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Abstract. There are only a few “dark galaxy” candidates discovered to date in the local Uni-
verse. One of the most prominent of them is the SW component of a merging system HI 1225+01.
On the other hand, the number of known very metal-poor gas-rich dwarfs similar to I Zw 18
and SBS 0335-052 E,W has grown drastically during the last decade, from a dozen and a half
to about five dozen. Many of them are very gas-rich, having from ~90 to 99 % of all baryons in
gas. For some of such objects that have the deep photometry data, no evidences for the light of
old stars are found. At least a half of such galaxies with the prominent starbursts have various
evidences of interactions, including advanced mergers. This suggests that a fraction of this group
objects can be a kind of very stable protogalaxies (or “dark galaxies”), which have recently expe-
rienced strong disturbances from nearby massive galaxy-size bodies. Such a collision caused the
gas instabilities and its collapse with the subsequent onset of starburst. We briefly discuss the
morphology and gas kinematics for the subsample of the most metal-poor dwarfs that illustrate
this picture. We discuss also the relation of these rare galaxies to the processes by which “dark
galaxies” can occasionally transform to optically visible galaxies.
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1. Introduction

The possible existence of a large number of dark galaxies was suggested to reconcile
the drastic difference between the predicted number density of low-mass Cold DM halos
and the observed number density of low-mass galaxies (e.g., Klypin et al. (1999), Moore
et al. (1999)). Despite the fact that the gap diminished significantly during the last years
thanks to discovery of many very low-mass galaxies in the Local Group (e.g., Moore, this
meeting), it is still too large. The observational methods of searching for dark galaxies
were discussed, e.g., by Trentham et al. (2001). The range of global parameters, in which
one expects the dark galaxies to exist, was explored in Verde et al. (2002), Taylor &
Webster (2005) and Davies et al. (2006) based on one of CDM models of disk galaxy
formation by Mo et al. (1998). While the predictions of the original version of Taylor
& Webster (2005) work differed strongly from those of Davies et al. (2006), the revised
analysis by E. Taylor (this meeting) resulted in similar ranges of dark galaxy global
parameters.

2. Dark Galaxy candidates vs model-predicted objects

There are a few Dark Galaxy candidates known to date. We summarize some of their
observational parameters in Table 1. Three of these four objects were discussed during
this Symposium in the talks given by M. Haynes, J. Davies and E. Brinks. No opti-
cal counterparts were found for any of them. The upper limits on their central surface
brightness (SB) are at the levels of 27-27.5 V-mag sq.arcsec 2 (Salzer et al. (1991),
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Table 1. Main parameters of candidate dark galaxies

Name M(HI)1 Vit Mpar/Mio: HI col.dens.? Lin.size!

HI 1225401 SW 2.8-11.2 13 0.4-1.0 <3-4 17-34

VIRGOHI 21 0.4 100 0.002 0.3 14

HIJASS J1021+6824 1.5 40 0.036 1.8 30

HI J0325-3655 2.2 <20 >0.1 0.2 16
Uin units 10° Mg, 2 in units km s~!, ® in units 10%° at. ecm ™2, * in kpe.

Minchin et al. (2005), Walter et al. (2005)), except HI J0325-3655 near FCC 35, for
which no optical counterpart is visible on the SERC images (Putman et al. (1998)). The
distance-dependent parameters for HI 1225+01 SW are given for two possible distance
extremes of 10 and 20 Mpc. Vi, is estimated either from the velocity fields, or from
the maximal velocity widths. The first glimpse on the table reveals a rather large scat-
ter of main parameters for these candidates. In addition, the new data presented at the
Symposium, suggests that HIJASS J1021+4-6824 along with many smaller HI features can
have the tidal origin due to the strong interactions in M 81 group (Brinks, this meeting).
Moreover, according to the ALFALFA HI map, VIRGOHI 21 looks like a part of a long
tail stretching from the massive spiral NGC 4254 (R. Giovanelli, this meeting) which is
probably an evidence against its dark galaxy nature.

On the other hand, there are ACDM N-body simulations mentioned above, predict-
ing the regions of the parametric space of baryon aggregates in which one can expect
to find dark galaxies, defined as baryon “disks” inside DM halos with no stars formed
so far. Therefore, it is reasonable to compare these predicted properties with those of
“dark galaxy” candidates and of some their possible descendants. Since as told in the
Introduction, both Davies et al. (2006) and Taylor (2007, this meeting) give in general
the consistent ranges of main parameters of dark galaxies, we base our further on the
published results of Davies et al. (2006). They can be summarized as follows. The to-
tal range of M(HI) is of 10° to 10° Mg, with only ~2% of simulated objects to have
M(HI)=108-10° Mg. HI column densities vary in the range of (0.5-5)x10?" at. cm~2.
The range of V.o is of 5 to 70 km s~!, with less than ~1% to have V.o > 30 km s~ !.
The accepted baryon mass fraction (Mpa,/Miot) according to theoretical expectations
varies between 0.01 and 0.05.

Comparing the observed properties of candidate “dark galaxies” with those predicted
from the N-body simulations, one concludes that they do not match each other well.
The observed HI masses are too large. Could this be happening partially due to a selec-
tion effect? Or are we (mainly) dealing with “wrong” candidates? On the other hand,
accounting for possible descendants of dark galaxies among XMD galaxies (see Sect. 4),
many of which are also “massive”, are we that confident about the predicted mass range
of dark galaxies?

If VIRGOHI 21 is a dark galaxy, its Mpa: /Mio;=0.002 appears to be atypically small.
On the other hand, if HI 1225401 SW (~0.5), is a real dark galaxy, this parameter is
also a challenge for commonly-accepted models. Can such a high baryon mass-fraction
be observed only in transient entities (e.g., “tidal dwarfs”) characteristic of interacting
systems? If one of new XMD BCGs (see Table 4) and two new HI-rich isolated dwarf
galaxies with similar baryon mass-fractions found in ALFALFA (M. Haynes, this meeting)
are real, they probably prove that such rare objects can exist as stable aggregates. If this
is true, then we can say that HI 1225401 SW is a real dark galaxy being witnessed in
the process of its merging with the other gas-rich (and very metal-poor) object.
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3. eXtremely Metal-Deficient (XMD) galaxies: summary of
properties

Due to space limitations, we only give here a very brief summary of XMD galaxy
properties closely related to the further discussion. The great majority of late-type XMD
galaxies known to date (conditionally, with metallicities Z of Zg /34 to Zg /10, where
Ze corresponds to 12+4log(O/H)=8.66) are classified as blue compact galaxies (BCGs)
which are low-mass starbursting galaxies. They represent the very edge of the general
BCG metallicity distribution (peaked at Z~Zg/5) and comprise only ~2% of all known
BCGs. Their number known to date is about a half a hundred.

For “quiescent” late-type dwarfs, there exists a well known rather tight luminosity-
metallicity (L-Z) relation (e.g., Skillman et al. (1989)), which is applicable over ~7 mag-
nitudes in B-band and 1.5 dex in O/H. A couple the dimmest dI galaxies, UGCA 292
and Leo A (Mp ~ —11.5) show Z as low as Zg /25 (12+log(O/H) ~7.3). The origin of
this L—Z relation is usually explained in terms of a slower astration in low-mass galaxies
and partlially by the elevated metal loss in the smallest galaxies. A similar L-Z relation
for BCGs does exist, albeit with much larger scattering and with a shift to the higher
luminosities at a fixed O/H. These scattering and shift are especially large in the XMD
regime (see, e.g., a bit out-of-date Figure in Pustilnik et al. (2003)). To emphasize the
large difference between XMD dIs and BCGs, we compare their baryon masses. As fol-
lows from Table 2, the range of these XMD BCG baryon masses My,,, accepted as
M(gas)=M(HI)+M(He), equals ~(2.6-12) x10® Mg. For the most metal-poor dIs Leo A
and UGCA 292, the My, are ~0.1 and 0.5x10% Mg, that is on average more than an
order of magnitude smaller.

The global parameters of XMD BCGs show very large diversity. For their small metal-
licity range (a factor of ~3), their Ly and M(HI) vary in the range of 150 and 200, re-
spectively. M(HI)/Lp varies between <0.2 to 8 (in solar units). For several XMD BCGs
the gas mass-fraction (Mgas/(Mgas+Mstars)) is found to be as high as 0.95-0.99 (see sum-
mary, e.g., in Pustilnik & Martin (2007)). Morphologies of XMD BCGs vary from regular
to typical mergers. All this implies probable inhomogeniety of XMD BCGs on their evo-
lutionary path-ways. An additional evidence for this are the colours of their outer parts
which vary from red to very blue (in few galaxies). This implies that the majority of
XMD BCGs are rather old, while a fraction of “very blue” gas-dominant XMD BCGs
can be rather “young” (namely, their “first stars” ages Tx < 0.5-2 Gyr << 13.5 Gyr).

4. Interactions/mergers in XMD BCGs

The importance of interactions for BCG starbursts in general was discussed by many
authors (e.g., Pustilnik et al. (2001a) and references therein). For XMD BCGs, interaction-
induced starbursts are currently known to take place in at least a half of this group. Curi-
ously enough it appears that all six of the most metal-poor BCGs, with 12+1log(O/H)=7.12—
7.29, show various signs of interactions/mergers. We summarize their parameters in Table
2. Due to lack of space we do not show the images with optical/HI morphology and kine-
matics. Part of them are published, while the rest will be presented soon elsewhere. Below
we give some notes on these galaxies. The unique merging XMD galaxy pair SBS 0335-
052 E,W with gas mass-fractions of 0.96 and 0.99 provides the best polygon to confront
models of very gas-rich mergers with real objects. The existence of this and another
merging system HI 1225401, in which the NE component is also an XMD galaxy and
the SW component is a “dark galaxy” candidate, suggests that there are “special” space
regions in which such atypical objects are more abundant and, thus, can be found in a
mutual collision. There are indications that XMD galaxies probably favour the void-like
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Table 2. Main parameters of six the most metal-poor BCGs

Name O/H M(HI) Mg Vi Dist My, /Mo
SBS 0335-052 W 7.12 9.0 —14.7 37 53 0.2
DDO 68 714 70 —155 51 10 0.2

I Zw 18 717 25 —152 44 18 0.1
UGC 772 724 24 —144 20 14

SDSS J2134-0035 7.26 2.0 —138 58 20 0.7
SBS 0335-052 E 729 8.0 —169 32 53 0.2

O/H - in units 12+log(O/H) from Izotov et al. (2005), Izotov et al. (2006) and Izotov & Thuan
(2007), M(HI) - in units 10° Mg from Pustilnik et al. (2001b), Pustilnik et al. (2005), van Zee
et al. (1998), Schneider et al. (1991), and data in preparation, V,o; in km s™', Distance in Mpc.
Vot for SBS 0335-052 E,W and UGC 772 are lower and My., /Mot are upper limits, since the
inclination correction is uknown.

environment (e.g., Pustilnik et al. (2005), Pustilnik et al. (2006), Pustilnik & Kniazev
(2007)). Since the galaxy number density in voids is higher near the borders, one can
expect to detect such objects in transition layers of void regions.

Summarising, we conclude that previous (e.g., van Zee et al. (1998), Pustilnik et al.
(2001b), Pustilnik et al. (2005) for I Zw 18, SBS 0335-052 E,;W and DDO 68) and new
(Ekta et al., in prep. for UGC 772 and SDSS J2134-0035) observational data indicate that
starbursts in all the lowest metallicity (O/H < 7.30) XMD BCGs, which are “massive”
objects with M(gas) of (2.6-12) x10® M, are related to mergers and strong interactions.
Their “high” baryon and total masses imply that the metal loss due to galactic winds does
not affect their chemical evolution. Therefore, their extremely low metallicities suggest
that their progenitors are very stable and have produced very few stars/metals (if any at
all) in previous epochs. Hence, they should be either very low surface brightness galaxies
or a kind of protogalaxies, which escaped strong external disturbance. If some of the
XMD BCGs are indeed “young”, then dark galaxies are the natural candidates to be
their progenitors. They could become “visible” due to recent strong interactions.

5. Dark Galaxy collisions: an empirical approach and need for models

It is evident that dark galaxies (DG) are treated as superstable against gas collapse
only if taken as “isolated” objects (e.i. when the external perturbations are smaller than
internal ones). Collisions of a fraction of DGs with galaxy-sized objects should affect their
stability and induce the sinking of gas to their centers and its collapse. One can suggest
three empirical levels of disturbance due to gravitational interaction: significant, strong
and merger. We call collision/interaction “significant” if it triggers gas collapse and SF
and elevates the stellar mass and related (central) surface brightness above the “thresh-
old” level, say of ;1 =26.5 B-mag sq.arcsec ™2, which is characteristic of the extremely
LSB galaxies. How much such an object would resemble known ELSBGs, depends on
its SB radial profile. For the case of “strong” collision/interaction, DG will transform to
an object with a more typical central SB, say with u =23-25 B-mag sq.arcsec”2. Their
resemblence to known LSBGs again depends on the resulting SB radial profile. In the
case of a merger of a DG and another galaxy-sized aggregate, the results can be rather
different depending on the type and mass of the said counterpart. Such an event can be
accompanied by a significant starburst and for some cases can look like a XMD BCG.

It is interesting to note that result of “significant” interaction can be transient if a DG
keeps its internal stability after the collision. After 0.5—1 Gyr all massive and intermediate
mass newly formed stars will die and the light of this “ELSB” galaxy will fade below p =
27.5 B-mag sq.arcsec 2. The object again will be transformed to a dark galaxy.
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This discussion of various galaxies, which could be in principle related to a population
of dark galaxies in the local Universe, shows a serious need for numerical models of
dark galaxy interactions. While the simulations of very gas-rich galaxy collisions have
been difficult until recently due to the problem of proper accounting for various feedback
processes, there has been significant progress made over the last two years. Springel &
Hernquist (2005) and Robertson et al. (2006) presented N-body simulations of interacting
gas-rich galaxies (with 99% of baryons in gas) which reproduce the formation of a disk
galaxy in a major merger. Up to now the models have dealt with rather massive objects.
There is a need to extend them to the region of expected “dark galaxy” parametric space.
This will allow one to better understand what emerges from their interactions: more or
less “typical” LSBGs or something unusual. The models of “dark galaxy” mergers will
elucidate whether some of XMD BCGs may be related to this process.
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