ON THE PRODUCT OF L(, %)
TIKAO TATUZAWA

Let 2( 23) be a positive integer and ¢(%) be the Euler function. We denote
by 7/ one of the ¢(k) characters formed with modulus %4, and by /, the princi-
pal character. Let L(s, 7) be the L-series corresponding to X. Throughout the
paper we use ¢ and c(e) to denote respectively an absolute positive constant
and a positive constant depending on parameter ¢(>0) alone, not necessarily
the same at their various occurrences. We use the symbol Y =O(X) for posi-
tive X when there exists a ¢ satisfying ;Y =c¢X in the full domain of existence
of X and Y.

It is well known that

(1) L(1, ) =0(log k), for Z=x/X.

On the other hand. we know from [7] and [5] (numbers in square brackets re-
fer to the references at the end of the paper) that

(2) L1, 1) '=0(log k), for 1=/,

with one possible exception. and if such a exceptional character exists, it is a
real one. Let us denote it by /. If there exists no exceptional character, we
take any non-principal character as 7;. Then, by Siegel’s theorem (see [3] and

[8D),
(3) )™ <L, 7))

for any positive .
The object of this paper is to estimate II L(1, 7) and 1T 1L(l, 7) as pre-

%= X(-1==

cisely as possible, and make some additions to the results of R. Brauer [2].
Ankeny and Chowla [1].

1. In what follows, we denote by p and p. the primes.

LEMMA 1. Sp'=0Uog logx), for xx3.
pP=w
LEMMA 2. cllogx)™'< II (1-p"H<c(logx)™
Evsr

These are obtained by Theorem 7 of [4].
Let 7ep<pe<...<pm. We denote by Fix; &, I; p1. p», . .., Pm) the
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number of z satisfying
0<z=zx, z2=I(modk), and p,+z for »=1,2,..., m.
If we take positive integers m = my, mi, . . . , mp-; such that

m=mo>m1>m2> “ e >mh—1>7ﬂh=0,
5

L= II A-=-pYH=>, for v=1,2,...,h,
my—1=r>my 4
(4) (1—p,7,1v)Lv<%, for »=1,2..., k=1,

then we have

h h~1
LemMa 3. F(x; B 1 Pi, D2y v o vy D) <2xk71 l:IlLy+ I_Io(2 my):, for (k, 1)

=1.
The proof is similar to that of Theorem 79 and Theorem 86 of [6].

LemMa 4. If x =2 ¢(k), then

x
o(k)log (x/¢(k))’

for (%, I) =1, where n(x; k, 1) denotes the number of primes p satisfying p =«
and p=1 (mod k).

n(x; B I)<c

Suppose that x> 7% a(>1) being a positive number to be determined later,
We arrange all primes between 7 and %/% except the prime factors of 2 such

that
T£€p<p< .. . <Ppm=¥x.
If we write
D(w, &)= I (1-p™)7,
ot
then
h m -
(5) Z,=T101- )= Hu/_(l - p YD(%x, k).
V= r= T=p=EYT

By Lemma 2,
I:Il(l — Y <c(log ps) D (ps, B) <c(log 2s) ' D(¥/x, k)
for s=1,2,..., m, it follows therefore that

my

log (2m,) <eD(%%, B) TL(1—p;7 )"
r=1
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=¢eD(%x%, k) r_Il A=Y LLs .. . Ly

=c T (1-p)"'LL,...L

T=r=Y3
(6) <(c/a)log x)LiLs . . . L,<(c/a)(14/15)" log x
by (4), whence follows
(7) ’ﬁ(z m,)? <%,
On the other hand
(8) ‘lell L,<ca(log x)"'D(¥x, k) < callog x)'lﬂ 1-p"MH

=ca(log x) ""ke(k)7,

by (5) and Lemma 2.
Inserting (7) and (8) for the right of Lemma 3,
we obtain

: x
Flx; B, L Dty D20 o v oy D) < d cla
(% D Dm) ca(f(k) log

for (&, I) =1, provided that x=7% This, together with the inequality
wlx; by DEF (x5 by, 1 D1y Doy v o vy D) +m,
gives

cja

(9) m(x; B, 1)<ca-
)

7

_x
(B)logx
by (6), where we may suppose that the constants ¢ in both terms of the right

are the same and ¢>1.
Suppose first that ¥ >7°¢(%). Then we have

‘-[—(xléj log (ﬁkj) = \/(;7%?—) >7°

we can easily verify from (10) that the restriction x »7“ is satisfied, if we put

(10) 4=

a=clogx
log 4

Inserting this in (9), and using the first inequality of (10), we get

X

- 24<2(c 4,
(k)log4+ (c®+1)

a(x; k1)<
¢

which is just what the Lemma claims.
Next we consider the trivial case, 2 ¢ (k) <x <7¢(k). Then
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; 2 .
=(x; b, l)<[—;]+1é Z +1<a£5 <4c(log7)d.

Thus the Lemma is completely proved.

2. We write for simplicity
Qx)= > XY w)Aln),

XX, X1 n=2
where A(n) is log p if n is a positive power of a prime p and is 0 otherwise.
LemMa 5. If kE=exp(vlogx) and X = Zo. X1, then
22 %(n).4(n) = O(x exp( — cvlog x)).

This is the result of Page [7].

LemMa 6. If x>expllog £)°, then Q(x) = Olx(log x)™).
By Lemma 5,

Q(x) = O(kx exp( — cvlog x)) = O(x expl(log £ — cvlog x))
=O(xexp((logx)’; —c(log x) : )) =O0(x(logx)71),
since log 2 =2"(log x).
3. Let a. b and » be positive integers.
Lemma 7. If (@, k) =1. then the number of solutions of
¥"=a (mod k)

is at most #°®*! where w(k) denotes the number of prime factors of k.

This follows from the fact that the number of solutions of x” =« (mod
), (a, p) =1, is at most 7 if p is an odd prime, and »° if p=2.

Lemma 8. w(k) = Ollog k(log log &) 7).
Suppose that
ok =7, k=pPpb ... p¥r and p<p<...<p,.

By the prime number theorem,
(11) crlog pr < Xllog p. £ > log b, < log k.
v=1 v=1

where p, denotes the 7-th prime. If 7> log k(log log k). then
pr>cr logr>clog k.
This combined with (11) gives 7 <c(log k)(log log k)",
LeMMA 9. En”;}kf" =Ow(k)k™).

n=2

p"=1 mod k!
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By Lemma 7
(12) n‘IZp“”=0(}:J?n“‘ SV (km41)7Y,

n=2 1;,;21; . (nv (k)T
pH=1 (mos }

where > means that the number of terms of the sum is =*. If we put
k)
ay = O, an = Eyw(k)+l
v=1

for n=1,2,.... then

a7t S mT =03t S omThY.

nZ=2 w1 n=1 on-1<m=an
Since

ST mTi<loglan/an-1)
Au-1<m=un
n+1 k n-1
<log(S % ’“dx/g x'”"”“dx)
0 0

= (k) +2)log((n+1)/ (n-1)) =0(w(k)n™)
for nx2, it follows from (12) that

> n“zp = o<m<k>k“§n'2) =0(w(k)E™Y).

wZ2
]/ } cmod kK

4. We write
I L, ) =exp( 2 X(n)A(n)(nlogn)™)

XFXp, X1 XF%Xo, X1 nZ=2

=exp( 2l + 2+ 2+ 20+ 25+ ), say,

where
2= Zp‘<$“/<p>) Z?=_l§<kp“<§z<pn,
Sh= '"23,-1’—1%( )+ (),
2h= X 3 ") LM,
Se= — >j, HEZ;np YT P™) + 1(p™)),
=2 ‘%;m/(nu n)(n log n)™

and

A=2k B=[expllogk)l
Now we shall estimate >, using the above lemmas.

Sh= sf(k)Ep“éw(k)kZl (mk+1)""=0(1).
v=1 (mod k) ” =
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Ste=¢k) X pl=¢k) X (z(n; k1)—rln-1;k1))n™"
A=p<B A=n<B
p=1 (mod k)

—¢(k)( > n(n,k Dn =+ -a(A-1;k 1)A7"

A=n<k

+#(B-=1; k 1)B™)
— -1 - !
= ( SV (n+1) (log (k)) +O(1)) (by Lemma 4)

A=n<B

- " du B
= O(SAu log (z/ ?(k))) + 0(1) =O(log log k).

Sh=0( E 17_1) = O(log log B) =O(loglog k). (by Lemma 1)

El_go(k) > 2<np")' 2¢(B)2 20 (mp™)™

P nx2

p”=l (mod k) pP=1 (mod k)
=¢(R) 2 (") e T S p™"
P>k nZ=2 nz=2 P=k
pt=1 (med k) ph=1 (mod k)

=O(¢(k)§‘(j>(p— 1)) +0(w(k)) (by Lemma 9)

= O(w(k)).
Sh= o(EZ(np) )—O(Z(p(p——l))"‘)—o(l)

P n=2

D= 2 (Q(n) —Q(n—-1))(nlogn)™

= EQ(n)((nlogn) e ((n+ Dlog(n+1)7Y

B=n

-Q(B-1)(BlogB)™!
:O(E ” Sn+l]0gx+1dx+ 1 ) (by Lemma 6)

i=nlogn %* log® x log* B
=o(§:x]d" —)=o.

Collecting these results, we obtain

exp( —c(loglog 2+ w(k))) < ) I;IX L(1, 7) <exp(c(loglog &+ w(k))).
%o, X1

This, combined with (1), (3) and Lemma 8, gives the following
TueoreM 1. c(e)k <] IT L(1, X)| <exp(c(loglog &+ w(k))).
X+ %o

In a similar way, we have

THEOREM 2. c(e)k'e<] H L1 )l <explc(loglog b+ w(k))).

5. For the cyclotomic field £ = P(¢), Qo= P(¢(+¢7), where ¢ is a [-th root
of unity, ! being an odd prime, it is well known that
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, /) (2m)"Rh
(13) e 0=

S 2" Roho
(14) B L D=

where h, hy, are respectively the class numbers of 2 and £, and R, R, the

regulators of them, and further rn:l—_zl, |d] =1"% |do| =" and R= R, 2™ .

Combined (13) with Theorem 1, we can infer the following

THEOREM 3. For any positive e,

l -1 C(E) l -1 c
of < e < Rp<o( - .
(‘/2 n_) i (/] 2(\/2;7) (log 1)
In this special case, the result is sharper than the one obtained by R. Brauer
(see [2]) for the general finite algebraic extension.
Let h; be the so-called first factor of the class number of 2. Then
Bi=h/he=(WNT™[2"z™) TI L@, 1).

A=1)=-1
Combined this with Theorem 2, we can infer the following

THreoreEM 4, For any positive ¢,

-1

2 l(g—Z)l%l 9(]? <y <2 l(;f;)# (log ).

The second inequality is better than the result obtained by Ankeny and Chowla
(see [1]) on the extended Riemann hypothesis.

REFERENCES

[1] N. C. Ankeny and S. Chowla: The class number of the cyclotomic field; Proc. Nat. Acad.
Sci. U.S.A, 35 (1949), 529-532.

[2] R. Brauer: On the zeta-function of algebraic number field II; American Journal of Math.
1950.

[3] T. Estermann: On Dirichlet’s L-functions; Journal London Math. Soc. 23 (1948), 275-279.

[4] A. E. Ingham: The distribution of prime numbers; Cambridge, 1932.

[5] E. Landau: Uber Dirichletsche Reihen mit komplexen Charakteren; Crelles Journal Bd.
157.

[6] E. Landau: Uber neuere Fortschritte der additiven Zahlentheorie; Cambridge, 1937.

[7] A. Page: On the number of the primes in an arithmetic progression; Proc. London Math.
Soc. 39 (1935), 116-141.

[8] T. Tatuzawa: On a theorem of Siegel; Japanese Journal of Math., 1952.

Gakushuin University, Tokyo

https://doi.org/10.1017/S0027763000015488 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015488



