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ON THE (/, pn, qn) METHOD OF SUMMATION

by B. KWEE

(Received 31st January 1984)

1. Introduction

In the following discussion we shall assume that p n ^ 0 , qn^0 for all n and that
<in + \ >^n~> 0 0- The (J,pn,qn) method of summation is defined as follows.

The series £"=o
an> with the partial sum sn, is called summable (J,pn,qn) to s, and we

write £n°°= 0 an = s(J, pn, qn) if the series

I Pn*9" (1)
n = 0

and X"°=oP/isnx*" converge to the sum functions p*(x) and pls)(x) respectively for
0 < x < l and if T(x) = p(s)(x)/p*(x)-)-s as x - » l - 0 .

It is easy to verify by using Toeplitz's theorem that the (J,pn,qn) method is regular
when Pn=p0 + pl+ ...+pn^>co, namely it sums all convergent series to their natural
sums when Pn—>oo.

The special case of (J,pn,qn) in which qn = n for n^O is the P method defined in
Borwein [1].

Assume further that po>0. The series X«°=oan ls called summable {N,pn) to s if
lim^ootn = s, where tn = l/PnYJ"=oPvsv If ' s known that the (N,pn) method is regular
when Pn—>oo.

The following four theorems will be proved in this paper. The first and last theorems
are concerning the inclusion of two different summability methods. Theorem 3 is the
main theorem of this paper and Theorem 2 is a Tauberian theorem.

Theorem 1. Let po>0, pn^0 ( n ^ l ) , and let the series in (1) converge for 0 < x < l .
Then

(N,pn)^(J,pn,qn). (2)

The special case of this theorem in which qn = n is given in Ishiguro [3].

Theorem 2. Assume that Pn—>oo and that

t ^ ^ =0{Pn), (3)
m — n + 1 * m

59

https://doi.org/10.1017/S0013091500003199 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003199


60 B. KWEE

where xn is determined by the equation p*(xn) = Pn and p*{xn) = ̂ =mPv<°- If YJ?=oa =

(4)

There are three theorems in Ishiguro [3] and [4] in all of which it is proved that,
under suitable conditions on {pn}, (4) is a Tauberian condition for (J,pn). All the three
theorems mentioned are different from Theorem 2 with qn = n of this paper because the
conditions imposed on {pn} are different.

Theorem 3. Assume that

Pn = 0(Pn). (5)

and that po>O, p n ^ O ( n ^ l ) , Pn->oo as n->oo. Then for any sequence {an} of non-
decreasing real numbers such that an->ao, however slowly, there is a divergent series with

(6)

and sn = O(l) which is summable (J,pn,qn)-

This theorem asserts that the highest possible order of magnitude of an for the
converse of the {J,pn,qn) method of summation is O(pn/Pn).

Theorem 4. Let qo = l> r
n = ^°B<ln and let X™=oa,,=s(-A ?„><?„)• If both the series

j?= o Pn * '" and £n°°= 0 pn sn x
r» converge for 0<x<l, then £n°°= o an = s(J, pn, rn).

2. Proof of Theorem 1

The proof requires a partial summation, the justification for which, while easy, is not
quite obvious. We require the following lemma.

Lemma. Suppose that, for some fixed x with 0<x<\, the series in (1) converges.
Then

J\ =<**-«") (7)

as n->oo.

Proof. The convergence of the series in (1) for some fixed x with 0 < x < l implies
P*W = IvOO=nPvX9v->0 as n - o o . We can write pn = x-9-(p*(x)-p*+1(x)) so that
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Pn= £ Pv= £ x-"(p*(x)-p*+1(x))
v=0 v=0

= pS(x)x-«"+ £ Pv*W(x""-x"*- ' ) -p:+ iWx"t o (8)
v = l

By the hypothesis, <2n-*oo and 0<x< 1. It follows that

v = l

as n-»oo. Therefore, since p*(x)—•() as n—*co, we have

£ p*(x ) (x -" -x -" - ) = o(x-«-) (9)
v = l

(7) follows from (8) and (9).
In the above lemma, {/>„} can be any sequence subject to the condition that the series

in (1) converges for some fixed x with 0 < x < 1.
Now assume further that po>0 and that the series in (1) converges for 0 < x < l . We

shall then prove that the inclusion (2) holds.
It is worth noting that for this we do not need to assume that

£/>„ = «>• (io)
n = O

If (10) is not satisfied, then (J,pn,qn) is not regular. But neither is {N,pn), and the
inclusion (2) still holds.

Now if tn = l/Pn£v=oPv.Sv is bounded then it follows from the lemma that, for

71 = 0 n = l

oo

71=0

Thus we have to verify that the sequence-to-function transformation

? M = - ^ - T £ /Vn(x«"-x«—) (12)
P \X)n=0

is regular. The coefficients of tn in (12) are all positive and, by the special case of (11) in
which sn = 1 (all n) so that tn = 1 (all n), their sum is 1. Thus all that remains to prove is
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that, for fixed n,

p*(x)

as x—»1— 0. But the numerator tends to 0, and the denominator is greater than or equal
to pox"°->po as x-> 1—0. Since po>0, the result therefore follows.

3. Proof of Theorem 2

Since the assumption that the sequence {sn} is summable (J,pn,qn) implies the
assumption that the series Zv°=oPvsvx*v converges for 0 < x < l , we have

P \Xn) P \Xn) v = 0

• 1 n oo v \

" pvxv y a - y p xq" y a ) m)
:0 m=v+l v = n + l m=n + l /

We first show that the order of the summations on the right hand side of (13) may be
changed. The first double sum is a finite sum, and the order of summation may
therefore be inverted. The inversion in the order of summation in the second double
sum may be justified by absolute convergence. To prove absolute convergence, we do
not need the full force of the assumption that an = o(pn/Pn), but only the weaker
assumption that an = 0(pJPn). Thus, for some constant M,

Z pvx
?v Z k l ^ M Z Pv*r Z —

00 n 00

by (3), if we take (3) as including the assumption that the sum on the left converges for
all n.

We obtain from (13) on interchanging the order of summation

In m ~ 1 1 oo

t ,= - J - E 1 , Z PvXT—5" Z amPm(*n)-
* n m = 1 v = 0 * n m = n + 1

Let am = (pm/Pm)>'m so that ym->0 as m->co by (4). We can write

00

tm= Z a
n mym, (14)

m = 0
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where

pp '

Necessary and sufficient conditions for (14) to transform every sequence converging to
0 into a sequence converging to 0 are (see Hardy [2], Theorem 4)

(i) Hma n m =0
n —* oo

for each m;

00

(ii) X |anm|<H,
m = 0

where H is independent of n.
Since 0 < x n < l , we have, for n'Stm,

for each m, when n-»oo. By (3),

E L | < V Vm P _L V

m=0 rn«=0'« ^n""=n + l ^ m

where / / is independent of n.
Thus limn^o otn=0. In view of our hypothesis lim,,.,^ [_p(s)(xn)/p*(xn)']=s, we therefore

have limn_ cosn = s. This proves Theorem 2.

4. Proof of Theorem 3

We can assume without loss of generality that

Pn*n=0{Pn). (15)

For suppose the theorem proved in this special case. We can then deduce the result in
the general case as follows. Since pn = o(Pn), there is an increasing sequence {a'n} of
positive numbers with aj,-+oo as n->oo such that

Now define â ' = min(an,oc^) so that <x'^a'n and
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Applying the special case of the theorem in which (15) holds with an replaced by ô ' we
see that there is a divergent and bounded sequence {sn} summable (J,pn,qn) with

(16)

Since a ^ a n , (16) gives us that

and the conclusion follows.
By the hypothesis po>0, p n ^0 (n^l) and pn->oo. Hence by a well known theorem

the series X"=i(pn/fn) diverges and this implies that the series Yj™=o(anPn/Pn) °f n o n -

negative terms diverges since an->oo.
We will define inductively sequences {mk}, {nk} of positive integers with

mk + l>nk>mk. Provided that mk is sufficiently large, we can choose nk>mk so that

r =<*•"<$<"* | g m t + i P m t + i I 0Cn*Pn*•<>n
k p p p —

mk mk * 1 nk

and

We now define for mk S n ̂  nk

where fik is determined by the equation Ck Pk = n, and sn = 0 for other values of n. It is
clear that the sequence {sn} defined above oscillates between 0 and 1 and so sn = 0(l)
and the series with the partial sum sn defined in this way diverges.

It follows from (15) that Ck->n as k-*co so that the sequence {ft} is bounded. Hence

for the ranges mk^n^nk and an = 0 outside these ranges so that (6) holds for all n.
Next we show that

(18)
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as k-+oo. Since (5) holds, we have P v ^ 2 P v _ t for all sufficiently large v; thus, if k is
sufficiently large, this inequality will hold for all v ^ m t . Supposing that k is large
enough for this to happen, we have, by the definition of nk,

1

v=mk* v - 1

nk P." dx
^«»* I I —

V = mkPv-l X

(19)

Since am4->oo as fc->oo, it follows from (19) that log(PnJPmk)^>0 as fc->oo, and this is
equivalent to (18).

We shall now show that, when the sequence {mk} is suitably chosen, the series
Zn = oam> the partial sum of which is defined by (17), is summable (N,pn) to 0. Since
(N,pn)^(J,pn,qn), this means what we prove here is actually stronger than Theorem 3.

Let {tn} denote the (N,pn) transform of the sequence {sn} defined by (17) and let t^
denote the contribution to tn of those sn with mk^n^nk; that is to say that

0

1 £ («>«*)•

Thus, for mfc ̂  n < nk + j , we have

r = l
(20)

Let {t]k} be a given sequence of positive numbers tending to 0. Suppose that
ml,m2,m3,...mk have been chosen; this fixes tj,r) for r=l,2,...k. Now, for given r, {£j,r)}
is the (N,pn) transform of a sequence which has all zeros for n>nr. Thus, by the
regularity of (N,pn), we have t{

n
r)-*0 as n-»oo. Hence we may choose mk + 1>nk so that,

for «^mm + 1,

Since /?k-»0 as fc->oo, it will follow with the aid of (20) that tn->0 as n-*ao if we show
that, as /c->co, 44)->0 uniformly in the range mk^n^mk + l. Since 0 ^ s n ^ l , this follows
easily from (18). Thus the series determined by the sequence {sn} we define in (17) is
summable (N,pn) to 0 and hence summable {J,pn,qn) to 0. This proves Theorem 3.
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5. Proof of Theorem 4

We write tiy) = Y?=oP.e-r», 4>(^) = Y^=oPne-"l'w, and ^ ( w H ^ o P n ^ - ^ . With-
out loss of generality we may assume that s = 0, namely that the series is summable
(J,pn,qn) to 0 so that for any given e > 0 there is a <5>0 such that |</>(s)(w)/(/>(w)|<2 for
0 < w<5. Thus, by Theorem 30 of Hardy [2],

= Hl+H2.

We have

For fixed w^(5, e~«»<w~a) is a positive non-increasing function of n. Therefore, by Abel's
lemma,

00

E PAe~q"w

n = 0
^e qo(w "" sup

JVSO

JV

so that |0(s)(w)|^Ke~«OM' for w^<5. From this

for 0 < y < 50. Finally we get | vP(_y) | < 2s for p < y < d0. This proves Theorem 4.
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