ρWy (h(ε
−1
x (α, y))) for all y ∈ D(a, r) and

D(b, s) = {hS1S2(α, y) ∈ Ux (k̃)× k : y ∈ D(a, r)}.
(E7)

The equivalence (E7) holds both by Lemma 2.16, since for every α ∈ Ux (k̃) the morphism

fy ◦ h ◦ ε−1
x : (Zx )

S1
α → (Z y)

S2
β ,

where (Zx )
S1
α and (Z y)

S2
β denote the fiber of ZS1

x at α and the fiber of ZS2
y at β respectively,

is a morphism of open discs in A1,an
k , and by the fact that ε−1

x (α, a) = ε−1
x (α, y) for all

y ∈ D(a, r). This completes Case 2 and the proof.
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We finish this section with the following observation about the deformation retraction
introduced in § 2.

Remark 4.17. Let [0, 1]k denote [0, 1] ∩ |k|. Let X be a k-analytic curve and S be an
L-facade of X . The map νS making the following diagram commute

[0, 1]k × X (1,2) X (1,2)

[0, 1]k × XS XS

id×ϕS

τS

ϕS

νS

is L-definable. This follows essentially by the form of τS given in Lemmas 2.3 and 2.4.
We leave the details to the reader.

5. Definable subsets of B

5.1. Basic B-radial sets

Let |k|∞ denote the set |k| ∪ {+∞} where +∞ is a new formal element bigger than every
element in |k|. In particular, this allows us to treat k (respectively A1,an

k ) as an open disc
(respectively a Berkovich open disc) of radius +∞ centered at some (any) point in k.

Since B is interpretable in the three-sorted language L3, every Lan
B -definable subset of

X ⊆ B is of the form b(Y ) for some Lan
3 -definable set Y ⊆ k× |k| (recall that b denotes

the quotient map). Instead of writing b(Y ), we will directly use the η notation and write
X = {ηx,r ∈ B : ϕ(x, r)} where ϕ(x, r) is an Lan

3 -formula defining Y . We set X ∩ k := {a ∈
k : ηa,0 ∈ X}.

The main objective of this section is to show that Lan
B -definable subsets of B are finite

disjoint unions of the following LB-definable basic blocks, which we call basic B-radial
sets.

Definition 5.1. A subset X ⊆ B is a basic B-radial set if it is empty or equal to one of
the following definable sets:
• Points: for a ∈ k and s ∈ |k|,

X = {ηa,s}. (R0)

• Branch segments: for a ∈ k and s1, s2 ∈ |k|∞ such that s1 < s2,

X = {ηx,r : x = a ∧ s1 < r < s2}. (R1)

• Annulus cylinders: for a ∈ k, s2 ∈ |k|∞, s1, ρ1, ρ2 ∈ |k| and g1, g2 ∈ Q,

X =
{
ηx,r ∈ B : D(x, r) ⊆ D−(a, s2) \ D(a, s1) ∧

ρ1|x − a|g1 = r < |x − a|

}
. (R2)

or

X =
{
ηx,r ∈ B : D(x, r) ⊆ D−(a, s2) \ D(a, s1) ∧

ρ1|x − a|g1 < r < ρ2|x − a|g2 6 |x − a|

}
. (R3)
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• Closed disc cylinder: for a ∈ k, s, s1, s2 ∈ |k| such that s1 < s2 6 s, n ∈ N and
b1, . . . , bn ∈ k such that |a− bi | = s,

X =
{
ηx,r ∈ B : D(x, r) ⊆ D(a, s)\(

n⋃
i=1

D−(bi , s)
)
∧ r = s1

}
(R4)

or

X =
{
ηx,r ∈ B : D(x, r) ⊆ D(a, s)\

( n⋃
i=1

D−(bi , s)
)
∧ s1 < r < s2

}
. (R5)

• Open disc cylinders: for a ∈ k, s, s1, s2 ∈ |k|∞ such that s1 < s2 6 s

X = {ηx,r ∈ B : D(x, r) ⊆ D−(a, s) ∧ s1 = r} (R6)

or
X = {ηx,r ∈ B : D(x, r) ⊆ D−(a, s) ∧ s1 < r < s2}. (R7)

A subset X ⊆ B is a B-radial set if it is a finite disjoint union of basic B-radial sets.

Remark 5.2.

(i) The only non-empty basic B-radial sets which are definably connected (i.e., not
the union of two disjoint open non-empty definable subsets) are points, branch
segments and open disc cylinders of type (R7) with s = s2. Every non-empty basic
B-radial set is infinite except for points.

(ii) Let X be a non-empty annulus cylinder as in (R2) or (R3). By possibly changing s1
and s2, one may always suppose that for every s1 < r < s2, the set

X ∩ {ηx,r ∈ B : D(x, r) ⊆ D(a, r) \ D−(a, r)}

is non-empty.

Lemma 5.3. Finite intersections and complements of basic B-radial sets are finite disjoint
unions of basic B-radial sets. More generally, B-radial sets are stable under finite boolean
combinations.

Proof. The proof is a (tedious) case verification similar to the proof of Lemmas 3.17
and 3.18. We do one case to let the reader have an idea of the kind of decomposition one
obtains. So suppose X is an annulus cylinder as defined in (R2)

X =
{
ηx,r ∈ B : D(x, r) ⊆ D−(a, s2) \ D(a, s1) ∧

ρ1|x − a|g1 = r < |x − a|

}
,

with s1 < r < s2. In Figure 1 we depict X as the bold black rays and the corresponding
collection of B-radial sets whose union equals the complement B \ X . Formally, the
corresponding collection is given by the following B-radial sets which we enumerate in
decreasing distance to ηa,0:

• two annulus cylinders

X1 = {ηx,r ∈ B : D(x, r) ⊆ D−(a,∞) \ D(a, s2) ∧ 0 < r < |x − a|},

X2 = {ηx,r ∈ B : D(x, r) ⊆ D−(a,∞) \ D(a, s2) ∧ r = 0},
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Figure 1. B-radial decomposition of B \ X

• two closed disc cylinders

X3 = {ηx,r ∈ B : D(x, r) ⊆ D(a, s2) \ D−(a, s2) ∧ 0 < r < s2},

X4 = {ηx,r ∈ B : D(x, r) ⊆ D(a, s2) \ D−(a, s2) ∧ r = 0} and

• three annulus cylinders

X5 =

{
ηx,r ∈ B : D(x, r) ⊆ D−(a, s2) \ D(a, s1) ∧

0 < r < ρ1|x − a|g1 6 |x − a|

}
and

X6 =

{
ηx,r ∈ B : D(x, r) ⊆ D−(a, s2) \ D(a, s1) ∧

0 = r < |x − a|

}
,

X7 =

{
ηx,r ∈ B : D(x, r) ⊆ D−(a, s2) \ D(a, s1) ∧

ρ1|x − a|g1 < r < |x − a|

}
,

• two closed disc cylinders

X8 = {ηx,r ∈ B : D(x, r) ⊆ D(a, s1) ∧ r = 0} and

X9 = {ηx,r ∈ B : D(x, r) ⊆ D(a, s1) ∧ 0 < r < s1},

• one branch segment
X10 = {ηx,r : x = a ∧ 0 < r <∞}.

• one final point ηa,0.

It will be useful to consider other kinds of subsets definable subsets of B.

Definition 5.4. A subset X ⊆ B is a B-brick if it is empty or equal to one of the following
definable sets:
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• k-rational points: for a ∈ k,
X = {a}. (B0)

• Open discs: for a ∈ k, s ∈ |k|∞ \ {0},

X = D−(a, s)(1,2). (B1)

• Open annuli: for a ∈ k, s1 ∈ |k| and s2 ∈ |k|∞ with s1 < s2,

X = D−(a, s2)
(1,2)
\D(a, s1)

(1,2). (B2)

• Tubes: for a ∈ k, s ∈ |k×|, n ∈ N and b1, . . . , bn ∈ k such that |a− bi | = s,

X = D(a, s)(1,2) \
n⋃

i=1

D−(bi , s)(1,2). (B3)

If a B-brick X is a k-rational point or an open disc, the skeleton of X is 0X := ∅. If X
is an open annulus as above, the skeleton of X is 0X := {ηa,r ∈ B : s1 < r < s2}. If X is a
tube as above, the skeleton of X is 0X := {ηa,s}.

Remark 5.5. Let X be a brick. Then X satisfies the following properties:

(i) The sets X and X \0X are B-radial.

(ii) If ηa,r ∈ X \0X , then D(a, r) ⊆ X ∩ k.

Lemma 5.6. Let X ⊆ B be a B-brick. Let b ∈ (B \ X)∩ k.

(i) If X is a k-rational point, an open disc or a tube, then

∀x, x ′ ∈ X ∩ k, |x − b| = |x ′− b|.

(ii) If X is an open annulus, there exist disjoint subsets UX and VX of B with UX ∪ VX =

B \ X and bX ∈ UX ∩ k such that, if b ∈ UX ∩ k, then

∀x ∈ X ∩ k, |x − b| = |x − bX |

and, if b ∈ VX ∩ k, then

∀x ∈ X ∩ k, |x − b| = |b− bX |.

Proof. Part (i) is clear. For part (ii), suppose X = D−(a, s2)
(1,2)
\D(a, s1)

(1,2) and
set UX := D(a, s1), VX := B \ D−(a, s2) and bX := a. If b ∈ UX , then |b− bX | 6 s1.
Therefore, |x − b| = |x − bX | for all x ∈ X ∩ k since |x − bX | > s1. If b ∈ VX , then |x −
bX | < s2 6 |x − b| for all x ∈ X ∩ k, which shows that |x − b| = |b− bX |.

Definition 5.7. Let X ⊆ k be a Swiss cheese:

X = Dε(a, r)\
n⋃

i=1

Dεi (ai , ri ),

with a ∈ k, r ∈ |k|∞, ε ∈ {−,∅} with (r, ε) 6= (+∞,∅), n ∈ N, a1, . . . , an ∈ k, r1, . . . , rn ∈

|k|, ε1, . . . , εn ∈ {−,∅}.
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We set

XB
:= Dε(a, r)(1,2)\

n⋃
i=1

Dεi (ai , ri )
(1,2).

A subset of B of the latter form will be called a B-Swiss cheese.

Note that XB
∩ k = X and that the association X 7→ XB is well-defined since the discs

appearing in the definition of X are unique.

Lemma 5.8. Let A be a finite partition of k into Swiss cheeses. Then AB
:= {AB

: A ∈ A}
is a finite partition of B into B-Swiss cheeses.

Proof. It is easy to check that, if A1 and A2 are disjoint Swiss cheeses, then AB
1 and AB

2
are disjoint, which shows that the elements of AB are disjoint.

To show that AB covers B, let ηa,r ∈ B. Let L be an elementary extension of k and

x ∈ L whose image by the projection A1,an
L → A1,an

k is ηa,r . The collection A(L) := {A(L) :
A ∈ A} covers L, hence there exists A ∈ A such that x ∈ A(L). Since, for every P ∈ k[T ],
we have |P(x)| = |P(ηa,r )|, it follows that ηa,r ∈ AB.

Lemma 5.9. Any B-Swiss cheese admits a finite partition into B-bricks.

Corollary 5.10. Let A be a finite partition of k into L-definable subsets. Then, there exists
a finite partition B of B into B-bricks such that, for each B ∈ B, there exists A ∈ A with
B ∩ k ⊆ A.

5.2. Characterization of definable subsets of B
We will need the following result about valuations of Lan-terms:

Proposition 5.11. Let x be a VF-variable, t1(x), . . . , tn(x) be Lan-terms and g1, . . . , gn be
rational numbers. Then there is a finite partition B of B into B-bricks such that, for
every B ∈ B, there are ρB ∈ |k|, hB ∈ Q and aB ∈ k satisfying the following property: for
all x ∈ B ∩ k,

n∏
i=1

|ti (x)|gi = ρB |x − aB |
h B .

Proof. By [6, Theorem 5.5.3], there is a definable partition A of k such that for each
A ∈ A,

(∀x ∈ A)(ti (x) = Pi,A(x) ui A(x)),

where Pi A ∈ k(X) is a rational function without poles in A and ui A(x) is an Lan-term
such that |ui A(x)| = rA for all x ∈ A with rA ∈ |k×|. Without loss of generality we may
suppose rA = 1. Let Z be the finite set containing all zeros and poles of the non-zero
Pi A’s.

Let A′ be a partition of k into definable sets that refines both A and the partition
{{b} : b ∈ Z} ∪ {k \ Z}. By Corollary 5.10, there exists a finite partition B of B into B-bricks
such that, for each B ∈ B, there exists A ∈ A′ with B ∩ k ⊆ A. We claim that B has all
required properties.
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Let B ∈ B. By construction, there exists a unique A ∈ A such that B ∩ k ⊆ A. If B is a
k-rational point, the result of the statement is obvious, so we assume otherwise. In this
case, B ∩ Z = ∅. Let i ∈ {1, . . . , n}. For each x ∈ B ∩ k, we have

|ti (x)| = |Pi A(x)||ui A(x)| = |Pi A(x)| = ρi A
∏
b∈Z

|x − b|nb ,

where ρi A ∈ |k| and nb ∈ Z. If B is an open disc or a tube, then, by part (i) of Lemma 5.6,
|ti | is constant on B(k), and the result holds. If B is an open annulus, then, by part (ii)
of Lemma 5.6, there are subsets UB, VB ⊆ B and bB ∈ UB ∩ k such that for all x ∈ B ∩ k

|ti (x)| = ρi A
∏

b∈Z∩VB

|x − b|nb
∏

b∈Z∩UB

|x − b|nb

= ρi A
∏

b∈Z∩VB

|b− bB |
nb

∏
b∈Z∩UB

|x − bB |
nb .

Theorem 5.12. Every Lan
B -definable set X ⊆ B is a finite disjoint union of basic B-radial

sets.

Proof. By quantifier elimination, we may assume that X is of the form

X :=
{
ηx,r ∈ B :

∨
i∈I

∧
j∈J

ϕi j (x, r)
}

with I, J finite sets and each ϕi j (x, r) an atomic or negated atomic Lan
3 -formula. By

commuting over unions (i.e., b commutes over unions) we have that

X =
⋃
i∈I

{
ηx,r ∈ B :

∧
j∈J

ϕi j (x, r)
}

and therefore (by Lemma 5.3) it suffices to show the result for ϕ(x, r) a formula of the
form

∧
j∈J ϕ j (x, r) with ϕ j (x, r) an atomic or negated atomic Lan

3 -formula (note that b
does not necessarily commute over intersections and complements).

By standard manipulations, we may suppose that every atomic formula ϕ j (x, r) is of
the form ∏

i∈I j

|t j i (x)|g j i rh j FG j s j ,

where I j is a finite set, t j i is an Lan-term, g j i , h j ∈ Q, s j ∈ |k| and FG j is an element of
{=, <,>}.

By a repeated use of Proposition 5.11 and taking common refinements of finite
partitions, there is a finite partition B of B into B-bricks such that, for each B ∈ B,
we have, using Remark 5.5,

ηx,r ∈ B \0B ⇒
∧
j∈J

ϕ j (x, r)↔
∧
j∈J

ρ j B |x − aB |
g j B FG j B rh j B

where aB ∈ k, ρ j B ∈ |k|, g j B ∈ Q and h j B ∈ {0, 1}. It suffices to show, by Lemma 5.3, that
both (B \0B)∩ X and 0B ∩ X are B-radial for each B ∈ B. We proceed by cases.
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If there is j ′ ∈ J such that h j ′B = 0, then the condition ρ j ′B |x − aB |
g j ′B FG j ′B 1 only

imposes a restriction on the x variable. Hence, by applying Corollary 5.10 and possibly
refining B, we may suppose that, for each B ∈ B, we have

ηx,r ∈ B \0B ⇒
∧
j∈J

ϕ j (x, r)↔
∧

j∈J\{ j ′}

ρ j B |x − aB |
g j B FG j B rh j B .

Thus, by induction on the size of J , we may assume that h j B = 1 for all j ∈ J .
Similarly, if there are j, j ′ ∈ J such that both FG j B and FG j ′B are “=”, this imposes a

restriction on the variable x by the condition

ρ j B |x − aB |
g j B = ρ j ′B |x − aB |

g j ′B .

Thus, by further refining B we may assume FG j is “=” for at most one element j ∈ J .
Suppose first that there is j ∈ J for which FG j B is “=”. By possibly further refining B,

either (B \0B)∩ X is empty or

(B \0B)∩ X = (B \0B)∩ {ηx,r : ρ j B |x − aB |
g j B = r},

which is an intersection of B-radial sets (see part (i) of Remark 5.5).
We may thus suppose that FG j B∈ {<,>} for all j ∈ J . For � ∈ {<,>}, let

J� = { j ∈ J : FG j B is “�” },

so that J = J< t J>. By possibly refining B, we may suppose that for all distinct j, j ′ ∈ J�

ηx,r ∈ B \0B ⇒ ρ j B |x − aB |
g j B �′ ρ j ′B |x − aB |

g j ′B ,

for �′ ∈ {<,>}. Hence, there are j1, j2 ∈ J such that

ηx,r ∈ B \0B ⇒ ρ j1 B |x − aB |
g j1 B = max

j∈J<
(ρ j B |x − aB |

g j B ) and

ηx,r ∈ B \0B ⇒ ρ j2 B |x − aB |
g j2 B = min

j∈J>
(ρ j B |x − aB |

g j B ),

which shows that

(B \0B)∩ X = (B \0B)∩ {ηx,r ∈ B : ρ j1 B |x − aB |
g j1 B < r < ρ j2 B |x − aB |

g j2 B },

which is an intersection of B-radial sets.
The previous argument shows the result for all B \0B with B ∈ B, so it remains to

show the result for 0B ∩ X with B ∈ B. If B is a k-rational point, an open disc or a
tube, there is nothing to show. Suppose that B is an open annulus. Then 0B is definably
isomorphic to a definable interval of |k|. Since the induced structure on |k| is o-minimal,
any definable subset of 0B is a finite disjoint union of points and branch segments as in
(R1). This shows that 0B ∩ X is a B-radial.

6. Definable subsets of curves

Let X be a k-analytic curve over k and S be a facade of X . Our goal in this section is to
describe the definable subsets of XS . We will provide such a description by reducing to
a description of the definable subsets of B. We will first need some preliminary lemmas.
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6.1. Consequences of B-radiality

We gather in this section some consequences of Theorem 5.12 and some auxiliary lemmas
that will be later used. In model-theoretic terms, we will show orthogonality between
residue curves and the sort B. This will essentially follow from the orthogonality between
the value group and the residue field which we recall for the reader’s convenience.

Lemma 6.1. Let C be an algebraic curve over k̃. Let X ⊆ |k| ×C(k̃) be an LB-definable
set such that, for each s ∈ |k|, the fiber Xs := {x ∈ C(k̃) : (s, x) ∈ X} is finite. Then π2(X)
is finite, where π2 : X → C(k̃) denotes the projection to the second coordinate.

Proof. Set A := π2(X). There exists an elementary extension k′ of k such that card(|k′|) <
card(k̃′). By Lemma 2.27, for each s ∈ |k′|, the fiber Xs is finite, hence

card(A(k′)) 6 card(|k′|) < card(k̃′) = card(C(k̃′)).

It follows that A(k′) is a definable subset of C(k̃′) that is not cofinite, hence it is finite.

Lemma 6.2. (Elimination of ∃∞ for B) Let S be a definable set and let X ⊆ S×B be a
definable set such that, for each s ∈ S, the fiber Xs := {x ∈ B : (s, x) ∈ X} is finite. Then
there is N such that for all s ∈ S, the fiber Xs has less than N elements.

Proof. Suppose not. Then, by compactness, there is an elementary extension k ≺ k′ and
s ∈ S(k′) such that Xs is infinite. By Proposition 5.12, Xs must contain a non-empty
basic B-radial set D which is not a point. Let D be defined by a formula ϕ(x, s, a) with
a some parameters in k′. We have that

k′ |H (∃s)(∃a)
(
(∃x1∃x2 ∈ B)(ϕ(x1, s, a)∧ϕ(x2, s, a)∧ x1 6= x2)

∧(∀y ∈ B)(ϕ(y, s, a)→ y ∈ Xs)
)
.

This implies that there are s′ ∈ S(k) and a′ in k such that Xs′ contains a non-empty
basic B-radial set {x ∈ B : ϕ(x, s′, a′)} which is not a point. Since every non-empty basic
B-radial set which is not a point is infinite, this contradicts the assumption.

Lemma 6.3. Let X ⊆ (k̃)n ×B be an LB-definable set such that, for each a ∈ (k̃)n, the
fiber Xa := {x ∈ B : (a, x) ∈ X} is finite. Then π2(X) is finite, where π2 : X → B denotes
the projection to the second coordinate.

Proof. Suppose for a contradiction that Z := π2(X) is infinite. By Proposition 5.12, Z
must contain a non-empty basic B-radial set D which is not a point. The cardinality
of D is greater than or equal to the cardinality of some non-empty open interval with
endpoints in |k|. There exists an elementary extension k′ of k such that k̃ = k̃′ and every
open interval in |k′| is of cardinality strictly bigger than card(k̃′). By Lemma 6.2, there is
N such that for all a ∈ (k̃)n , the fiber Xa has less than N elements, and the same property
holds over k̃′. We therefore have

card(Z(k′)) 6 card(k̃′) = card(k̃) < card(D(k′)) 6 card(Z(k′)),

a contradiction.
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We finish this subsection with a slightly technical result. We will use the following

notation. For s ∈ |k| such that s < 1 and c ∈ k̃, we set D[s] := {ηx,r ∈ D(1,2)k : r = s} and

Dc[s] := D[s] ∩ red−1(c). Let L denote either LB or Lan
B .

Lemma 6.4. Let C be an algebraic curve over k̃ and h : C → A1
k̃

be a finite morphism.

Let s ∈ |k| be such that s < 1. Let H ⊆ C(k̃)× D[s] be an L-definable set such that the
projection of H onto the first coordinate is a cofinite subset U ⊆ C(k̃) and for all α ∈ U ,
Hα ⊆ Dh(α)[s]. Then there is a finite set F ⊆ U such that either Hα = ∅ for all α ∈ U \ F,
or Hα = Dh(α)[s] for all α ∈ U \ F.

Proof. Suppose for a contradiction such a finite set F does not exist. Then there is
a cofinite subset U ′ ⊆ U such that for all α ∈ U ′, the fiber Hα is a non-empty proper
L-definable subset of Dh(α)[s]. Consider for each α ∈ U ′ the definable subset of k given
by

Wα :=

⋃
ηx,s∈Hα

D(x, s),

which is a subset of res−1(h(α)). Let W c
α := res−1(h(α)) \Wα. By assumption, both Wα

and W c
α are non-empty. By C-minimality (Theorem 2.26), Wα and W c

α are disjoint unions
of Swiss cheeses. Since they cover res−1(h(α)), either Wα or W c

α contains a set of the form
res−1(h(α)) \ D(a, r) for some a ∈ res−1(h(α)) and r < 1. By strong minimality, there is
a cofinite set U ′′ ⊆ U ′ such that either for all α ∈ U ′′, Wα contains such a set or for all
α ∈ U ′′, W c

α contains such a set. Suppose without loss of generality the latter happens.
Then, for each α ∈ U ′′, Wα is contained in a closed subdisc of the open disc res−1(h(α)).
Denote by Dα the smallest one. Let g : U ′→ B be the definable function sending α ∈ U ′′

to ηx,r ∈ B with D(x, r) = Dα. By Lemma 6.3, g has finite image, which contradicts the
fact that for each α, g(α) lies in red−1(h(α)) (note that h(U ′′) is infinite as h is finite).

Corollary 6.5. Let C be an algebraic curve over k̃ and h : C → A1
k̃

be a finite morphism.

Let H ⊆ C(k̃)× D(0, 1) be an L-definable set such that the projection of H onto the first
coordinate is a cofinite subset U ⊆ C(k̃) and for all α ∈ U , Hα ⊆ res−1(h(α)). Then there
is a finite set F ⊆ U such that either Hα = ∅ for all α ∈ U \ F or Hα = res−1(h(α)) for
all α ∈ U \ F.

Proof. Apply Lemma 6.4 with s = 0 to the definable set H ′ := {(α, ηx,0) : (α, x) ∈ H},
which is in definable bijection with H .

6.2. Reduction to B
Let X be a k-analytic curve and S be an L-facade of X . Let 0S = (S, E) be the skeleton
associated to S. Recall that the L-definable set XS corresponds to

XS
:=

⊔
x∈S(1)

η1,0 t
⊔
I∈E

f I (VI )
(1,2)
t

⊔
x∈S(2)

η0,1 t ZS
x t

m(x)⊔
i=1

fx,i (Vx,i )
(1,2)


where the set ZS

x was defined by

ZS
x := {(α, ηa,r ) ∈ Ux (k̃)×D(1,2)k : f̃x (α) = red(ηa,r )}.
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To provide a description of the definable subsets of XS , it is enough to describe the
definable subsets of each piece in the previous disjoint union. The pieces f I (VI )

(1,2) and
fx,i (Vx,i )

(1,2) are subsets of B, whose definable subsets have been classified as B-radial
sets. It remains to describe the definable subsets of the pieces of the form ZS

x .
The following proposition explains why, by passing to a larger finite triangulation, we

can reduce the description of definable subsets of ZS
x to those of B.

Proposition 6.6. Let H be a definable subset of ZS
x and let π1 and π2 denote the

projections from H onto Ux (k̃) and D(1,2)k , respectively. Then there is a finite set F ⊆
Ux (k̃), n ∈ N and closed disc cylinders D1, . . . , Dn of the form

Di := {ηw,r ∈ B : D(w, r) ⊆ D(0, 1) ∧ r = si }

or
Di := {ηw,r ∈ B : D(w, r) ⊆ D(0, 1) ∧ si,0 < r < si,1}

such that

H ∩π−1
1 (Ux (k̃) \ F) = π−1

2

( n⋃
i=1

Di

)
∩π−1

1 (Ux (k̃) \ F).

Proof. Consider the definable set F ⊆ Ux (k̃) defined by

F := {α ∈ Ux (k̃) : (∃s)(s < 1∧∅ ( Hα ∩ D f̃x (α)
[s] ( D f̃x (α)

[s])}.

Let us show that F is finite. Suppose toward a contradiction that F is infinite. Consider
the definable set Y ⊆ F × |k| defined by

Y := {(α, s) : s < 1∧∅ ( Hα ∩ D f̃x (α)
[s] ( D f̃x (α)

[s]}.

By the existence of Skolem functions in the value group, there is a definable function
g : Y → |k| such that (α, g(α)) ∈ Y for all α ∈ F . By Lemma 6.1, g has finite image.
By strong minimality of Ux (k̃), there is a cofinite subset F ′ of F such that g(F ′) = {s}
for some s ∈ |k|. But then, H ′ := {(α, ηa,r ) ∈ H : α ∈ F ′, r = s} contradicts Lemma 6.4.
Therefore F is finite.

Set C := Ux (k̃) \ F . Consider the definable set

G := {(α, s) ∈ C × |k| : Hα = D f̃x (α)
[s]}.

By o-minimality, for each α ∈ C , Gα is a finite union of points and intervals, therefore,
Hα is a finite union of open disc cylinders as in (R6) or (R7). By strong minimality of C ,
there is an integer N and a finite set E ⊆ C such that for all α ∈ C \ E , Hα is the union
of N open disc cylinders. By enlarging F adding E , we may assume that E is empty.

By possibly further enlarging F , we may suppose there are definable functions
f1, . . . , fM : C → |k| and finite sets of indices I1 and I2 such that for all α ∈ C

Gα =

⋃
i∈I1

( fi (α), fi+1(α))∪
⋃
i∈I2

{ fi (α)}.

By Lemma 6.1 and strong minimality, there is a finite set E ′ ⊆ C such that all functions
fi are constant on C \ E ′. Let si := fi (α) for some (any) α ∈ C \ E ′. As before, up to
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enlarging F , we may assume that E ′ is empty. Finally, consider, for i ∈ I1, the disc
cylinder

Di := {ηw,r ∈ B : D(w, r) ⊆ D(0, 1) ∧ si < r < si+1},

and, for i ∈ I2, the disc cylinder

Di := {ηw,r ∈ B : D(w, r) ⊆ D(0, 1) ∧ r = si }.

By construction, setting F ′ := f̃ −1
x ( f̃x (F)), we have

H ∩π−1
1 (Ux (k̃) \ F ′) = π−1

2

( ⋃
i∈I1∪I2

Di

)
∩π−1

1 (Ux (k̃) \ F ′).

The previous theorem suggests the following definition:

Definition 6.7. A subset H ⊆ ZS
x is called basic B-radial if H = π−1

2 (D)∩ ZS
x for a closed

cylinder D of the form

D := {ηw,r ∈ D(1,2)k : r = s} or D := {ηw,r ∈ D(1,2)k : s0 < r < s1}.

Definition 6.8. Let 0S = (S, E) be the skeleton associated to S. A subset Y ⊆ XS is called
B-radial if

(i) for each I ∈ E , Y ∩ f I (VI )
(1,2) is B-radial,

(ii) for each x ∈ S(2), Y ∩ ZS
x is a disjoint union of basic B-radial sets,

(iii) for each I ∈ E , and i ∈ {1, . . . ,m(x)}, Y ∩ fx,i (Vx,i )
(1,2) is B-radial.

Note that all B-radial sets are LB-definable.

Theorem 6.9. Let X be a k-analytic curve and S be an L-facade of X . Let Y ⊆ XS . Then
Y is L-definable if, and only if, there is a refinement S ′ of S and a B-radial set Y ′ such
that Y = id−1

SS ′(Y
′).

Proof. Assume that Y is L-definable. Fix x ∈ S(2) and let Hx := Y ∩ ZS
x . By

Proposition 6.6, there is a finite set Fx ⊆ Ux (k̃), nx ∈ N and closed disc cylinders
D1,x , . . . , Dnx ,x such that

Hx ∩π
−1
1 (Ux (k̃) \ Fx ) = π

−1
2

( nx⋃
i=1

Di,x

)
∩π−1

1 (Ux (k̃) \ Fx ),

where π1 and π2 denote the projections to Ux (k̃) and D(1,2)k , respectively. Let S′ be

refinement of S in which, for each x ∈ S(2), we add a point of type 1 in each connected
component in

⋃
α∈Fx

ϕ−1
S (π−1

1 (α)). Let S ′ be an L-facade refining S with underlying

triangulation S′ (see Remark 4.7). Note that S(2) = S′(2). In particular, for every x ∈ S′(2),
we have

idSS ′(Hx ) = π
−1
2

( nx⋃
i=1

Di,x

)
∩ ZS ′

x ,
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which is a disjoint union of basic B-radial sets. For each I ∈ ES′ , the set idSS ′(Y ∩
f I (VI )

(1,2)) is B-radial by Theorem 5.12. This same argument applies for each idSS ′(Y ∩
fx,i (Vx,i )

(1,2)) for x ∈ S′(2) and i ∈ {1, . . . ,m(x)}. Setting Y ′ := idSS ′(Y ) shows the result.
The converse follows from the LB-definability of B-radial sets and Lemma 4.15.

7. Radiality and definability

In this section, we introduce the notion of radial set of a k-analytic curve. It is inspired by
Temkin’s article [28], where a notion of radial morphism of k-analytic curves is provided.
We will relate this notion to that of definable set and use this link to recover a result
of Temkin showing that the topological ramification locus of a morphism of k-analytic
curves admits a tame behavior.

In order to state the definition of radial set in greater generality, in this section (and only
here), we will allow triangulations to be infinite. Recall that, by [11, Théorème 5.1.14],
every quasi-smooth strictly k-analytic curve admits a triangulation (made of points of
type 2 only). By a normalization argument as in Lemma 2.6, it follows that every strictly
k-analytic curve admits a triangulation.

Let X be a strictly k-analytic curve.

7.1. Radiality

Let S be a triangulation of X . Let x ∈ X . If x /∈ 0S , then the connected component Cx
of X \0S containing x is isomorphic to the open unit disc D−k . We denote by ρS(x)
the radius of the image of the point x in D−k . It does not depend on the choice of the
isomorphism. If x ∈ 0S , we set ρS(x) := 1.

Definition 7.1. We say that a subset Y of X is basic radial with respect to S over k if it
is of one of the following forms:

(i) for some x ∈ S(2), r1, r2 ∈ [0, 1] ∩ |k| and FG1, FG2∈ {<,6},

Y = {y ∈ τ−1
S (x) : r1 FG1 ρS(y) FG2 r2};

(ii) for some I ∈ ES , |k×|-monomial functions f1, f2 : I → [0, 1] and FG1, FG2∈ {<,6},

Y = {y ∈ τ−1
S (I ) : f1(τS(y)) FG1 ρS(y) FG2 f2(τS(y))}.

We say that a subset Y of X is radial with respect to S over k if, for each x ∈ S(2),
Y ∩ τ−1

S (x) is a finite union of basic radial sets with respect to S over k and, for each

I ∈ ES , Y ∩ τ−1
S (I ) is a finite union of basic radial sets with respect to S over k. We say

that a subset Y of X is radial over k if it is radial over k with respect to some triangulation.
We let Radk(X) denote the set of radial subsets of X over k.

The following lemma is an easy verification (yet again similar to Lemmas 3.17, 3.18
and 5.3 for the first point) which is left to the reader.

Lemma 7.2. (i) The set Radk(X) is closed under finite boolean combinations.

(ii) Let Z ∈ Radk(X) be a non-empty radial set. Then Z (1,2) is non-empty.
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(iii) For each point x of X , there exists a basis of radial open (respectively radial strictly
k-affinoid) neighborhoods of x.

We now prove that the property of being radial is local. We start with a preliminary
result.

Lemma 7.3. Let V be a compact analytic domain of X .

(i) For each radial subset Y of X , Y ∩ V is a radial subset of V .

(ii) Each radial subset of V is a radial subset of X .

Proof. For each triangulation SV of V , there exists a triangulation S of X such that
S ∩ V = SV . One may moreover require that 0S ∩ V = 0SV and that τ−1

S (0S ∩ V ) = V .
The results follow from these observations.

Let us recall the definition of G-topology from [2, § 1.3]. We say that a family U of
analytic domains of X is a covering for the G-topology if, for each point x ∈ X , there exists
a finite subset Ux of U such that

⋂
U∈Ux

U contains x and
⋃

U∈Ux
U is a neighborhood

of x in X .

Lemma 7.4. Let Y be a subset of X . Assume that there exists a family U of analytic
domains of X that is a covering of X for the G-topology and such that, for each U ∈ U ,
Y ∩U is a radial subset of U . Then, Y is a radial subset of X .

Proof. Let U ∈ U . For each x ∈ U , consider a compact analytic domain Vx of U that is
a neighborhood of x in U . The set V = {Vx : U ∈ U , x ∈ U } is still a covering of X for the
G-topology and, by Lemma 7.3, for each V ∈ V, Y ∩ V is a radial subset of X .

Let S be a triangulation of X such that each connected component of X \ S is relatively
compact in X (as in Ducros’ original definition, see [11, 5.1.13]). Up to refining S, we may
also assume that each connected component of X \ S that is an annulus has two distinct
endpoints.

Let x ∈ S(2). The set τ−1
S (x) is compact, hence it may be covered by finitely many

elements of V. It follows that τ−1
S (x)∩ Y is a radial subset of τ−1

S (x) with respect to some

triangulation Sx of τ−1
S (x) containing x . Note that Sx is finite.

Let I ∈ ES . The set AI := τ
−1
S (I ) is a relatively compact annulus and its boundary ∂AI

in X is made of two points of S, say x1 and x2. For each i = 1, 2, denote by Di the set of
connected components of τ−1

S (xi ) \ {xi } (all of which are open discs) and pick a non-trivial
cofinite subset D′i of Di . Then, the set

W := AI ∪
⋃

i=1,2

{xi } ∪
⋃

D∈D′i

D

is a compact strictly k-analytic domain W of X containing AI and whose topological
skeleton is the closure of I in X . As before, W ∩ Y is a radial subset of W with respect
to some triangulation SW of W . Then, SI := SW ∩ AI is a triangulation of AI and Y ∩ AI
is a radial subset of AI with respect to it. Note that SI is finite.

Finally, set

S′ := S(1) ∪
⋃

x∈S(2)

Sx ∪
⋃

I∈ES

SI .
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It is easy to check that S′ is a triangulation of X and that Y is radial with respect
to it.

Let S be an L-facade of X . Let Defk(XS) denote the collection of definable subsets of
XS over k.

Theorem 7.5. The map

δk : Y ∈ Radk(X) 7→ ϕS(Y (1,2)) ⊆ XS

induces a bijection from Radk(X) to Defk(XS).

Proof. Let Y ∈ Radk(X). By definition, Y is a finite union of basic radial sets with
respect to some triangulation S0 of X . Let S ′ be an L-facade of X refining S whose
underlying triangulation refines S0. Then, for each subset Y0 of X that is basic radial with
respect to S0, the set ϕS ′(Y0) is B-radial, hence LB-definable. Using Lemma 4.15 and the
compatibility of the map δk with unions, we deduce that δk(Y ) belongs to Defk(XS).

Let us now show that δk is injective. First note that δk preserves boolean combinations
as both the function ϕS and the restriction (·)(1,2) preserve boolean combinations. Let
Y1, Y2 ∈ Radk(X) be such that Y1 6= Y2 and suppose for a contradiction that δk(Y1) =

δk(Y2). Without loss of generality we may assume that Z := Y1 \ Y2 is non-empty. We
have δk(Y1 \ Y2) = δk(Y1) \ δk(Y2) and hence δk(Z) = ∅, which contradicts Lemma 7.2.

Let us now show surjectivity. Let H ∈ Defk(XS). By Theorem 6.9 there is a
refinement S ′ of S and a B-radial set H ′ such that H = id−1

SS ′(H
′). Thus H ′ is a disjoint

union of basic B-radial sets. Working in the refined triangulation underlying S ′, we let the
reader verify that every basic B-radial set (both in the sense of Definitions 5.1 and 6.7)
has a radial pre-image almost by definition.

7.2. Weakly stable fields

In this section, we prove a technical result about the local ring OX,x at a point x of
type 2, 3 or 4 in a k-analytic curve X , namely that it is weakly stable. Let us first recall
the definition (see [4, Definitions 3.5.2/1 and 2.3.2/2]).

Definition 7.6. A valued field K is said to be weakly stable if, for each finite extension L
of K endowed with the spectral norm, each sub-K -vector space of L is closed.

Lemma 7.7. Assume that k is of characteristic p > 0. Let a ∈ k and r ∈ R>0. Then, each
element f ∈ O(D(a, r)) may be uniquely written as

f = f0+ f1 · T + · · ·+ f p−1 · T p−1,

where, for each i ∈ {0, . . . , p− 1}, fi is an element of O(D(a, r)) of the form f †
i ((T − a)p).

Moreover, we have

max
06i6p−1

(| fi (ηa,r )| r i (r/s)p−1−i ) 6 | f (ηa,r )| 6 max
06i6p−1

(| fi (ηa,r )| si ),

where s := max(|a|, r).
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Proof. Let f ∈ O(D(a, r)). It may be written as a series in powers of T − a, hence in the
form

f = g†
0((T − a)p)+ g†

1((T − a)p) · (T − a)+ · · ·+ g†
p−1((T − a)p) · (T − a)p−1

in a unique way. For each i ∈ {1, . . . , p− 1}, the series gi := g†
i ((T − a)p) is obtained from

the series f by removing the coefficients of order different from i modulo p and dividing
by (T − a)i . Since the radius of convergence cannot decrease under these operations,
gi converges on D(a, r). The first part of the statement follows easily with, for each
i ∈ {1, . . . , p− 1},

fi =

p−1∑
j=i

(
j
i

)
(−a) j−i g j .

Thanks to the non-Archimedean inequality, we have

| f (ηa,r )| 6 max
06i6p−1

(| fi (ηa,r )| |T (ηa,r )|
i ) = max

06i6p−1
(| fi (ηa,r )| si ).

To prove the remaining inequality, note that we have f p−1 = gp−1, hence

| f (ηa,r )| = max
06i6p−1

(|gi (ηa,r )| r i ) > | f p−1(ηa,r )| r p−1.

Let i ∈ {1, . . . , p− 1}. We have

T p−1−i f =
p−1∑

j=i+1

T p f j · T j−i−1
+

i−1∑
j=0

f j · T j+p−i−1
+ fi · T p−1

=

p−1∑
j=i+1

((T − a)p
+ a p) f j · T j−i−1

+

i−1∑
j=0

f j · T j+p−i−1
+ fi · T p−1,

which is the decomposition of the statement. Applying the inequality above, we get

s p−1−i
| f (ηa,r )| = |(T p−1−i f )(ηa,r )| > | fi (ηa,r )| r p−1.

The result follows.

Theorem 7.8. Let X be a k-analytic curve and let x ∈ X be a point of type 2, 3 or 4.
Then, the field OX,x is weakly stable.

In particular, for each finite valued extension L of OX,x , we have

[L : OX,x ] = [L̂ : ÔX,x ].

Proof. Since a finite extension of a weakly stable field is still weakly stable, we may
assume that x belongs to A1,an

k , by Noether normalization. By [4, Proposition 3.5.1/4],
fields of characteristic 0 are weakly stable, so we may assume that k is of characteristic p >
0.

Assume that x is of type 4. Then, there exists a nested family of closed discs
(D(ai , ri ))i∈I such that the absolute value associated to x on k[T ], where T is a coordinate
on A1,an

k , is the infimum of the absolute values associated to the points ηai ,ri .
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The ri ’s are bounded above and below by a positive constant independently of i . We
can always remove some discs in the family so as to assume that none of them contains
the point 0. In this case, we have |ai | > ri and |ai | is actually independent of i . For later
use, let us choose C, D ∈ R>0 such that for all i ∈ I and j ∈ {0, . . . , p− 1}, we have

C 6 r j
i (ri/|ai |)

p−1− j and |ai |
j 6 D.

The family of discs (D(ai , ri ))i∈I forms a basis of neighborhoods of x , so that the local
ring Ox := OA1,an

k ,x at x may be written as

Ox = lim
−→
i∈I

O(D(ai , ri )).

Denote by O1/p
x the ring of pth-roots of Ox . By [4, Theorem 3.5.3/1], to prove that Ox is

weakly stable, it is enough to prove that O1/p
x endowed with the spectral norm is weakly

Ox -cartesian, that is to say the spectral norm on O1/p
x is equivalent to the norm induced

by some Ox -basis (see [4, Theorem 2.3.2/1]).
Let i ∈ I . Consider the ring O(D(ai , ri ))

1/p of pth-roots of elements of O(D(ai , ri )).
Since k is perfect, it consists of the series of the form∑

n>0

cn(T − ai )
n/p
=

∑
n>0

cn
(
T 1/p
− a1/p

i
)n

with coefficients in k such that limn→∞ |cn|r
n/p
i = 0. We may identify it with

O(D(a1/p
i , r1/p

i )). Under this identification, its subring O(D(ai , ri )) is sent to the ring
of elements whose expansion only involves power of the variable that are multiples of p.
It now follows from Lemma 7.7 that we have

O(D(ai , ri ))
1/p
=

p−1⊕
j=0

O(D(ai , ri )) · T j/p.

Moreover, denoting by π j the projection onto the jth factor, for each f ∈ O(D(ai , ri ))
1/p,

we have

C max
06 j6p−1

(
|π j ( f )(ηai ,ri )|) 6 | f (ηa1/p

i ,r1/p
i
)| 6 D max

06 j6p−1

(
|π j ( f )(ηai ,ri )|).

Note that the direct sum decomposition is compatible with the restriction maps between
the different discs.

We have

O1/p
x = lim

−→
i∈I

O(D(ai , ri ))
1/p
=

p−1⊕
j=0

Ox · T j/p.

The infimum of the norms of the discs D(a1/p
i , r1/p

i ) induces an absolute value on O1/p
x

that extends the absolute value on Ox , hence it is the spectral norm of O1/p
x . The

inequality above ensures that it is equivalent to the norm induced by the basis
(1, T 1/p, . . . , T (p−1)/p), and the result follows.
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We will not give a complete proof for x of type 2 or 3. Note that the result is already
known in this case (see [11, Théorème 4.3.13]). For the sake of completeness, let us point
out that it could be proven in a way that is completely similar to what we have done
here. Let us only explain how to describe explicitly the local ring at such a point.

Assume that x is of type 3, hence of the form ηa,r . The closed annuli D(a, s2) \D−(a, s1),
with s1 < r < s2, form a basis of neighborhoods of x and, on each of those annuli, a global
analytic function may be written as a power series∑

n∈Z
cn(T − a)n

with suitable convergence conditions.
Assume that x is of type 2. Up to changing coordinates, we may assume that it is

the point η1. Fix a family of representatives R of k̃ in k◦. The closed Swiss cheeses
D(0, s2) \

⋃
a∈R0

D−(a, s1), where R0 is a finite subset of R and s1 < 1 < s2, form a basis
of neighborhoods of x and, on each of those Swiss cheeses, a global analytic function may
be written as a power series∑

n>0

cn T n
+

∑
a∈R0

∑
n>1

ca,n(T − a)−n

with suitable convergence conditions (see [14, Proposition 2.2.6]).
The last part of the statement follows from [4, Proposition 2.3.3/6].

7.3. Base change

For any complete rank 1 valued extension L of k, we denote by X L the scalar extension
of X to L and by πL : X L → X the natural projection morphism.

Since k is algebraically closed, by [23, Corollaire 3.14], for each x ∈ X , the tensor norm
on H (x)⊗̂k L is multiplicative, hence gives rise to a point of X L . We denote the latter
by σL(x).

Example 7.9. If X = A1,an
k , for each a ∈ k and r ∈ R>0, we have σL(ηa,r ) = ηa,r .

Theorem 7.10. Let L be a complete rank 1 valued extension of k. The map σL : x ∈ X 7→
σL(x) ∈ X L is a section of πL with the following properties:

(i) if x ∈ X (1), then σL(x) ∈ X (1)L ;

(ii) if x ∈ X (2), then σL(x) ∈ X (2)L and we have an isomorphism Cx ⊗k̃ L̃
∼
−→ CσL (x), hence

an isomorphism Cx (L̃)
∼
−→ CσL (x)(L̃);

(iii) if S is a triangulation of X with skeleton 0S, then σL(S) is a triangulation of X L
with skeleton σL(0S);

(iv) if L is algebraically closed, given a facade S of X , there is an associated facade SL
of X L .

Proof. Point (i) is clear. Point (ii) follows from [24, Lemma 1.15]. Point (iii) follows
from [25, Corollary 2.16]. For point (iv), we let the reader check that we obtain a facade
by base-changing all the data to L.
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Corollary 7.11. Let S be an L-facade of X . Let L be a rank 1 elementary extension of k.

For x ∈ S(2), the isomorphism Cx (L̃)
∼
−→ CσL (x)(L̃) given by point (ii) in Theorem 7.10

provides a canonical identification of ZS
x (L) and ZSL

σL (x)
. Therefore, we have a canonical

identification of XS(L) and XSL
L .

Moreover, the following diagram commutes:

X (1,2)L XSL XS(L)

X (1,2) XS

ϕSL

σL

ϕS

⊆

.

If X ′ is a strictly k-analytic curve, S ′ an L-facade of X ′ and h : X → X ′ a
k-analytic morphism such that the map hSS ′ : XS

→ X ′S
′

is definable, then the map

hL ,SLS ′L : XSL
L → X ′L

S ′L is definable too and we have a canonical identification hL ,SL ,S ′L =
hSS ′(L).

Proof. The canonical identification ZS
x (L) = ZSL

σL (x)
follows readily from the identification

of the points of the residue curves. To prove the identification XS(L) = XSL
L , note that, by

Theorem 7.10, the identity is a bijection between f SL
IL
(VIL ) and f SI (VI )(L) (and similarly

for fx,i (V
(1,2)
x,i )).

The commutativity of the diagram follows by the same kind of arguments, using the
explicit description of σL on each subset of the partition of X associated to the facade S
(see Example 7.9).

Finally, the statement about the morphism is a consequence of the previous statements
and the definitions.

Definition 7.12. Let X be as above and let L be a rank 1 elementary extension of k. Let
Y ⊆ X be a radial set. We define YL to be the radial subset of X L defined by

YL := δ
−1
L (δk(Y )(L)).

Remark 7.13. (i) The set YL coincides with the radial subset of X L obtained by
applying the same conditions used to define Y . This follows by inspection on basic
radial sets and the fact that the maps δk and δL preserve disjoint unions.

(ii) Corollary 7.11 ensures that we have σ−1
L (YL) = Y .

Lemma 7.14. Let h : X → Y be a morphism of k-analytic curves. Let x ∈ X and let L be
a complete rank 1 valued field extension of k. Then, we have hL(σL(x)) = σL(h(x)).

Set y := h(x). If dimx (h) = 0, then we have

h−1
L (σL(y))∩π−1

L (x) = {σL(x)}.

In particular, if h is of relative dimension 0, then we have

h−1
L (σL(y)) = {σL(x ′) : x ′ ∈ h−1(y)}.

If h is finite and flat at x, then we have degσL (x)(hL) = degx (h).
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Proof. By [25, Lemma 2.9], we have hL(σL(x)) = σL(h(x)). Let us now assume that h is
of relative dimension 0.

Assume that x is of type 1. Then it is a k-rational point and the statement concerning
the fiber follows from the fact that H (x) = k is algebraically closed. The one about the
degree follows from the fact that, in this case, it is equal to the ramification index, which
is invariant by extension of scalars.

Assume that x is not of type 1. In order to prove the statements, we may localize
around x , hence assume that h−1(y) = {x}.

Assume, moreover, that h is finite and flat at x . Set d := deg(h). We have degx (h) =
d = deg(hL), hence degσL (x)(hL) 6 d.

By Theorem 7.8, we have

degx (h) = [OX,x : OY,y] = [H (x) : H (y)].

Let (e1, . . . , ed) be a basis of H (x) over H (y). It induces a basis of H (x)⊗̂k L as a
module over H (y)⊗̂k L, hence a linearly independent family in H (σL(x)) over H (σL(y))
by localizing and completing. It follows that degσL (x)(hL) > d, hence degσL (x)(hL) = d, as
required. The statement about the fiber follows too.

Assume that h is finite at x but not necessarily flat. Let Ỹ be the normalization of Y
and h̃ : Ỹ ×Y X → Ỹ be the morphism obtained from h by base-change. It is not difficult
to check that, if the result holds for h̃, then it holds for h too. As a result, we may assume
that Y is normal. In this case, h is automatically flat at x and the previous argument
applies.

Let us finally handle the case where dimx (h) = 0 without the assumption that h be finite
at x . By the Berkovich analytic version of Zariski’s Main Theorem (see [8, Théorème 3.2]),
there exist an affinoid neighborhood V of x in X , an affinoid domain W of a k-analytic
curve T such that the restriction of h to V factors as

V → W ↪→ T → Y,

where V → W is finite and T → Y finite étale. We deduce that hL(σL(x)) = σL(h(x))
since all the morphisms in the composition satisfy this property.

7.4. Radiality results

Lemma 7.15. Let X and Y be strictly k-analytic curves and S,S ′ be L-facades of X and
Y , respectively. Let h : X → Y be a morphism satisfying the hypothesis of Theorem 4.12.
Then

(i) if A ⊆ X is a radial set so is h(A) and

(ii) if A ⊆ Y is a radial set so is h−1(A).

Proof. Let us show (i). By Theorem 7.5, ϕS(A(1,2)) is L-definable and hence also
hSS ′(ϕS(A(1,2))), by Theorem 4.12. By Theorem 7.5, there is B ∈ Radk(X) such that
ϕS ′(B(1,2)) = hSS ′(ϕS(A(1,2))). By Theorem 7.5 again, we have B(1,2) = h(A(1,2)). We
claim that B = h(A). Let L be an elementary extension of k that is maximally complete,
with value group R>0. By Corollary 7.11, we have

δL(BL) = (hSS ′(ϕS(A(1,2))))(L) = hL ,SLS ′L (ϕS(A
(1,2))(L)) = ϕS ′L (hL(AL)),
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and taking δ−1
L on both sides we get BL = hL(AL). By Remark 7.13(ii), we have

σ−1
L (BL) = B and Lemma 7.14 now ensures that we have B = σ−1

L (hL(AL)) = h(A).
The proof of (ii) is analogous noting that, by Lemma 7.14, σ−1

L (h−1
L (AL)) = h−1(A).

Proposition 7.16. Let h : X → Y be a morphism of strictly k-affinoid curves of relative
dimension 0. For each d ∈ N, the set

Mh,d := {x ∈ X : h−1(h(x)) has cardinality d}

is radial.

Proof. By Theorem 4.3, there exist Lan
B -facades S and S ′ be of X and Y , respectively. By

Lemma 4.13 and Theorem 4.12, the map hSS ′ is Lan
B -definable, hence the set

MS
h,d := {x ∈ XS

: h−1
SS ′(hSS ′(x)) has cardinality d}

is Lan
B -definable over k. Furthermore, we have ϕS(M

(1,2)
h,d ) = MS

h,d . By Theorem 7.5, there

exists B ∈ Radk(X) such that ϕS(B(1,2)) = MS
h,d . We claim that B = Mh,d . Let L be a

rank 1 elementary extension of k that is maximally complete with value group R>0. By
Corollary 7.11, we have

ϕSL (BL) = {x ∈ XSL
L : h

−1
L ,SLS ′L

(hL ,SLS ′L (x)) has cardinality d}.

Since X L = X (1,2)L , ϕSL defines a bijection between X L and XSL
L , hence

BL = {x ∈ X L : h−1
L (hL(x)) has cardinality d}.

By Remark 7.13(ii), we have B = σ−1
L (BL) and it now follows from Lemma 7.14 that

B = Mh,d .

Corollary 7.17. Let h : X → Y be a morphism of strictly k-analytic curves of relative
dimension 0 that is topologically proper. Then, for each d ∈ N, the set

Mh,d := {x ∈ X : h−1(h(x)) has cardinality d}

is radial.
If h is a compactifiable morphism of nice curves ( e.g., the analytification of an algebraic

morphism of curves), then, for each d ∈ N, the set Mh,d is radial with respect to a finite
triangulation of X .

Proof. Let x ∈ X . Let V be a strictly k-affinoid neighborhood of h(x) in Y . Since the
fiber h−1(h(x)) is finite, it admits a strictly k-affinoid neighborhood U in h−1(V ). By
topological properness, there exists an affinoid neighborhood W of h(x) in V such that
h−1(W ) ⊆ U . In this situation, we have

{x ∈ h−1(W ) : h−1(h(x)) has cardinality d} = {x ∈ h−1(W ) : h−1
|U (h(x)) has cardinality d},

which is a radial subset of h−1(W ) by Proposition 7.16 and Lemma 7.3. The result now
follows from Lemma 7.4.

The last statement follows from the first.
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Remark 7.18. In the situation of Corollary 7.17, one can obtain similar radiality results
for the set {y ∈ Y : h−1(y) has cardinality d}.

We now prove similar results for the local degree function. Let us first extend slightly
the usual definition.

Definition 7.19. Let h : X → Y be a flat morphism of k-analytic curves of relative
dimension 0 and let x ∈ X .

If x ∈ Int(X/Y ) (for instance if x is of type 1 or 4), then h is finite at x and we denote
by degh(x) the usual degree at x , i.e., the rank of the free OY,h(x)-module OX,x .

If x ∈ ∂(X/Y ) (which implies that x is of type 2 or 3), then we set

degh(x) := [H (x) : H (h(x))].

Remark 7.20. Let h : X → Y be a flat morphism of k-analytic curves of relative
dimension 0. It follows from Theorem 7.8 that, for each analytic domain V of X and
each point x ∈ V , we have

degh|V (x) = degh(x).

Note also that the local degree behaves multiplicatively under composition of maps.

By reducing to the finite Galois case, we will now deduce from Proposition 7.16 that,
given a flat morphism of strictly k-analytic curves h : X → Y of relative dimension 0,
the set of points of X with a given prescribed multiplicity is radial. This result was first
proven by Temkin in the case where the curves are quasi-smooth and the morphism is
finite (which is the crucial case). Under those assumptions, Temkin actually proves in [28,
Theorem 3.4.11] that the morphism admits a so-called “radializing skeleton”, but this is
equivalent to our statement by [28, Theorem 3.3.10], whose proof is not difficult.

Theorem 7.21. Let h : X → Y be a flat morphism of strictly k-analytic curves of relative
dimension 0. Then, for each d ∈ N, the set

Nh,d := {x ∈ X : degx (h) = d}

is radial.
If h is a compactifiable morphism of nice curves ( e.g., the analytification of an algebraic

morphisms of curves), then the set Nh,d is radial with respect to a finite triangulation
of X .

Proof. We will prove the result in several steps.

Step 1: X and Y are strictly k-affinoid spaces and h is a ramified Galois covering
We may assume that X and Y are connected. In this case, for each x ∈ X , we have

degx (h) = deg(h)/#h−1(h(x)) and the result follows from Proposition 7.16.

Step 2: X and Y are strictly k-affinoid spaces and h is finite and flat
By [28, Lemma 3.1.4], h factors as the composition of a generically étale morphism

and a purely inseparable morphism on which the degree is constant. As a consequence,
we may assume that h is generically étale. By [28, Lemma 3.1.2], there exist a strictly
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k-affinoid space X ′ and a ramified Galois covering p such that h′ := h ◦ p : X ′→ Y is a
ramified Galois covering. For d ∈ N, set

Qd := {x ′ ∈ X ′ : degx ′(h
′) = d degx ′(p)}.

By Step 1 applied to h′ and p, this is a radial set. Since p(Qd) = Nh,d , the result now
follows from Lemma 7.15.

Step 3: The general case
By Lemma 7.4, it is enough to prove that the result holds in the neighborhood of each

point of x . By Zariski’s Main Theorem (see [8, Théorème 3.2]), there exist an affinoid
neighborhood V of x in X , an affinoid domain W of a k-analytic curve T such that the
restriction of h to V factors as

V → W ↪→ T → Y,

where f : V → W is finite and g : T → Y finite étale. Up to shrinking the spaces, we may
assume that they are all strictly k-affinoid.

Let us denote by n : Y ′→ Y the normalization morphism of Y and consider the
Cartesian diagram

V ′ := V ×k Y ′ V

Y ′ Y

n′

h′ h

n .

Let d ∈ N. Since the degree of a morphism at a point is preserved under base change, we
have

{x ∈ V : degx (h) = d} = n′({x ′ ∈ V ′ : degx ′(h
′) = d}).

By Lemma 7.15, it is enough to prove that the set {x ′ ∈ V ′ : degx ′(h
′) = d} is radial,

hence, up to replacing Y , V , W and T by their base changes to Y ′ over Y , we may assume
that Y is normal. Note that this does not change the properties of the morphisms in
the factorization of h above. Moreover, since Y is normal, T and W are normal too. In
particular, the morphism f : V → W being finite, it is flat.

For a ∈ N, set Va := {x ∈ V : degx ( f ) = a} and Ta := {x ∈ T : degx (g) = a}. Those
sets are radial by Step 2. It now follows from Lemmas 7.2, 7.3 and 7.15 and Remark 7.20
that the set

{x ∈ V : degx (h) = d} =
⋃

a+b=d

Va ∩ ( f −1(Tb ∩W ))

is radial.

Step 4: Refinement in the compactifiable case
The case of a compactifiable morphism reduces to the general case with X and Y

compact thanks to Remark 2.14.

8. Comparison with Hrushovski–Loeser’s spaces

In this section we establish the link with Hrushovski–Loeser theory of stably dominated
types. For the reader’s convenience we briefly recall some definitions although some
familiarity with model theory will be assumed.
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8.1. Brief review on Hrushovski–Loeser space X̂

We work over a very large elementary extension L of k which should be thought as a
universal domain in the sense of Weil. This is what model theorists called a monster
model. Any set of smaller cardinality than L will be called small (so k is small). In
particular, we assume that every small valued field in consideration is embedded in L.
For a tuple of variables x , a global type p(x) is a type over L. Let L denote some expansion
of L3.

Definition 8.1. Let C ⊂ L be a small set and p(x) be a global type. The type p is
C-definable if for every L-formula ϕ(x, y) (without parameters), there is an L(C)-formula
ψϕ(y) (with parameters in C) such that for every a ∈ L|y|

ϕ(x, a) ∈ p⇔ L |H ψϕ(a).

The map ϕ(x, y) 7→ ψϕ(y) is called a scheme of definition for p. If p(x) is C-definable
and L ⊆ A, then we can extend p(x) to a type over A, which we denote p|A, by following
the rule given by the scheme of definition over a larger elementary extension L′ of L
containing A:

p|A := {ϕ(x, a) : L′ |H ψϕ(a), a ∈ A}.

For C-definable global types p(x) and q(y), the tensor product p(x)⊗ q(y) is defined as
follows:

p(x)⊗ q(y) = tp(a, b/L), where b |H q(y) and a |H p|L∪ {b}.

Definition 8.2. A global C-definable type is generically stable if

p(x)⊗ p(y) = p(y)⊗ p(x).

Given a definable set X in k, we let X̂(C) denote the set of C-definable generically stable
types on X , that is, those types containing a formula which defines X .

Remark 8.3. There is a more general notion of generically stable type which coincides
with the previous definition in NIP (not the independence property) theories. Since the
theory of algebraically closed non-trivially valued fields is NIP, we will abuse terminology
and use this restricted version hereafter. To know more about the general notion we refer
the reader to [26].

Note that the ·̂ operator is functorial in the following sense: if X, Y are C-definable
sets and f : X → Y is a C-definable function, then there is a function f̂ : X̂(C)→ Ŷ (C)
which extends f defined by

f̂ (p) = tp( f (a)/L) for any a |H p.

Theorem 8.4. Let X, Y be definable sets and f : X → Y be a definable function. Suppose
everything is definable over C and let C ⊆ A be a small set. If f is injective (respectively
surjective) then f̂ : X̂(A)→ Ŷ (A) is also injective (respectively surjective).

Proof. Injectivity is easy to check. For surjectivity see [18, Lemma 4.2.6] or [19].
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In what follows we will work with X̂(k) which for simplicity will be denoted simply by
X̂ if no confusion arises. Note that X (k) embeds in X̂ by sending a ∈ X (k) to its type
over L. These types are called realized types over k.

Let us now provide the background for pro-definability. Let (I,6) be a small directed
partially ordered set. A C-definable directed system is a collection (X i , fi j ) such that

(i) for every i ∈ I , X i is a C-definable set;

(ii) for every i, j ∈ I such that i > j , fi j : X i → X j is C-definable

(iii) fi i is the identity on X i and fik = f jk ◦ fi j for all i > j > k.

A pro-C-definable X is the projective limit of a C-definable directed system (X i , fi j )

X := lim
←−
i∈I

X i .

We say that X is pro-definable if it is pro-C-definable for some small set of parameters
C .

For X = lim
←−i∈I

X i and Y = lim
←− j∈J

Y j two pro-C-definable sets with associated

C-definable directed systems (X i , fi i ′) and (Y j , g j j ′), a pro-C-definable morphism ϕ : X →
Y is given by a function n : J → I and a family of C-definable functions {ϕi j : X i → Y j :

i > n( j)} such that, for all j > j ′ in J and all i > i ′ in I with i > n( j) and i ′ > n( j ′),
the following diagram commutes

X i Y j

X i ′ Y j ′

fi i ′

ϕi j

g j j ′

ϕi ′ j ′ .

We denote by πi the canonical projection πi : X → X i .

(i) X is strict pro-definable if it can be represented by a directed system (X i , fi j ) where
the transition maps fi j are surjective.

(ii) X is iso-definable if it can be represented by a directed system strict (X i , fi j ) where
the transition maps fi j are bijections. Equivalently, X̂ is in pro-definable bijection
with a definable set (see [18, Corollary 2.2.4]).

(iii) If X = lim
←−i∈I

X i , a subset Z ⊆ X is called relatively definable if there is i ∈ I and a

definable subset Zi ⊆ X i such that Z = π−1
i (Zi ).

Theorem 8.5. Let T be a complete NIP L-theory with elimination of imaginaries and X
be a definable set. Then for any small set of parameters, X̂(C) is pro-definable in L. If
T is T h(k,LG) or T h(k, (Lan

3 )
eq), then X̂ is in addition strict pro-definable.

Proof. This corresponds to [18, Theorem 3.1.1]. For T h(k, (Lan
3 )

eq) details can be found
in [19, Chapter 7].

Among other things, the pro-definability of X̂ allows us to have a natural notion
of definable subsets of X̂ , namely relatively definable subsets. Also, note that given a
definable map f : X → Y , the function f̂ is pro-definable. In the case where X is a curve,
Hrushovski and Loeser proved the following stronger result.
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Theorem 8.6 [18, Theorem 7.1.1]. Let X be an algebraic curve over k. Then X̂ is
iso-definable in LG .

The previous theorem states that, when X̂ = lim
←−i∈I

X i , we can identify X̂ with some

(any) definable set X i for i large enough. Moreover, relative definable subsets of X̂
are in definable bijection with definable subsets of X i for i large enough. The proof
of Theorem 8.6 is non-constructive and relies both on the elimination of imaginaries
assumption from Theorem 8.5 and Riemann–Roch’s theorem. Although we know that X̂ is
in pro-definable bijection with an LG-definable set, we cannot point at any such definable
set. In the following subsection we show how to use the results in §§ 3 and 4 to provide
a constructive proof of Theorem 8.6. In addition, our proof makes no additional use of
Riemann–Roch (besides the potential uses contained in the existence of triangulations,
Theorem 2.7).

8.1.1. Pro-definable bijection between X̂(k) and XS . Recall that, in what follows,

X̂ denotes X̂(k) for any definable set X over k.
As observed in [18, § 3.2], k̂ is in pro-definable bijection with B (or, to be pedantically

precise, V̂F(k) is in pro-definable bijection with B(k)). In what follows we will thus

respectively identify k̂ with B and D̂(0, 1) with D(1,2)k . The goal of this section is to
show that, given an LB-facade S of X , there is a pro-definable bijection between X̂ and
XS .

Theorem 8.7. Let X be a k-analytic curve and S be an L-facade of X (where L denotes
either LB or Lan

B ). Then there is a pro-definable bijection in Leq between X̂(k) and XS .
If L is LB, the pro-definable bijection can be taken over LG .

Proof. Recall that the data of the facade S induces the following definable partition of
X (k):

X (k) :=
⊔

ηa,0∈S(1)

{a} t
⊔
I∈E

VI (k)t
⊔

x∈S(2)

Wx (k)t
m(x)⊔
i=1

Vx,i (k)

 .
Let us show that

• {̂a} is in pro-definable bijection with η1,0,

• V̂I (k) is in pro-definable bijection with f I (VI )
(1,2) (which is a relative definable

subset of B),

• Ŵx (k) is in pro-definable bijection with ZS
x ∪ η0,1,

• V̂x,i (k) is in pro-definable bijection with fx,i (VI )
(1,2),

which will establish that X̂ is in pro-definable bijection with XS .
Case 1: We have that {̂a} = {a} which is trivially in pro-definable bijection with η0,1.
Case 2: We have a definable morphism f I : X (k)→ k which restricted to VI (k) is a

bijection onto its image. Then, by Lemma 8.4, f̂ I : V̂I (k)→ ̂f I (VI (k)) is a bijection.
Case 3: We have a bijective L-definable map εx : Wx (k)→ ZS

x (k) given by ρWx ×

fx (where ZS
x (k) is as in (E6)). By Lemma 8.4, the map ε̂x : Ŵx (k)→ ẐS

x (k) is

a bijection. Since ZS
x (k) ⊆ Ux (k)× D(0, 1), ẐS

x (k) ⊆ (Ux (k)× D(0, 1))̂. In general, the
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stable completion of a product is not the product of the stable completions so,

(Ux (k)× D(0, 1))̂ is not equal to Ûx (k)× D̂(0, 1). Nevertheless, in our situation this will
almost be the case as we now show. Let

π : (Ux (k)× D(0, 1))̂→ Ûx (k)× D̂(0, 1)

be the pro-definable map given by

tp(α, a/L) 7→ (tp(α/L), tp(a/L)).

Claim 8.8. The map π ◦ ε̂x is injective.

Let r and r ′ be two elements in Ŵx (k) such that π(ε̂x (r)) = π(ε̂x (r ′)). Let p(x, y) :=
tp(α0, a0/L) and p′(x, y) := tp(α1, a1/L) be two elements in (Ux (k)× D(0, 1))̂ such that
ε̂x (r) = p, ε̂x (r ′) = p′. We have tp(α0/L) = tp(α1/L) and tp(a0/L) = tp(a1/L). Since ε̂x
is a bijection, it suffices to show that p = p′. We split in cases depending on whether
tp(α0/L) is realized in L or corresponds to the generic type of Cx , which we denote by
ηCx .

Case 3.1: Suppose that α0 ∈ Ux (L̃). Then α0 = α1 and tp(α0, a0/L) = tp(α0, a1/L) since
tp(a0/L) = tp(a1/L).

Case 3.2: Suppose that α0 /∈ Ux (L̃). Hence, tp(α0/L) (respectively tp(α1/L)) is the
generic type ηCx of Cx . Let L′ be an elementary extension of L containing α0, α1, a0 and
a1. Suppose for a contradiction that tp(α0, a0/L) 6= tp(α1, a1/L). Hence, there is a formula
ϕ(x, y) over L such that L′ |H ϕ(α0, a0)∧¬ϕ(α1, a1). By assumption, both (α0, a0) and
(α1, a1) are contained in ZS

x (L
′). Therefore, we may suppose that ϕ(x, y) defines in L′ a

set H ⊆ ZS
x (L

′). By Corollary 6.5 (applied to h = f̃x ), there is a finite set F ⊆ Ux (L̃) such

that either Hα is empty for all α ∈ Ux (L̃) \ F or Hα = res−1( f̃x (α)) for all α ∈ Ux (L̃) \ F .
Clearly, the same statement holds for all α ∈ Ux (L̃ ′) \ F . By assumption, neither α0 nor
α1 is contained in F . Since ϕ(α0, a0) holds, Hα must be non-empty for all α ∈ U(L̃ ′) \ F .
In particular, a0 satisfies the formula over L

(∀x)(x /∈ F → ϕ(x, a0)).

But since tp(a0/L) = tp(a1/L), a1 must also satisfy such formula, which implies that
ϕ(α1, a1) holds, a contradiction. This shows the claim.

By the claim we have

π ◦ ε̂x (Ŵx ) = {(tp(α/L), tp(a/L)) ∈ Ûx (L̃)× D̂(0, 1) : f̃x (α) = res(a)}.

To conclude, it remains to note that Ûx (k̃) = (ηCx tUx (k̃)) and therefore

π ◦ ε̂x (Ŵx ) = {(ηCx , η0,1)} ∪ {(tp(α/L), tp(a/L)) ∈ Ux (L̃)× D̂(0, 1) : f̃x (α) = res(a)}.

The set {(ηCx , η0,1)} is trivially in pro-definable bijection with {η0,1} and since D̂(0, 1)
is in pro-definable bijection with D(1,2)k , we obtain that π ◦ ε̂x (Ŵx ) \ {ηCx , η0,1} is in
pro-definable bijection with

{(α, ηa,r ) ∈ Ux (L)×D(1,2)k : f̃x (α) = red(a)} = ZS
x (L).

Case 4: Analogous to Case 2.
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Given a k-algebraic curve X and an L-facade S of X , we let ψS : X̂ (k)→ XS be the
pro-definable bijection given by Theorem 8.7. The following gives us a different proof of
Theorem 4.12 for the analytification of a morphism between algebraic curves:

Corollary 8.9. Let h : X → Y be a morphism of algebraic curves over k. Let S and S ′ be
LB-facades of X an and Y an, respectively (which exist by Theorem 4.3). Then the map h′SS
making the following diagram commute

X̂ (k) Ŷ (k)

XS YS

ψS

ĥ

ψS′

h′SS′ ,

is LB-definable. In addition, h′SS ′ = hSS ′ , where hSS ′ is the map given by Definition 4.11.

Proof. By Theorem 8.7, ψS and ψS ′ are pro-definable bijections, hence h′SS : XS
→ YS ′

is pro-definable (in LG). Since a pro-definable map between definable sets is definable,
h′SS ′ is LG-definable. Its domain and codomain are LB-definable, which shows that h′SS ′
is LB-definable.

To show that h′SS ′ = hSS ′ , let L be a maximally complete elementary extension of k
with value group R. Consider the following diagram

XS(L) XSL
L X an

L X̂ (k)(L) XS(L)

YS(L) Y
S ′L
L Y an

L Ŷ (k)(L) YS ′(L)

hLSLS′L

ϕSL

hL

βX

ĥ

ψSL

h′SS′

ϕS′L

βY
ψS′L

,

where βX and βY are bijections given by [18, Lemma 14.1.1] (noted by πX and πY in
[18]) and the equalities are given by Corollary 7.11. By [18, Proposition 14.1.3] and
Theorem 4.12 every square in the diagram is commutative and therefore hLSLS ′L = h′SS ′L

.

Now by Lemma 7.14 and Corollary 7.11 the restriction of h′LSLS ′L
to XS (i.e., to XS(k))

is hSS , therefore h′SS ′ = hSS ′ .

We finish with two remarks.

Remark 8.10. Let X be a k-algebraic curve and S be an L-facade of X . Using Theorem 8.7,
Hrushovski–Loeser’s main theorem (or the curve version [18, Theorem 7.5.1]) translates
into the existence of a definable deformation retraction for XS (since pro-definable maps
between definable sets are definable) onto a 0-internal subset of XS (for the definition
of 0-internal, see [18, § 2.8]). However, as the L-facade S already carries all needed
information to define such a map, it is not difficult to obtain this result early in our
theory (see Remark 4.17).

Remark 8.11. Let h : X → Y be a morphism of k-analytic curves, S and S ′ be Lan
B -facades

of X and Y respectively and suppose that the restriction h : X (k)→ Y (k) is Lan
B -definable.
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In order to extend Corollary 8.9 to this setting, one needs to show the existence of
bijections βX and βY which make the diagram commute.

Assuming that such bijections exist and that the result also holds in this more
general setting, it would seem that this proof removes the h-compatibility assumption
(condition (i)) in Theorem 4.12. Nevertheless, Lemma 4.13 indicates that such a
hypothesis is always verified in the cases we are considering.

Acknowledgments. We are grateful to the referee for a careful thorough reading of
our paper and for many useful suggestions. In particular, we would like to thank him/her
for suggesting us the content of Remark 4.17.
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