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We introduce a level-crossing analysis of the finite time-t probability distributions of
the excess life, age, total life, and related quantities of renewal processes. The technique
embeds the renewal process as one cycle of a regenerative process with a barrier at level
t, whose limiting probability density function leads directly to the time-t quantities. The
new method connects the analysis of renewal processes with the analysis of a large class
of stochastic models of Operations Research. Examples are given.

1. INTRODUCTION

The probability distributions of excess life, age, and total life at an arbitrary finite time t,
and related quantities, are useful for analyzing renewal-theoretic models. They are derived
typically via renewal integral equations obtained using renewal arguments, such as con-
ditioning on the time of the first renewal. The time-t probability distributions have been
discussed by many authors including Feller [1–3], Doob [4], Smith [5], Cox [6], Ross [7], and
Karlin and Taylor [8].

The conventional method of deriving and solving renewal integral equations for the
finite time-t distributions may encounter difficulties when attempting to solve the equations.
Bartholemew [9], Deligonul [10], among others, address the need for using approximate
solutions of the integral equations. Deligonul [10] mentions authors who have used: Laplace
transforms, power series expansion, direct numerical solution of an approximate integral
equation, and spline functions.

Other difficulties may arise when using the conventional method, especially if the inter-
arrival times have finite support. Suppose the support is (0, U), where U ∈ (0,∞) or U = ∞.
If t < U , the difficulties of solving the renewal integral equation are similar to those discussed
in Bartholemew [9] and Deligonul [10]. However, if t > U (implying U is finite) solving the
renewal equation becomes increasingly difficult as t increases because: (a) the excess life dis-
tribution must first be known at nU , n= 1, . . . , �t/U�, where �α�= (greatest integer≤α);
(b) the calculation may require the n-fold self convolutions of the cdf (cumulative dis-
tribution function) of the inter-arrival time (n = 2, 3, . . .), which become more complex
to compute as n increases. The alternative analysis presented here is especially useful in
obtaining the finite time-t distributions and related quantities if t > U (Section 5.2).
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Figure 1. Sample path of regenerative process {X(s)}s≥0 and renewal process
{Zn}n=1,2,.... SP denotes “System Point”, the leading point of the sample path as it evolves
over time. The Zj ’s (j fixed) in different cycles are equal in distribution, but have different
values.

The present paper considers an ordinary renewal process {Zn}n=1,2,... with indepen-
dent identically distributed (i.i.d.) continuous inter-arrival times; let Zn =

dist
Z. In the

new method, we transform the one-dimensional renewal process {Zn}n=1,2,... into a two-
dimensional positive recurrent regenerative process {X(s)}s≥0 having state space [0,∞)
with jumps =

dist
Z occurring at an arbitrary Poisson rate, and regenerative epochs at instants

of level-t exceedances (Section 2). The limiting pdf of {X(s)}s≥0 exists (e.g., Sigman and
Wolff [11]; Asmussen [12], Tijms [13]), and is concentrated on the state-space interval [0, t).
The limiting probability density function (pdf) is of fundamental importance because it
leads directly to the finite time-t distributions and related quantities. In this paper, we
obtain the limiting pdf of {X(s)}s≥0 via a level-crossing procedure (Section 3.1). The idea of
using a regenerative process {X(s)}s≥0 is based on the generic framework proposed in Brill
[14]. The new analysis also applies to modified renewal processes by a slight modification
(Section 5.3).

The new method has useful advantages. It bypasses ad-hoc renewal arguments in var-
ious cases, such as conditioning on the first renewal, etc., by focusing on the sample path
of {X(s)}s≥0. This makes the analysis straightforward, and faster and easier than the
conventional method in many cases, because a sample path is a concrete guide to derive
the limiting pdf of {X(s)}s≥0 (e.g., Figure 1). Level-crossing rates are equal to simple
mathematical expressions, or simple integral transforms, of the limiting pdf. Intuitive con-
servation laws connect the level-crossing rates and the integral equations for the limiting
pdf (Section 3.1.1). Analytical properties of the pdf’s of the time-t quantities, e.g., discon-
tinuities or general functional forms, can be readily determined using the new method. The
existence of the limiting pdf of {X(s)}s≥0 implies that the time-t distributions exist when
Z has no mean (e.g., a standard type-1 Pareto distribution with shape parameter less than
or equal to 1). Level-crossing methods also lead to the time-t quantities (Section 3.1.2).
The new method connects the analysis of the time-t quantities with the analyses of queues
having bounded wait, inventories, dams, replacement models, and actuarial ruin models
(Brill and Yu [15]). It provides a completely different perspective of the time-t quantities
and suggests new avenues of research. References for level-crossing methods are Brill and
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Posner [16,17], Cohen [18,19], Brill [20,21] and others. Regenerative processes are discussed
in Smith [5], Cohen [18], Sigman and Wolff [11], Asmussen [12], Tijms [13], and others.

Sections 2–4 consider the ordinary renewal process. Section 2 details the underlying
regenerative process {X(s)}s≥0. Section 3 describes the level-crossing procedure to be used
in deriving the pdf’s of interest; and establishes the connection between {X(s)}s≥0 and the
renewal function of {Zn}n=1,2,.... Section 4 derives the time-t distributions of the excess life,
age, and total life. Section 5 gives examples, including a modified renewal process. Section 6
briefly compares the present work with the conventional method of renewal arguments and
integral equations, and summarizes some contributions of the present paper.

2. THE ORDINARY RENEWAL PROCESS AND REGENERATIVE PROCESS
{X(s)}s≥0

Consider the renewal process {Zn}n=1,2,..., where Zn is a continuous random variable on
(0, U) and U ∈ (0,∞) or U = ∞. Let Z1 ≡

dist
Zn ≡

dist
Z with the common cdf B(·), pdf b(·) and

ccdf (complementary cumulative distribution function) B̄(·) = 1 − B(·). Let B∗n(·) denote
the n-fold self convolution of B(·) and b∗n(x) = (d/dx)B∗n(x), x > 0.

Fix arbitrary finite time t > 0. Denote the time-t excess life by γt, age by δt and total
life by βt, with cdf’s Fγt

, Fδt
, Fβt

and pdf’s fγt
, fδt

, fβt
, respectively. Denote the time-t

renewal function as M(t). Then (e.g., Ross [22], Pinsky and Karlin [23])

M(t) =
∞∑

n=1

B∗n(t); M ′(t) =
∞∑

n=1

b∗n(t). (2.1)

2.1. Regenerative process

Consider {X(s)}s≥0 having state space [0,∞), constructed from {Zn}n=1,2,... and a Poisson
process of arbitrary rate λ (≡ 1 for simplicity) as follows. Let X(0) = 0. Assume sample
paths of {X(s)}s≥0 are right continuous and have left limits. Let {X(s)}s≥0 make upward
jumps =

dist
Z at Poisson rate 1, with inter-jump times ai =

dist
a and E(a) ≡ 1. The jumps orig-

inate in [0, t) and are in one-to-one correspondence with the {ai}i=1,2,... (Figure 1). Suppose
σ− is an instant just before an upward-jump of {X(s)}s≥0, i.e., X(σ−) =

∑i
n=1 Zn < t for

some non-negative integer i;
(∑0

n=1 = 0
)
. Then just after the jump

X(σ) =

{
X(σ−) + Z if X(σ−) + Z < t,

0 if X(σ−) + Z > t.
(2.2)

If X(σ) < t, then X(s) ≡ X(σ), s ∈ [σ, σ + a). If X(σ−) + Z > t then X(s) = 0,
s ∈ [σ, σ + a). That is, whenever X(s) overshoots level t the renewal process {Zn}n=1,2

restarts at level 0, and the Poisson process {an}n=1,2,... continues at rate 1. This dynamic
creates a sequence of i.i.d. cycles between successive upcrossings of level t, in which the
sample path is a random non-decreasing step function in [0, t). At any instant in a cycle
{X(s)}s≥0 is equal to the time of the last renewal in {Zn}n=1,2,... (Figure 1).

The total probability of {X(s)}s≥0 is supported on state-space interval [0, t) because
jumps =

dist
Z that start at some level y ∈ [0, t) and upcross t signal double jumps that upcross

and downcross every level in [y, y + Z). Thus, {X(s)}s≥0 spends zero time above level t.
Since {X(s)}s≥0 is a regenerative process, it has a limiting mixed pdf denoted by

{π(t), f (t)(x)}0<x<t (e.g., Sigman and Wolff [11], Asmussen [12], Tijms [13]). Notably, the
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new method utilizes {π(t), f (t)(x)}0<x<t to derive the time-t distributions of γt, δt, βt, and
related quantities (Section 4).

Remark 2.1: The length of every cycle of {X(s)}s≥0 includes at least one interval =
dist

a.

Note that P (jump upcrosses level t|jump starts at level 0) = B̄(t). If t < U , then B̄(t)̇ > 0,
implying such a jump ends a cycle of length =

dist
a; a new cycle starts immediately at level 0.

Thus, B̄(t) is the long run proportion of cycles having length =
dist

a. If t ≥ U , then B̄(t)̇ = 0.

Thus P (jump upcrosses level t|jump starts in state-space interval [0, t − U ]) = 0. However,
P (jump upcrosses level t|jump starts in state-space interval (t − U, t)̇) > 0. Then a cycle
has length =

dist

∑i
n=2 ai, where i ≥ 2 is finite.

Remark 2.2: {X(s)}s≥0 is a Markov process on each regenerative cycle.

3. PRELIMINARIES

3.1. Notes on the Level-Crossing Procedure Used in the Analysis

This subsection introduces some ideas of the level-crossing procedure to be used in the
following development. For exposition, here we assume that t ≤ U . Cases where t > U
are detailed later where applicable. More level-crossing particulars are given in the references
cited in Section 1.

3.1.1. Deriving the limiting pdf {π(t), f (t)(x)}0<x<t. Consider a sample path of
{X(s)}s≥0 (Figure 1). Let Dj

s(x), x ∈ [0,∞), denote the total number of jump downcrossings
of level x during (0, s). Let Uj

s (x), x ∈ (0,∞], denote the total number of jump upcrossings
of level x during (0, s). (A downcrossing is a transition from state-space subset (x,∞)
into [0, x]; an upcrossing is a transition from state-space subset [0, x] into (x,∞).) For
{X(s)}s≥0 all level crossings are due to jumps. Conservation of sample-path upcrossing
and downcrossing rates across level x, implies

lim
s→∞

Dj
s(x)
s

= lim
s→∞

U j
s (x)
s

, x ∈ [0,∞), a.s.,

lim
s→∞

E(Dj
s(x))
s

= lim
s→∞

E(U j
s (x))
s

, x ∈ [0,∞).

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

All jumps that start in the state-space interval [0, t) are upward jumps. Upward jumps that
exceed level t signal the ends of cycles, followed immediately by downward jumps that end
at level 0. Each downward jump downcrosses every x ∈ [0, t). Our analysis includes entire
jumps, not just the net jumps. When a jump upcrosses t a double jump occurs. The first
is the jump overshooting t; the second starts immediately at the end of the first jump, and
is downward ending at level 0. A net count of 0 crossings is given to every level in the
state-space intersection of the double-jump pairs. If an upward jump starts at level 0 and
exceeds level t then the paired downward jump cancels the count of the upward jump at all
x ∈ (0, t), and the net total count of both jumps is 0 (see Remark 2.1).

Connection to mixed pdf {π(t), f (t)(x)}0<x<t. The mixed pdf {π(t), f (t)(x)}0<x<t is a time-
average pdf. Since jumps occur at a Poisson rate, the arrival-point pdf is the same as the
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time-average pdf (e.g., Wolff [24]). Thus

lim
s→∞

Dj
s(x)
s

= lim
s→∞

U j
s (t)
s

= lim
s→∞

Dj
s(0)
s

= π(t), x ∈ [0, t), (3.2)

and lim
s→∞

U j
s (x)
s

= π(t)B̄(x) +
∫ x

0

B̄(x − y)f (t)(y) dy, x ∈ [0, t). (3.3)

Explanation of equation (3.2). (downcrossing rate of x) = (upcrossing rate of t) because
of the double jumps whenever {X(s)}s≥0 exceeds t; (upcrossing rate of t) = (downcrossing
rate of 0) = (entrance rate of {0}) = (exit rate of {0}) = 1 · π(t)

Explanation of equation (3.3). lims→∞(U j
s (x)/s) = (rate of ju mps that start at level 0

and upcross x) + (rate of jumps that start at levels y ∈ (0, x) and upcross x). The first term
is 1 · π(t)B̄(x), because the rate of jumps that start at level 0 is 1·π(t), and P (jump exceeds
x|jump starts at level 0) = B̄(x). The second term is 1 · ∫ x

0
B̄(x − y)f (t)(y) dy, because

the rate of jumps that start in state-space interval (y, y + dy) is 1 · f (t)(y′) dy, for some
y′ ∈(y, y + dy), and P (jump exceeds x|jump starts at level y ∈ (0, x)) = B̄(x − y). Thus,∫ x

0
B̄(x − y)f (t)(y) dy is the total rate at which {X(s)}s≥0 upcrosses x from starts at levels

y ∈ (0, x).
By (3.1), the expressions (3.2) and (3.3) are equal, resulting in the integral equation

(3.5) below.

3.1.2. Deriving the pdf fγt
(x), x > 0: Consider a fixed level (t + x), x > 0. We obtain

two different expressions for the upcrossing rate of level (t + x): expression (i) in terms of
Fγt

(x), x > 0; expression (ii) in terms of {π(t), f (t)(x)}0<x<t. Then we equate expressions
(i) and (ii) to form an equation. If {π(t), f (t)(x)}0<x<t is known (Section 3.1.1) then we
can derive Fγt

(x), x > 0 or fγt
(x), x > 0.

Expression (i) is π(t)(1 − Fγt
(x)), because the upcrossing rate of level t is 1 · π(t)

and P (jump upcrosses level (t + x)|jump upcrosses level t) = 1 − Fγt
(x), 0 < x < U (see

Section 3.1.1).
Let (α, β)+ = max(α, β). Expression (ii) is

π(t)B̄(t + x) +
∫ t

y=(t+x−U,0)+
B̄(t + x − y)f (t)(y) dy, 0 < x < U. (3.4)

In (3.4), the first term is the rate of jumps that start at level 0 and upcross (t + x),
because the rate of jumps that start from level 0 is 1 · π(t) and P (jump upcrosses level
(t + x)|jump starts at level 0 ) = B̄(t + x). The second term is the rate of jumps that start
at levels y ∈ ((t + x − U, 0)+, t) and upcross (t + x), because P (jump upcrosses level (t +
x)|jump starts at level y) = B̄(t + x − y). In (3.4), if (t + x − U) ≥ 0 then B̄(t + x) = 0,
and the lower limit of the integral is (t + x − U). If (t + x − U) < 0 then B̄(t + x) > 0, and
the lower limit of the integral is 0. Equating expressions (i) and (ii) yields equation (4.1)
below.

3.2. Solution for {π(t), f (t)(x)}0<x<t

We treat the cases t ≤ U and t > U separately.
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3.2.1. Case t ≤ U : For each level x ∈ (0, t), we balance upcrossing and downcrossing
rates as explained in Section 3.1.1, which yields the integral equation for f (t)(·) (see Figure 1)

π(t)B̄(x) +
∫ x

y=0

B̄(x − y)f (t)(y) dy = π(t), x ∈ (0, t). (3.5)

The normalizing condition is

π(t) +
∫ t

x=0

f (t)(x) dx = 1. (3.6)

Dividing (3.5) by π(t) gives the identity

B̄(x) +
∫ x

y=0

B̄(x − y)
f (t)(y)
π(t)

dy ≡ 1, x ∈ (0, t). (3.7)

Letting x ↑ t in (3.7) yields the useful formula

B̄(t) +
∫ t

y=0

B̄(t − y)
f (t)(y)
π(t)

dy = 1. (3.8)

We next solve (3.5) and (3.6) simultaneously.

3.2.2. Solution for {π(t), f (t)(x)}0<x<t : Taking d/dx on both sides of (3.5) yields the
Volterra integral equation

f (t)(x) = π(t)b(x) +
∫ x

y=0

b(x − y)f (t)(y) dy, 0 < x < t, (3.9)

with unique solution

f (t)(x) = π(t)
∞∑

n=1

b∗n(x), 0 < x < t, (3.10)

where b(x) ≡ b∗1(x).

Formula (3.10) follows by substituting f (t)(y) from (3.9) recursively into the integral in (3.9).
From (2.1) and (3.10)

f (t)(x) = π(t)
∞∑

n=1

d

dx
B∗n(x) = π(t) d

dx

∞∑
n=1

B∗n(x) = π(t)M ′(x), 0 < x < t, (3.11)

f (t)(x)
π(t)

= M ′(x), 0 < x < t. (3.12)

To solve for π(t), substitute (3.11) into (3.6);
∫ t

x=0
M ′(x) dx = M(t) − M(0) = M(t) implies

π(t) + π(t)M(t) = 1, π(t) =
1

1 + M(t)
. (3.13)

From (3.12) and (3.13)

f (t)(x) =
M ′(x)

1 + M(t)
, 0 < x < t. (3.14)
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Figure 2. Sample path of regenerative process {X(s)}s≥0 for Zn ≡
dist

U(0,1) and t ∈ (1, 2).

The Zj ’s (j fixed) in different cycles are =
dist

U(0,1), but have different values.

Expressing M(x) (0 < x ≤ t) in terms of {π(t), f (t)(y)}0<y<x, (3.12) and (3.6) yield,
respectively

M(x) =
∫ x

y=0

M ′(y) dy =
1

π(t)

∫ x

y=0

f (t)(y) dy, 0 < x < t; M(t) =
1

π(t)
− 1. (3.15)

Expected number of renewals required to first exceed t. Let Nt = min{n|∑n
i=1 Zi > t}. Nt

is a stopping time for the sequence {Zi}i=1,2,... and also for the sequence {ai}i=1,2,..... Since
Nt = N(t) + 1, E(Nt) = M(t) + 1. From (3.15)

E(Nt) =
1

π(t)
. (3.16)

Expected cycle length of {X(s)}s≥0. Let c denote a cycle length. Then c =
∑Nt

i=1 ai. By
Wald’s equation and (3.16),

E(c) = E(Nt)E(a) = E(Nt) =
1

π(t)
. (3.17)

3.2.3. Case t > U : Here U < ∞ since t < ∞ (see Figure 2). Suppose t ∈ [NU, (N +
1)U) for some integer N ≥ 1. Let IA(x) = 1 if x ∈ A and 0 otherwise.

Define f
(t)
n (x) = f (t)(x)I [nU,(n+1)U)(x), n = 0, 1, . . . .; then

f (t)(x) =
N∑

n=0

f (t)
n (x), 0 < x < t. (3.18)

An integral equation for f0(x), 0 < x < U is

π(t) · B̄(x) +
∫ x

0

B̄(x − y)f (t)
0 (y) dy = π(t), 0 < x < U, (3.19)
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which is the same as (3.5) except that the range’s upper limit is U . Thus,

f
(t)
0 (x) = π(t)M ′(x), 0 < x < U,

which is similar to (3.12). Integral equations for f
(t)
n (x) in terms of f

(t)
n−1(·) are

∫ nU

y=x−U

B̄(x − y)f (t)
n−1(y) dy +

∫ x

y=nU

B̄(x − y)f (t)
n (y) dy = π(t), (3.20)

where

{
nU ≤ x < (n + 1)U, if n = 0, . . . , N − 1;
NU ≤ x < t, if n = N.

If N = 1 then U ≤ t < 2U , and (3.20) becomes∫ U

y=x−U

B̄(x − y)f (t)
0 (y) dy +

∫ x

y=U

B̄(x − y)f (t)
1 (y) dy = π(t), U ≤ x < t, (3.21)

∫ U

y=x−U

B̄(x − y)π(t)M ′(y) dy +
∫ x

y=U

B̄(x − y)f (t)
1 (y) dy = π(t), (3.22)

which gives f
(t)
1 (·) in terms of f

(t)
0 (·). We solve (3.22) for f

(t)
1 (x), U ≤ x < t, in terms

of f0(y), x − U < y < U , using (3.20); or in terms of {π(t),M ′(y)}x−U<y<U using (3.22).
Then solve recursively for f

(t)
n (x), n = 2, 3, . . . , N , using (3.20). This gives f (t)(x) as a linear

expression of functions of x in which π(t) is a common factor. Then (3.6) yields π(t). (see
example in Section 5.2.)

Remark 3.1: Formulas (3.15)–(3.17) for M(t), E(Nt), and E(c) apply when t > U .

3.3. Limiting Proportion of Renewals of {Zn}n=1,2,... in (r, v) ⊆ (0, t) in cycles of
{X(s)}s≥0

3.3.1. Property of the limiting pdf of {X(s)}s≥0: Consider two different finite times v
and t, 0 < v < t. In this subsection only, label the corresponding regenerative processes as
{X(ξ)(s)}s≥0, ξ = v, t. We give a useful property connecting f (v)(x) and f (t)(x), 0 < x < v.

Observe that the integral equation for f (v)(x), 0 < x < v, is identical to (3.19) if v ≤ U ,
or to (3.20) if v > U , with π(t) replaced by π(v). Hence, f (v)(x), 0 < x < v, is identical to
f (t)(x), 0 < x < v, with π(t) replaced by π(v). Also, π(v) > π(t) since the expected cycle
length of {X(v)(s)}s≥0 is less than that of {X(t)(s)}s≥0. From Section 3.2.2 we obtain

f (t)(x) = π(t) · a(x), 0 < x < v; f (v)(x) = π(v) · a(x), 0 < x < v, (3.23)

where a(x) depends on x, but not on v or t, i.e., f (t)(x) and f (v)(x) depend respectively on
t and v through the factors π(t) and π(v) only. Since π(v) > π(t) we have

f (v)(x) =
π(v)

π(t)
f (t)(x) > f (t)(x), 0 < x < v. (3.24)

To illustrate (3.23) and (3.24), let Z be uniform on (0, 1), and t ≤ 1. Then (e.g.,
Brill [14])

f (ξ)(x) = π(ξ)ex, 0 < x < ξ, π(ξ) = e−ξ, for ξ = v and ξ = t; also a(x) = ex.

Then f (v)(x) = π(v)a(x) = π(v)(f (t)(x)/π(t)) = e(t−v)f (t)(x) > f (t)(x), 0 < x < v.
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3.3.2. Limiting proportion of renewals of {Zn}n=1,2,... in (r, v) ⊆ (0, t): Assume
f (t)(x), 0 < x < v, and f (v)(x), 0 < x < v, are known (Section 3.2). Remark 3.1 and (3.24)
imply

M(v) =
1

π(v)
− 1 =

∫ v

y=0
f (v)y) dy

π(v)
=

∫ v

y=0
f (t)y) dy

π(t)
, (3.25)

which reflects the observation that M(v) is invariant whether computed using {X(t)(s)}s≥0

or using {X(v)(s)}s≥0.
Consider a sample path of {X(t)(s)}s≥0 (Figure 1). Let 0 < r < v < t. Define R(r,v)(s) as

the total number of renewals of {Zn}n=1,2,...in the state-space interval (r, v), 0 < r < v < t,
in the cycles of {X(t)(s)}s≥0 during (0, s), s > 0. From the renewal reward theorem (e.g.,
Sigman and Wolff [11], Asmussen [12], Tijms [13]), and (3.17),

lim
s→∞

R(r,v)(s)
s

=
E(number of renewals in (r, v) in a cycle)

E(cycle length)
=

M(v) − M(r)(
1

π(t)

) . (3.26)

From (3.25) and (3.26)

lim
s→∞

R(r,v)(s)
s

=

∫ v

y=0
f (t)y) dy − ∫ r

y=0
f (t)y) dy

π(t)
(

1
π(t)

) =
∫ v

y=r

f (t)y) dy.

Dividing and multiplying R(r,v)(s)

s by R(0.t)(s) (which is positive for sufficiently large s)
yields

lim
s→∞

(
R(r,v)(s)
R(0,t)(s)

)
· lim

s→∞

(
R(0,t)(s)

s

)
= lim

s→∞

(
R(r,v)(s)
R(0.t)(s)

)
·
∫ t

0

f (t)(y) dy =
∫ v

y=r

f (t)y) dy.

Therefore, the limiting proportion of renewals of {Zn}n=1,2,... in (r, v) ⊆ (0, t) in cycles of
{X(s)}s≥0 as s → ∞ is

lim
s→∞

(
R(r,v)(s)
R(0.t)(s)

)
=

∫ v

r
f (t)(y) dy.∫ t

0
f (t)(y) dy

. (3.27)

Intuitively, if we would observe, each up to time t, a sequence of statistically identical
renewal processes {Zn}n=1,2,..., then the proportion of renewals in (r, v) → (3.27). Alterna-
tively, if we would observe up to time t, independent renewal processes, statistically identical
to {Zn}n=1,2,,,, then the proportion of renewals in (r, v) → (3.27) as the number of observed
processes → ∞.

4. DISTRIBUTIONS OF THE TIME-t RANDOM VARIABLES IN TERMS OF
{π(t), f (t)(x)}
We develop results separately for the cases t ≤ U and t > U . If t ≤ U then U is finite or
infinite. If t > U then U is necessarily finite, and we assume t ∈ [NU, (N + 1)U) for some
integer N ≥ 1.
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4.1. Excess Life γt

4.1.1. Case t ≤ U : We obtain the following integral equation (4.1) for F̄γt
(x) by

equating two different upcrossing rates of level t + x, as explained in Section 3.1.2.

π(t)F̄γt
(x) = π(t)B̄(t + x) +

∫ t

y=(t+x−U,0)+
B̄(t + x − y)f (t)(y) dy, 0 < x < U, (4.1)

F̄γt
(x) = B̄(t + x) +

∫ t

y=(t+x−U,0)+
B̄(t + x − y)

f (t)(y)
π(t)

dy, 0 < x < U. (4.2)

Taking d/dx in (4.2) gives, since B̄(t + x − (t + x − U)) = B̄(U) = 0,

fγt
(x) = b(t + x) +

∫ t

y=(t+x−U,0)+
b(t + x − y)

f (t)(y)
π(t)

dy, 0 < x < U. (4.3)

From (4.3) we obtain

fγt
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b(t + x) +
∫ t

y=0

b(t + x − y)
f (t)(y)
π(t)

dy, 0 < x < U − t, (a)

∫ t

y=t+x−U

b(t + x − y)
f (t)(y)
π(t)

dy, U − t < x < U. (b)

(4.4)

Only (4.4a) holds if U = ∞. Both (4.4a) and (4.4b) hold if U < ∞.

Property If t < U < ∞ then fγt
(x) has a jump discontinuity at x = (U − t) of magnitude

fγt
((U − t)+) − fγt

((U − t)−) = −b(U−). This follows by letting x ↓ (U − t) and x ↑ (U − t)
in (4.4b) and (4.4a), respectively, and subtracting.

4.1.2. Case t > U : An equation analogous to (4.2) is

F̄γt
(x) =

∫ t

y=t+x−U

B̄(t + x − y)
f (t)(y)
π(t)

dy, 0 < x < U. (4.5)

Taking d/dx in (4.5), noting B̄(U) = 0, gives

fγt
(x) =

∫ t

y=t+x−U

b(t + x − y)
f (t)(y)
π(t)

dy, 0 < x < U. (4.6)

From (4.6), with {f (t)
n (y)}n=0,...,N defined just before (3.18), we get

fγt
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ NU

y=t+x−U

b(t + x − y)
f

(t)
N−1(y)
π(t)

dy

+
∫ t

y=NU

b(t + x − y)
f

(t)
N (y)
π(t)

dy, 0 < x < (N + 1)U − t,

∫ t

y=t+x−U

b(t + x − y)
f

(t)
N (y)
π(t)

dy, (N + 1)U − t < x < U.

(4.7)

An example using (4.7) is given in Section 5.2.
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4.2. Position Just Before {X(s)}s≥0 Exceeds t

We define X
(t)
JB as the position of {X(s)}s≥0 just before the jump that first exceeds level

t. It is related to the age δt. Denote its mixed pdf as {π(t)
JB , f

(t)
JB(x)}0<x<t where π

(t)
JB =

P (X(t)
JB = 0). (Note that X

(t)
JB is an important quantity in various stochastic models, such

as actuarial ruin models, e.g., Gerber and Shiu [25]).

4.2.1. Case t ≤ U : Consider a sample path of {X(s)}s≥0 (Figure 1). Application of
Baye’s rule and using (3.8), yields

f
(t)
JB(x) dx =

P (jump upcrosses t | jump starts at level x> 0) ·P (jump starts at level x)dx

P (a jump upcrosses t)
,

f
(t)
JB(x) =

B̄(t − x)f (t)(x)

π(t)B̄(t) +
∫ t

y=0
B̄(t − y)f (t)(y) dy

= B̄(t − x)
f (t)(x)

π(t)
, 0 < x < t. (4.8)

Also π
(t)
JB =

P (jump upcrosses t | jump starts at level 0) · P (jump starts at level 0)
P (a jump upcrosses t)

,

π
(t)
JB =

B̄(t)π(t)

π(t)B̄(t) +
∫ t

y=0
B̄(t − y)f (t)(y) dy

= B̄(t). (4.9)

Using (3.8) shows that {π(t)
JB , f

(t)
JB(x)}0<x<t satisfies the law of total probability.

4.2.2. Case t > U :

f
(t)
JB(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̄(t − x)f (t)
N−1(x)∫ NU

y=t−U
B̄(t − y)f (t)

N−1(y) dy +
∫ t

y=NU
B̄(t − y)f (t)

N (y) dy

=
B̄(t − x)f (t)

N−1(x)
π(t)

, t − U ≤ x < NU,

B̄(t − x)f (t)
N (x)∫ NU

y=t−U
B̄(t − y)f (t)

N−1(y) dy +
∫ t

y=NU
B̄(t − y)f (t)

N (y) dy

=
B̄(t − x)f (t)

N (x)
π(t)

, NU ≤ x < t.

(4.10)

4.3. Age δt

We obtain the mixed pdf {πδt
, fδt

(x)}0<x<t using {π(t)
JB , f

(t)
JB(x)}0<x<t of Section 4.2.

Note that δt = t − X
(t)
JB , πδt

= P (δt = t) = P (X(t)
JB = 0) = π

(t)
JB , and fδt

(x) = f
(t)
JB(t − x),

0 < x < t.

4.3.1. Case t ≤ U : Using (4.8) and (4.9) yields

πδt
= B̄(t), fδt

(x) = B̄(x)
f (t)(t − x)

π(t)
, 0 < x < t. (4.11)

By (3.8) {πδt
, fδt

(x)}0<x<t, satisfies the law of total probability.
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4.3.2. Case t > U : Note that πδt
= 0 since t > U . Using (4.10) and applying fδt

(x) =
f

(t)
JB(t − x), yields

fδt
(x) =

⎧⎪⎪⎨
⎪⎪⎩

B̄(x)f (t)
N (t − x)
π(t)

, 0 < x < t − NU,

B̄(x)f (t)
N−1(t − x)
π(t)

, t − NU < x < U.

(4.12)

∫ U

0
fδt

(x) dx = 1 follows by integration of (4.12) on (0, U).

4.4. Total Life βt

The total life is βt = γt + δt. Hence, P (βt = x) dx = P (γt = x − δt) dx, x > δt.

4.4.1. Case t ≤ U :

fβt
(x|δt = y) dx = P (Z = x|Z > y) dx =

P (Z = x) dx

P (Z > y)
=

b(x) dx

B̄(y)
.

Unconditioning fβt
(x|δt = y) with respect to fδt

(y), and substituting for fδt
(y) from (4.11),

gives

fβt
(x) =

∫ x

y=0

b(x)
B̄(y)

fδt
(y) dy

=
∫ x

y=0

b(x)
B̄(y)

B̄(y)
f (t)(t − y)

π(t)
dy = b(x)

∫ x

y=0

f (t)(t − y)
π(t)

dy, 0 < x < t. (4.13)

Similar reasoning yields

fβt
(x) =

b(x)
B̄(t)

πδt
+ b(x)

∫ t

y=0

f (t)(t − y)
π(t)

dy = b(x)
(

1 +
∫ t

y=0

f (t)(t − y)
π(t)

dy

)
, t < x < U.

(4.14)

Formulas (4.13) and (4.14) imply fβt
(x) has a jump discontinuity at x = t of magnitude

fβt
(t+) − fβt

(t−) = b(t). (4.15)

If U = ∞ then limt→∞b(t) = 0, and the discontinuity in (4.15) vanishes as t → ∞.
The law of total probability follows using integration by parts, B̄(U) = 0, and

applying (3.8).

Check of limt→∞fβt
(x). Formula (4.13) leads to the well-known formula limt→∞ fβt

(x) =
(xb(x))/E(Z), x > 0. By (3.12), f (t)(t − y)/π(t) = M ′(t − y). From (4.13)

fβt
(x) = b(x)

∫ x

y=0

M ′(t − y) dy = b(x)(M(t) − M(t − x)), 0 < x < t.

The basic renewal theorem (Blackwell’s theorem, e.g., Karlin and Taylor [8], p. 191) implies

lim
t→∞(M(t) − M(t − x)) =

x

E(Z)
, x > 0 =⇒ lim

t→∞ fβt
(x) =

xb(x)
E(Z)

, x > 0.
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4.4.2. Case t > U : Expressing fβt
(x) in terms of fβt

(x|δt = y) and substituting for
fδt

(y) from (4.12) yields

fβt
(x) =

∫ x

y=0

fβt
(x|δt = y)fδt

(y) dy = b(x)
∫ x

y=0

f
(t)
N (t − y)

π(t)
dy, 0 < x < t − NU. (4.16)

Reasoning as for (4.16) and using also (4.12), yields

fβt
(x) = b(x)

(∫ t−NU

y=0

f
(t)
N (t − y)

π(t)
dy +

∫ x

y=t−NU

f
(t)
N−1(t − y)

π(t)
dy

)
, t − NU < x < U.

(4.17)

5. EXAMPLES

5.1. Generalized Hyper-Exponential (GH) Inter-Arrival Times

The GH family is dense in the set of all distributions on [0,∞), and has coefficients of
variation in (0,∞) (Botta et al. [26]). More properties are in Botta and Harris [27] and
Harris et al. [28]. Heavy-tailed distributions, e.g., Pareto, etc., can be fitted by GH’s (Yu
et al. [29]).

Assume Zn, n = 1, 2, . . . have ccdf B̄(x) =
∑N

i=1 aie
−μix, x ≥ 0, pdf b(x) =∑N

i=1 aiμie
−μix, x > 0, where −∞ < ai < ∞, integer N is positive, and

∑N
i=1 ai = 1. The

hyperexponential is GH with ai ∈ (0, 1) , i = 1, . . . , N . The exponential is hyperexponential
when N = 1.

{π(t), f(t)(x)} Substituting B̄(x) into (3.5) and applying the differential operator∏N
i=1〈D + μi〉 leads to an (N − 1)th order differential equation with constant coefficients

for f (t)(x),

N∑
i=1

N∏
j �=i=1

ai〈D + μj〉f (t)(x) =

(
N∏

i=1

μi

)
π(t), 0 < x < t. (5.1)

We will illustrate the time-t quantities for N = 2. Solving (5.1) gives

f (t)(x) =
μ1μ2

A
π(t) + Ce−Ax, 0 < x < t, (5.2)

where A = a2μ1 + a1μ2, C = Hπ(t) and H = (μ1 − ((μ1μ2)/A) − a2(μ1 − μ2)). The normal-
izing condition (3.6) results in

π(t) =
A

A + μ1μ2t + H(1 − e−At)
, f (t)(x) = π(t)

(μ1μ2

A
+ He−Ax

)
, 0 < x < t. (5.3)

fγt
(x) Before deriving fγt

(·) for N = 2, we derive a general property for fγt
(x), x > 0,

N ≥ 2.
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Property Define a′
i ≡

[
e−μit

(
1 +

∫ t

y=0
eμiy f(t)(y)

π(t) dy
)]

· ai. If Z is GH with ccdf B̄(x) =∑N
i=1 aie

−μix, x > 0, N ≥ 2, then γt is GH with

F̄γt
(x) =

N∑
i=1

a′
ie

−μix, x > 0, fγt
(x) =

N∑
i=1

a′
iμie

−μix, x > 0. (5.4)

This follows from (4.2), which gives

F̄γt
(x) =

N∑
i=1

[
aie

−μit

(
1 +

∫ t

y=0

eμiy
f (t)(y)
π(t)

dy

)]
e−μix =

N∑
i=1

a′
ie

−μix, x > 0.

Also,
∑N

i=1 a′
i = 1 by comparison with (3.8).

Continuing with N = 2, (5.4) and (5.3) imply

fγt
(x) =

2∑
i=1

aie
−μit

(
μi +

μ1μ2

A
(eμit − 1) + μiH

e(μi−A)t − 1
(μi − A)

)
e−μix, x > 0. (5.5)

{πδt
, fδt

(x)} Applying (4.11), gives

πδt
=

2∑
i=1

aie
−μit, fδt

(x) =

(
2∑

i=1

aie
−μix

)(μ1μ2

A
+ He−A(t−x)

)
, 0 < x < t. (5.6)

fβt
(x) Applying (4.13) and (4.14) gives

fβt
(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
2∑

i=1

aiμie
−μix

)(∫ x

y=0

(μ1μ2

A
+ He−A(t−y)

)
dy

)
, x < t,

(
2∑

i=1

aiμie
−μix

)(
1 +

∫ x

y=0

(μ1μ2

A
+ He−A(t−y)

)
dy

)
, t < x < ∞.

, (5.7)

with a jump discontinuity at x = t of magnitude fβt
(t+) − fβt

(t−) =
(∑2

i=1 aiμie
−μit

)
=

b(t).

Poisson Process as a special case of GH inter-arrival times.

{π(t), f(t)(x)} In (5.3) if μ2 = μ1 = μ then N = 1, μ1μ2 = μ2, A = μ, H = 0, implying

π(t) =
1

1 + μt
, f (t)(x) =

μ

1 + μt
, 0 < x < t. (5.8)

fγt
(x) In (5.5) if μi ≡ μ then N = 1, (μ1μ2)/A = μ, and H = 0, implying fγt

(x) =
μe−μx, x > 0, which agrees with the memoryless property of the exponential.
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{πδt
, fδt

} From (5.6)

πδt
= e−μt, fδt

(x) = e−μx

(
μ

1+μt

)
(

1
1+μt

) = μe−μx, 0 < x < t. (5.9)

Recall πδt
= P (δt = t). Formula (5.9) agrees with the well-known result (e.g., Karlin and

Taylor, [8]). Note that E(δt) = 1/μ − (e−μt)/μ.

fβt
(x) Formula (5.7) yields

fβt
(x) = e−μx(μx)μI (0,t)(x) + μe−μx(1 + μt)I (t,∞)(x). (5.10)

with a discontinuity fβt
(t+) − fβt

(t−) = μe−μt. Also E(βt) = (2/μ) − (e−μt/μ) and
limt→∞ E(βt) = 2/μ.

Limiting proportion of renewals of {Zn}n=1,2,... ∈ (r, v) ⊆ (0, t)). Denote the limiting pro-
portion of renewals of {Zn}n=1,2,... in (r, v) during (0, t) in the cycles of {X(s)}s≥0 as
s → ∞ by

p
(t)
(r,v) = lim

s→∞

(
R(r,v)(s)
R(0.t)(s)

)
. (5.11)

From (3.27)

p
(t)
(r,v) =

(v − r)
t

, (5.12)

which is intuitive since the pdf f (t)(x) in (5.8) is uniform on (0, t).

5.2. Uniformly Distributed Inter-Arrival Times

Assume {Zn} are uniformly distributed on (0, 1) (here U = 1). Then b(y) = 1, 0 < y < 1,
and B̄(y) = (1 − y), 0 ≤ y < 1. We illustrate a case where 1 < t < 2. (Note that t > U .)

Case Fixed t ∈ (1, 2]. See Figure 2. Using the same notation for f (t)(x) and f
(t)
n (x), n =

0, 1, as in formula (3.18), let

f (t)(x) = f
(t)
0 (x) + f

(t)
1 (x), 0 < x < t, π(t) = lim

s→∞P (X(s) = 0).

f(t)(x) Fix t ∈ (1, 2]. From (3.19), (3.20), and (3.6) we get

π(t) · (1 − x) +
∫ x

0

(1 − x + y)f (t)
0 (y) dy = π(t), 0 < x < 1,

∫ 1

y=x−1

(1 − x + y)f (t)
0 (y) dy +

∫ x

y=1

(1 − x + y)f (t)
1 (y) dy = π(t), 1 < x < t,

π(t) +
∫ 1

0

f
(t)
0 (y) dy +

∫ t

1

f
(t)
1 (y) dy = 1.

By differentiation and some algebra,we obtain

f (t)(x) = π(t) · (ex · I (0,1)(x) + (1 − e−1x)ex · I (1,t)(x)
)
,

π(t) =
1

et−1 + et − et−1t
.

⎫⎬
⎭ (5.13)
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From (3.15), (3.16), and Remark 3.2,

M(t) = et−1 + et − et−1t − 1, E(Nt) = et−1 + et − et−1t. (5.14)

(Note that limt↑2 π(t) = 1/(−e + e2)), M(2) = (−e + e2 − 1), E(N2) = −e + e2. Also,
limt↓1 π(t) = e−1, M(1) = e − 1, E(N1) = e, which agrees with Ross [22]).

fγt
(x) Applying (4.7) and substituting from (5.13) gives

fγt
(x) =

∫ 1

y=t+x−1

f
(t)
0 (y)
π(t)

dy +
∫ t

y=1

f
(t)
1 (y)
π(t)

dy =
∫ 1

y=t+x−1

eydy +
∫ t

y=1

(1 − e−1y)eydy

= −et+x−1 + et−1 + et − et−1t, 0 < x < (2 − t), (5.15)

fγt
(x) =

∫ t

t+x−1

f
(t)
1 (y)
π(t)

dy =
∫ t

y=t+x−1

(1 − e−1y)eydy

= −et+x−1 − 2et+x−2 + et+x−2t + et+x−2x + et + et−1 − et−1t, (2 − t) < x < 1.

If t ↓ 1 then fγt
(x) = e − ex, x ∈ (0, 1). If t = 2, then fγt

(x) = −e1+x + exx + e2 − e, x ∈
(0, 1). Also, E(γt) = 1

2et−1 + 1
2et − 1

2et−1t − t, t ∈ (1, 2]. It is straightforward to check that∫ 1

0
fγt

(x) dx = 1.

{π(t)
δ , fδt

(x)} Substituting from (5.13) into (4.12) gives

fδt
(x) =

{
(1 − x) · (1 − e−1(t − x)) · et−x, 0 < x < (t − 1),
(1 − x) · et−x, (t − 1) < x < 1,

(5.16)

which has a jump discontinuity at x = t − 1 of magnitude

fδt
((t − 1)+) − fδt

((t − 1)−) = 2 − t, t ∈ [1, 2).

Also
∫ 1

0
fδt

(x) dx = 1, π
(t)
δ = 0, and E(δt) = −et + et−1t − et−1 + 1 + 2t.

fβt
(x) Applying (4.16) and (4.17)

fβt
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

y=0

(1 − e−1(t − y))et−ydy, 0 < x < (t − 1),

∫ t−1

y=0

(1 − e−1(t − y))et−ydy +
∫ x

y=t−1

et−ydy, (t − 1) < x < 1.

Thus,

fβt
(x) =

{
et − et−1t + et−1 − et−x + et−x−1t − et−x−1 − et−x−1x, 0 < x < (t − 1),
et − et−1t + et−1 − et−x, (t − 1) < x < 1,

(5.17)

which is continuous at x = (t − 1) since

lim
x↓(t−1)

fβt
(x) = lim

x↑(t−1)
fβt

(x) = et − et−1t + et−1 − e.

In addition, E(βt) = 1
2et−1t − 1

2et − 1
2et−1 + t + 1.
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Limiting proportion of renewals of {Zn}n=1,2,... in (r, v) ⊆ (0, t). Suppose 0 < r < 1 <
v < t. From (5.11), and (5.13) we obtain

p
(t)
(r,v) =

−er + ev + e(v−1) − e(v−1)v

−1 + et + e(t−1) − e(t−1)t
. (5.18)

For example, if r = 0.2, v = 1.3, t = 1.7 then p
(t)
(r,v) = 0.666685 (whereas p

(t)
(r,v) = v−r

t =
0.6471 in (5.12) for exponential inter-arrival times.)

5.3. Modified Renewal Process

In the modified renewal process Z1 �=
dist

Z =
dist

Zn, n ≥ 2. Let the cdf, ccdf and pdf of Z1 be

B1(·), B̄1(·), and b1(·), respectively, with support (0, U1). The equilibrium renewal process is
a modified renewal process where b1(x) = 1

E(Z) B̄(x) = limt→∞ fγt
(x) assuming E(Z) exists

(Cox [6], pp. 27–28).
Analogous to (3.5), an integral equation for f (t)(x) is

π(t)B̄1(x) +
∫ x

y=0

B̄(x − y)f (t)(y) dy = π(t), 0 < x < t. (5.19)

Solving (5.19) with (3.6) yields {π(t), f (t)(x)}.
Consider an example where B̄1(x) = e−μ1x, x > 0, and B̄(x) = e−μx, x > 0; thus U1 =

U = ∞.

{π(t), f(t)(x)} Substituting B̄1(x) = e−μ1x, B̄(x) = e−μx in (5.19), taking d/dx, and using
(3.6) gives

f (t)(x) = π(t)(μ + (μ1 − μ)e−μ1x), 0 < x < t, (5.20)

π(t) =
1

1 + μt + (1 − μ
μ1

)(1 − e−μ1t)
. (5.21)

f γt
(x ) Substituting (5.21) into (4.4a) yields

fγt
(x) = μ1e

−μ1(t+x) +
∫ t

y=0

μe−μ(t+x−y)(μ + (μ1 − μ)e−μ1y) dy,

= μ1e
−μ1(t+x) + μe−μx − μe−(μx+μ1t), 0 < x < ∞. (5.22)

f δt
(x ) By (4.11)

πδt
= e−μ1t, fδt

(x) = e−μx(μ + (μ1 − μ)e−μ1(t−x)), 0 < x < t. (5.23)
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fβt
From (4.13) and (4.14)

fβt
(x) =

(
μe−μx

∫ x

y=0

(μ + (μ1 − μ)e−μ1(t−y)) dy

)
I (0,t)(x)

+
(

μ1e
−μ1x + μe−μx

∫ t

y=0

(μ + (μ1 − μ)e−μ1(t−y)) dy

)
I (t,∞)(x),

fβt
(x) =

⎧⎪⎪⎨
⎪⎪⎩

μe(−μx)(−e−μ1tμ1 + e−μ1tμ + μxμ1 + e−μ1(t−x)μ1 − e−μ1(t−x)μ)
μ1

, 0 < x < t,

μ1e
−μ1x +

μe−μx(−e−μ1tμ1 + e−μ1tμ + μμ1t + μ1 − μ)
μ1

, t < x < ∞.

(5.24)

It is readily shown that
∫∞
0

fβt
(x) dx = 1.

Note that fβt
(x) has a jump discontinuity at x = t of magnitude fβt

(t+) − fβt
(t−) =

μ1e
−μ1t.

6. CONCLUSIONS

Many results in this paper can be derived by the conventional renewal integral equation
approach, and some have been noted (e.g., formulas (3.10)–(3.12), (5.9)). The agreement
of results tends to confirm the validity of the new analysis. There are important differences
between the two methods, however. The new analysis is easier and faster if t > U (Sec-
tions 4 and 5.2); and is straightforward and useful if t ≤ U (Section 4). The new approach
shows immediately that the time-t quantities exist for no-mean inter-arrival times, because
of the existence of the pdf {π(t), f (t)(x)}0<x<t (Section 2). It obtains the following quanti-
ties, not generally discussed explicitly in the renewal-theory literature: the time-t quantities
in modified renewal processes (Section 5.3); the pdf of X

(t)
JB (Section 4.2); a result on the

proportion of renewals in subsets of the time interval (0, t) (Section 3.3). The new method
routinely identifies discontinuities in the time-t pdf’s, not usually stressed in the literature
(Sections 4.1.1, 4.3.1, 4.4.1, 5.1, 5.2, and 5.3). An important contribution of the new anal-
ysis is that it connects the time-t renewal quantities with quantities in stochastic models
where the limiting pdf of the state variable is fundamental to the solution, and there is
a significant stopping time in the model (Section 1). Another contribution is that it gives
a novel perspective of the time-t quantities, which may be useful for students, researchers
and practitioners. The new analysis is a useful addition to the methods now available for
analyzing the finite time-t quantities of renewal theory (Sections 1, 2 and 3.1).
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