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Abstract
We survey results on two diffusion processes on graphs: random

walks and chip-firing (closely related to the "abelian sandpile" or
"avalanche" model of self-organized criticality in statistical mechan-
ics). Many tools in the study of these processes are common, and
results on one can be used to obtain results on the other.

We survey some classical tools in the study of mixing properties of
random walks; then we introduce the notion of "access time" between
two distributions on the nodes, and show that it has nice properties.
Surveying and extending work of Aldous, we discuss several notions of
mixing time of a random walk.

Then we describe chip-firing games, and show how these new results
on random walks can be used to improve earlier results. We also give
a brief illustration how general results on chip-firing games can be
applied in the study of avalanches.

1 Introduction
A number of graph-theoretic models, involving various kinds of diffusion pro-
cesses, lead to basically one and the same issue of "global connectivity" of the
graph. These models include: random walks on graphs, especially their use
in sampling algorithms; the "avalanche" or "sandpile" model of catastrophic
events, which is mathematically equivalent to "chip-firing" games; load bal-
ancing in distributed networks; and, somewhat more distantly but clearly
related, multicommodity flows and routing in VLSI. In this paper we survey
some recent results on the first two topics, as well as their connections.

Random walks. The study of random walks on finite graphs, a.k.a. finite
Markov chains, is one of the classical fields of probability theory. Recently
interest has shifted from asymptotic results to inequalities and other quanti-
tative properties involving a finite, possibly even very small number of steps.
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Much of this was motivated by applications to computer science. Perhaps
the most important of these (though certainly not the only one) is sampling
by random walk (see, e.g., [21], [33], [25]). This method is based on the fact
that (at least for connected non-bipartite undirected graphs, which is easy to
guarantee), the distribution of the current node after t steps tends to a well-
defined distribution TT, called the stationary distribution (which is uniform if
the graph is regular). So to draw an (approximately) uniformly distributed
random element from a set V, it suffices to construct a regular, connected,
non-bipartite graph on V, and run a random walk on this graph for a large
fixed number of steps.

A good example to keep in mind is shuffling a deck of cards. Construct
a graph whose nodes are all permutations of the deck, and whose edges lead
from each permutation to those obtainable from a single shuffle. Then re-
peated shuffle moves correspond to a random walk on this (directed) graph.

A crucial issue for this algorithm is the choice of the number of steps.
Informally, let as call the necessary number of steps the mixing time. The
surprising fact, allowing these algorithmic applications, is that this mixing
time may be much less than the number of nodes. For example, it takes
only 7 moves [11] to shuffle a deck of 52 cards quite well, using the standard
"dovetail" shuffle—even though the graph has 52! nodes. On an expander
graph with n nodes, it takes only O(log n) steps to mix.

At the same time, proving good bounds on the mixing time even in quite
special cases is a difficult question. Various methods have been developed for
this. Using eigenvalues, it is easy to find the mixing rate, i.e., the quantity

lim <*(</, 7r)x/t,

where a1 is the distribution of the node we are at after t steps, and d is the
total variation (£i —)distance (or any other reasonable distance function). But
this result does not tell the whole story for two reasons. First, the underlying
graph in the cases of interest is exponentially large, (cf. the example of card
shuffling), and the computation of the eigenvalues by the tools of linear alge-
bra is hopeless. Second, the mixing rate tells us only the asymptotic behavior
of the distance d(a\7r) as t —» oo, while we are interested in relatively small
values of t (7 shuffle moves, for example). To be sure, eigenvalue methods
can provide very sharp estimates, but for this, detailed information on the
spectrum, and even on the eigenvectors, is needed (see Diaconis [21] or Chung
and Yau [17]). This kind of spectral information can be derived, it seems,
only in the presence of some algebraic structure, e.g. a large automorphism
group.

Therefore, combinatorial techniques that yield only bounds on the mixing
rate and mixing time are often preferable. Two main techniques that have
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been used are coupling and conductance. We only give a brief discussion of
the second; see [35] for more details.

Recent work by the authors provides a further method to prove bounds on
the mixing time. Our work was motivated by the following observation. There
is no particular reason why a walk used in a sampling algorithm must be run
for a fixed number of steps; in fact, more general stopping rules which "look
where they are going" are capable of achieving the stationary distribution
exactly, and just as fast. Motivated by this, we have studied stopping rules
that achieve any given distribution, when starting from some other given
distribution. It turns out that there is a surprising variety of such rules,
many of which are optimal in the sense that they entail the smallest possible
expected number of steps; one of them also minimizes the maximum number
of steps. These rules are related to important parameters of the random
walk, like hitting times and conductance. The expected number of steps in
an optimal rule serves as a natural (non-symmetric) distance between the
initial and final distributions.

The most important special case arises when one wishes to generate a node
from the stationary distribution, starting from a given node. The "distance"
from a node to the stationary distribution, maximized over all nodes, provides
a precise natural definition of mixing time (considered by Aldous [5], [6] in
the reversible case). This notion agrees, up to a constant factor, with most
of the usual definitions of mixing time, which depend on a specific choice of
how nearness to the limit distribution is measured.

In these considerations, we assume that the graph is known, and we put
no restriction on the computation needed to decide when to stop. This re-
quirement makes direct use of our stopping rules as sampling mechanisms
unlikely. (We show in [38] that it is possible to obtain the exact stationary
distribution with an unknown graph, not in as efficient a manner, although
still in time polynomial in the maximum hitting time.) However, one can de-
scribe a simple rule whose implementation requires no knowledge about the
graph other than its mixing time, takes only a constant factor more time, and
yields a node whose distribution is approximately stationary. The machinery
we build to determine the mixing time may thus be considered as a tool for
analyzing this simple and practical sampling mechanism.

A main tool in the analysis of random walks on graphs is the Laplacian of
the graph. Mixing times, hitting times, cover times and many other important
parameters are closely related to the "eigenvalue gap" of this matrix, at least
in the undirected case. A simpler but powerful tool is the "conservation
equation" first noted by Pitman [42] (see Section 4).

Chip-firing and avalanches. Another diffusion process on graphs was in-
troduced by Bjorner, Lovasz and Shor [13] under the name of "chip-firing
game". We place a pile of chips on each node of a directed graph, and then
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change this arrangement of chips as follows: we select a node which has at
least as many chips as its outdegree, and move one chip from this node to
each of its descendents. We call this step firing a node. This step is repeated
as often as we wish or until no node remains that can be fired.

Procedures equivalent to chip-firing games were introduced, independently,
at least three times (not counting the obvious similarity to neural nets, which
remains unexplored). Engel [26], [27] considered a procedure he called the
"probabilistic abacus", as a method of determining the limit distribution of
certain Markov chains by combinatorial means. Spencer [47] introduced the
special case when the underlying graph is a path, as a tool in analyzing a
certain "balancing" game. In [4] Spencer's process was analyzed in greater
detail. The analysis of the procedure was extended to general (undirected)
graphs in [13], and to directed graphs by Bjorner and Lovasz [14].

Chip-firing turns out to be closely related to the "avalanche" or "sandpile"
model of catastrophic events (also called self-organized criticality), introduced
by Bak, Tang and Wiesenfeld [12] and Dhar [20]. The nodes of the digraph
represent "sites" where snow is accumulating. There is a special node, the
"outside universe". Once the amount of snow on a site surpasses a given
threshold, the site "breaks", sending one unit of snow to each of its out-
neighbors, which in turn can break again etc., starting an avalanche. After
some easy reductions, avalanches can be considered as chip-firing games; even
firing the special node can be viewed as a snowfall.

A key property of these games is that from a given position, all sequences
of firings behave similarly: either they all can be extended infinitely, or they
all terminate after the same number of moves, with the same final position
(Church-Rosser property). This was observed in [4] and in [20].

Considering a chip-firing process on a given digraph, we can ask a number
of natural questions: will this procedure be finite or infinite? If finite, how
long can it last? If infinite, how soon can it cycle? How many chips are
needed for an infinite procedure? How does one determine if a given position
(distribution of chips) can be transformed into another one by firings?

In the case of undirected graphs, these questions are more-or-less fully
answered in [13], [14] and the work of Tardos [48]. For example, a finite
procedure terminates in O(n4) steps; the shortest period of a periodic game
is n\ the minimum number of chips that allow an infinite game is ra, the
number of edges. There are polynomial time algorithms to determine if a
position starts a finite or infinite game, and also to determine if two positions
can be reached from each other. The case of directed graphs is more difficult,
and the complexity of some of these questions is still open.

There is a strong connection between chip firings, random walks on graphs,
and the Laplace operator. In particular, the "conservation equation" plays
an important role. This connection in the undirected case was observed in
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[13]; the extension to the directed case is due to [14], where it was used to
show that no terminating firing sequence is longer than a polynomial times
the length of the period of a periodic firing sequence. (This extends the result
of [48], the directed case.) The new results on mixing times of random walks
give improvements of these results. A converse inequality, conjectured in [14],
will also be proved here, using the conservation equation.

There are a number of other diffusion processes on graphs, which we do
not survey here in detail. Load balancing in distributed networks seems to be
very closely related. In this model, every node of a (typically undirected and
regular) graph corresponds to a processor, and each processor i is given a cer-
tain amount W{ of workload. The processors want to pass load to each other
along the edges, so that eventually their loads should be (approximately)
equal. This is quite similar in spirit to random walks on a regular graph,
where "probability" is passed along the edges and eventually equalized. In-
deed, upper and lower bounds on the time needed to equalize the loads ([2],
[32]) involve parameters familiar from the theory of random walks: expansion
rate, conductance, eigenvalue gap. On the other hand, there is a substantial
difference: in chip-firing and random walks, load is distributed among the
neighbors of a node evenly; in the load-balancing models, usually only one
neighbor gets load in one step. Still, we hope that some of the ideas used in
the analysis of random walks (and perhaps chip firing) might be applicable
to a larger class of distribution processes.

2 Random walks, hitting and mixing times

Consider a strongly connected digraph G = (V,E) with n nodes and m edges
(we allow multiple edges and loops). We denote by atj or a(i,j) the number
of edges from i to j , and by d~ and df the indegree and out degree of node z,
respectively. If the graph is undirected, then dv = df — d~ is the degree of
the node.

A random walk on G starts at a node wo] if after t steps we are at a node
wu we move to any node u with probability a(wt,u)/d+(wt). Clearly, the
sequence of random nodes (wt : t = 0,1,...) is a Markov chain. The node w0

may be fixed, but may itself be drawn from some initial distribution cr. We
denote by a% the distribution of wt:

a\ = Pr(u>, = i).

We denote by M = (pij)ijev the matrix of transition probabilities of this
Markov chain. So

Pl3~ df
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The rule of the walk can be expressed by the simple equation

at+1 = M V ,

(the distribution of the t-th point is viewed as a vector in IR ), and hence

a* = (MT)V.

It follows that the probability p\- that, starting at z, we reach j in t steps is
given by the zj-entry of the matrix Mt.

If G is undirected (which is viewed as a special case of directed graphs,
with each edge corresponding to a pair of arcs oriented in opposite directions)
then this Markov chain is time-reversible. Roughly speaking, this means that
every random walk considered backwards is also a random walk (see below
for a precise definition). If, in addition, G is regular, then the Markov chain
is symmetric: the probability of moving to u, given that we are at node v, is
the same as the probability of moving to node v, given that we are at node
u.

The probability distributions <J°, cr1,^2,... are of course different in gen-
eral. We say that the distribution a is stationary (or steady-state) for the
graph G if a1 = a. In this case, of course, cr* = cr for all t > 0. It is easy
to see that there is a unique stationary distribution for every strongly con-
nected digraph; we denote it by TT. Algebraically, TT is a left eigenvector of the
transition matrix M, belonging to the eigenvalue 1.

A one-line calculation shows that for an undirected graph G, the distribu-
tion

x.- = * (1)
m

is stationary (note that m is twice the number of undirected edges.) In
particular, the uniform distribution on V is stationary if the graph is regular.
An important consequence of this formula is that the stationary distribution
is only a polynomial factor off the uniform (in terms of the number of edges,
which we shall consider the input size of the graph. Loops and multiple edges
are allowed.)

The stationary distribution for general directed graphs is not so easy to
describe, but the following (folklore) combinatorial formula can be derived,
e.g., from Tutte's "matrix-tree theorem". Let A{ denote the number of all
spanning in-arborescences in G rooted at i. Then

'-^dfA ( 2 )

The stationary distribution on a directed graph can be very far from the
uniform; it is easy to find examples where the stationary probability of some
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nodes is exponentially small (in the number of edges). The value

7T = min7rt-
i

is an important measure of how "lopsided" the walk is. However, if the
digraph is eulerian, then the stationary distribution is proportional to the
degrees just like in the undirected case:

m

Specifically, the uniform distribution is stationary for every regular eulerian
digraph.

The most important property of the stationary distribution is that if the
digraph is aperiodic, i.e., the cycle lengths in G have no common divisor
larger than 1, then the distribution of wt tends to the stationary distribution,
as t —> oo. (This is not true if the cycle lengths have a common divisor, in
particular, for undirected bipartite graphs.)

In terms of the stationary distribution, it is easy to formulate the property
of time-reversibility of the random walk on an undirected graph: for every
pair z,j G V, WiPij = KjPji- This means that in a stationary walk, we step as
often from i to j as from j to i. From (1), we have itiPij = 1/ra if ij G E,
so we see that we move along every edge, in every given direction, with the
same frequency. If we are sitting on an edge and the random walk just passed
through it, then the expected number of steps before it passes through it in
the same direction again is m.

There is a similar fact for nodes, valid for all digraphs: if we are sitting
at a node and the random walk just visited this node i, then the expected
number of steps before it returns is 1/TT;. If G is a regular eulerian digraph
(in particular, a regular undirected graph), then this "return time" is just n,
the number of nodes.

The mixing rate is a measure of how fast the random walk converges to
its limiting distribution. This can be defined as follows. If the digraph is
aperiodic, then p\j —> dt/(2ra) as t —» oo, and the mixing rate is

\i = lim sup max
t-+oo 2m

One could define the notion of "mixing time" as the number of steps before
the distribution of wt will be close to uniform (how long should we shuffle a
deck of cards?). This number will be about (log n)/(l—//). However, the exact
value depends on how (in which distance) the phrase "close" is interpreted.
Another concern is that this definition excludes periodic digraphs, and is
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very pessimistic in the case of "almost periodic" digraphs. For example, if G
is obtained from a complete bipartite graph by adding an edge, then after a
single step the distribution will alternate between almost uniform on one color
class, and the other, but it takes a (relatively) long time before this alternation
disappears. In applications to sampling, simple averaging tricks take care of
this problem. Soon we will be able to introduce a more sophisticated, but
"canonical" definition of mixing time.

In this paper, we do not study other important parameters of random
walks, like cover times, commute times and the like. But one "time" will play
an important role in the analysis of mixing speed: the hitting time (or access
time) H(i,j) is the expected number of steps before node j is visited, starting
from node i. We denote by H(G) the largest hitting time between any two
nodes of the graph G. For undirected graphs, hitting times are polynomial in
the number of edges ([1]). Brightwell and Winkler [15] proved that for every
simple graph, H(G) < (4/27)n3, and determined the graph that provides the
maximum.

For digraphs, hitting times are not bounded by any polynomial of the
number of edges in general. In fact, they are closely tied to the smallest
stationary probability it. Bjorner and Lovasz proved in [14] that

H(G) < £ ^ , (3)

which, together with the trivial lower bound, implies that

4 - 1 < H{G) < ™. (4)
7T 7T

Hitting times have many interesting combinatorial and algebraic proper-
ties; see [35] for several of these. We only state here two special properties,
for later reference. The random target identity states that

Z*iH(i,j) = C (5)
j

is independent of the choice of i] in other words, the expected number of steps
we have to walk to hit a node randomly chosen from the stationary distribu-
tion is C, independent of the starting point (see, e.g., the "right averaging
principle" in Aldous [5]).

The hitting time from i to j may be different from the hitting time from
j to i, even in an undirected regular graph. Still, one expects that time-
reversibility should give some sort of symmetry of these quantities. One
symmetry property of hitting times for undirected graphs was discovered by
Coppersmith, Tetali and Winkler [19]:

H(i,j) + H(j, k) + H(k, i) = H(i, k) + H(k,j) + H(j, i) (6)

for every three nodes.
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3 Mixing, eigenvalues and conductance
In this section we give a brief account of the use of these two tools in estimat-
ing the speed of mixing of a random walk. A more detailed survey, at least
in the case of undirected graphs, can be found in [35].

The matrix M has eigenvalue 1, with corresponding left eigenvector TT and
corresponding right eigenvector 1, the all-1 vector on V. It follows from the
Frobenius-Perron Theorem that every other eigenvalue A satisfies |A| < 1 and
if G is non-periodic, then in fact |A| < 1. We denote by fi the largest absolute
value of any eigenvalue different from 1.

Now the key fact in the use of eigenvalue techniques is the following. Let
a be any starting distribution, then

a* - 7T = (MJY(a - TT)

and hence it is easy to derive the following:

Theorem 3.1 For every starting distribution a, every t > 1 and AC.V,

Conductance. Let G be a digraph and S C V, S ^ 0. Let e(5,T) denote
the number of edges connecting a set 5 to a set T. We define the conductance
of the set S C V, S ^ 0 by

) ^ W df

and the conductance of the graph by

$ = min$(S),s

where the minimum is taken over all non-empty proper subsets S C V. If the
graph is a d-regular and undirected, then the conductance of S is

ne(S,V\S)
K } d \ s \ - \ v \ s y

which is (up to normalization) the edge-density in the cut determined by S.
To digest this quantity a little, note that YsiesK{i)e>{i,V \ S)/df is the

frequency with which a stationary random walk switches from S to V \ S;
while 7r(5')7r(V \ S) is the frequency with which a sequence of independent
random elements of V, drawn from the stationary distribution TT, switches
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from S to V \ S. So $ can be viewed as a certain measure of how independent
consecutive nodes of the random walk are.

Sinclair and Jerrum [33] established a connection between the spectral gap
and the conductance of an undirected graph. A similar result for the related,
but somewhat different parameter called expansion rate was proved by Alon
[3] and, independently, by Dodziuk and Kendall [23] (cf. also Diaconis and
Stroock [24]). All these results may be considered as discrete versions of
Cheeger's inequality in differential geometry.

Theorem 3.2 If G is an undirected graph, then every eigenvalue A ̂  1 of
M satisfies

This result allows an eigenvalue near —1, which means that the graph is
almost bipartite. While such an eigenvalue prevents us from applying 3.1
right away, it is in fact easy to handle. For example, we may attach d{ loops
at each node i; for the random walk on this modified graph we get

Corollary 3.3 For any starting distribution a, any A CV and any t > 0,

See Diaconis and Stroock [24], Mihail [41], Fill [29], Sinclair [45], and also
Lovasz and Simonovits [36] for sharper bounds, connections with multicom-
modity flows, and for extensions to the directed case.

4 Stopping rules and exit frequencies

Examples. There are several examples of "stopping rules" that can achieve
specified distributions in an elegant or surprising manner. We consider two;
several more are mentioned in [39].

Consider the following interesting fact from folklore. Let G be a cycle of
length n and start a random walk on G from a node u. Then the probability
that v is the last node visited (i.e., the a random walk visits every other node
before hitting i;) is the same for each v ^ u.

While this is not an efficient way to generate a uniform random points of
the cycle, it indicates that there are entirely different ways to use random
walks for sampling than walking a given number of steps. This particular
method does not generalize; in fact, apart from the complete graph, the cycle
is the only graph which enjoys this property (see [37]).
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Consider another quite simple graph, the cube, which we view as the graph
of vertices and edges of [0, l]n . Let us do a random walk on it as follows: at
each vertex, we select an edge incident with the vertex at random, then flip
a coin. If we get "heads" we walk along the edge; if "tails" we stay where we
are. We stop when we have selected every direction at least once (whether or
not we walked along the edge).

It is trivial that after we have selected an edge in a given direction, the
corresponding coordinate will be 0 or 1 with equal probability, independently
of the rest of the coordinates. So the vertex we stop at will be uniformly
distributed over all vertices.

This method takes about n In n coin flips on the average, thus about | n In n
actual steps, so it is a quite efficient way to generate a random vertex of the
cube, at least if we insist on using random walks (of course, to choose the
coordinates independently is simpler and faster). We will see that it is in fact
optimal.

Stopping rules. To begin a systematic study of stopping rules, we first
define them. A stopping rule F is a map that associates with every walk
w in the digraph G a number 0 < T(w) < 1. We interpret T(w) as the
probability of continuing given that w is the walk so far observed, each such
stop-or-go decision being made independently. We can also regard F as a
random variable with values in {0,1,...}, whose distribution depends only
on the wo, • •, wr'i thus we stop at w^.

The mean length EF of the stopping rule F is its expected duration; if
EF < oo then with probability 1 the walk eventually stops, and thus crr is a
probability distribution. A stopping rule F for which ar = r is also called a
stopping rule from a to r.

For any strongly connected digraph G and any distribution r on V(G),
there is at least one finite stopping rule F such that ar = r; namely, we select
a target node j in accordance with r and walk until we reach j . We call this
the "naive" stopping rule Vtar. Obviously, the mean length of Vtar is given by

In the case when r = TT is the stationary distribution, this formula can be
simplified using the "random target identity" (5), and we get that the mean
length of the naive rule to reach TT is C, independently of the starting distri-
bution.

We often think of a stopping rule F as a means of moving from a starting
distribution J to a given target distribution r = crr. Such a F is said to
be mean-optimal or simply optimal (for a and r) if EF is minimal. The
mean length of a mean-optimal stopping rule from a to r will be denoted
H(cr, r). We call this number the access time from crtor, and think of it as
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a generalized hitting time.
Trivially, H(cr,r) = 0 if and only if a = r. It is easy to see that the

following triangle inequality is satisfied for any three distributions cr, p and r:

/f((7,r)<^,/)) + ̂ , T ) . (7)

(To generate r from cr, we can first use an optimal rule to generate p from
a and then use the node obtained as a starting node for an optimal rule
generating r from p). We should warn the reader, however, that H(a,r) ^
H(T, <T) in general.

We have seen that the access time H(a, r) has the properties of a metric on
the space of node-distributions, except for symmetry; the latter is of course
too much to expect since the ordinary hitting time, even for an undirected
graph, is not generally symmetric.

Clearly if r is concentrated at j (for which we write, rather carelessly,
" r = j " ) then

H(cr,j) = J2°iH(iJ), (8)
i

since the only optimal stopping rule in this case is ft j, "walk until node j is
reached."

By considering the naive rule fiT, we get the inequality

H(<J,T) <52<TsTjH(i,j) . (9)

This may be quite far from equality; for example, H(a, a) = 0 for any a.
We set Hm&x(T) = ma,xaH(a, r) = max,if(i, r). From the point of view of

applications, stopping rules generating nodes from the stationary distribution
are of particular interest. The value Tmix = maxtif(i,7r) (the mean time of
an optimum rule, starting from the worst point) is a natural and very useful
definition of the mixing time.

It turns out that for given target distribution r there are at least four
interesting optimal stopping rules: the filling rule, the local rule, the shopping
rule and the threshold rule. We describe these rules, together with some
important non-optimal stopping rules, a bit later.

The conservation law. Let us now fix the digraph, a starting distribution
cr and a finite stopping rule F. The expected number X{ of times the walk
leaves node i before stopping will be called the exit frequency of node i for F.
Clearly

Exit frequencies were considered by Pitman [42]; he gave the following sim-
ple but very powerful "conservation law", relating them to the starting and
ending distributions:
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Lemma 4.1 The exit frequencies of any stopping rule from a to r satisfy the
equation

The identity expresses the simple fact that the probability of stopping
at node j is the expected number of times j is entered minus the expected
number of times j is left. The first application of this identity is the fol-
lowing theorem ([39]), relating different rules leading from the same starting
distribution to the same target distribution:

Theorem 4.2 Fix a and let F and F' be two finite stopping rules from a to r
with exit frequencies x and x' respectively. Let D = EF — EF' be the difference
between their mean lengths. Then x' — x = DTT.

It follows from Theorem 4.2 that the exit frequencies of any mean-optimal
stopping rule from a to r are the same. We denote them by xt(<j, r ) .

Let us determine the exit frequencies in some simple cases. The first result
is from Aldous [5]. Several related formulas could be derived using relations
to electrical networks, as in [18] or [48].

Lemma 4.3 The exit frequencies x for the naive stopping rule ilj in reaching
node j from node i are given by

More generally, the exit frequencies for the naive stopping rule ilT from initial
distribution a are given by

xk = irkJ2<riTj(H(iJ)+H(j,k)-H(i,k)) = *k(mvT + H(T,k) - H{a,k)) .
*\i

Combining this lemma with Theorem 4.2, we get the following general
formula for exit frequencies:

Theorem 4.4 The exit frequencies of a mean-optimal stopping rule from a
to T are given by

xk(<r, r ) = irk (H(a, T) + H(T, k) - H(a, k)) .

Any node j for which Xj = 0 is called a halting node. By definition we
stop immediately if and when any halting node is entered. (But of course we
may stop in other nodes too, just not all the time.) The following theorem
from [39] gives an extremely useful characterization of optimality.
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Theorem 4.5 A stopping rule T is optimal if and only if it has a halting
node.

The "if" part is a trivial consequence of Theorem 4.2. The "only if" part
is more difficult: we have to prove that from every a to every r there is
a stopping rule that has a halting node. There are several ways to specify
such a rule. Later on we shall describe four optimal stopping rules. Any of
these could be used to prove this theorem, but none of the proofs is really
straightforward, and we don't give any of them here.

This theorem shows that from the two stopping rules on the cycle and the
cube, discussed as introductory examples, the first is not optimal, but the
second is (the node of the cube opposite the starting node is a halting node).

From Theorem 4.5, a formula for the access times follows easily. Consider
an optimum stopping rule from a to r. Let j be any node, and consider the
triangle inequality:

H(a,j)<H(a,T) + H(T,j)

The right hand side can be interpreted as the expected number of steps in a
stopping rule that consists of first following an optimal rule from a to r and
then following the naive rule (which is clearly the only optimal rule) from r
to j . Now if j is the halting node of the optimum rule from a to r then,
trivially, it is a halting node for this composite rule, and so the composite
rule is optimal. Thus for at least one j , equality holds. Rearranging, we get
that

H(V,T) = max(#(<7, j) - H(TJ)). (10)

Note that the access times on the right hand side can be expressed by the
hitting times, using (8):

There is, in fact, a more general formula for the exit frequencies, which can
be derived by similar arguments:

xk(cr,T) = w

In the special case of undirected graphs and target distribution TT (which
is perhaps the most common in applications of random walk techniques to
sampling), we can use the cycle-reversing identity (6) and the random target
identity (5) to obtain the following formula for the exit frequencies of an
optimal rule:

xk = 7rk(m?xH{j,i) - H(k,i)) (11)
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and
H(i, TT) = max H(j, i) - H(ir, i) . (12)

3

We have thus identified the halting node in an undirected graph, in attaining
the stationary distribution from node z, as the node j from which the hitting
time to i is greatest. This seems slightly perverse in that we are interested in
getting from i to j , not the other way 'round!

Examples. Consider the classic case of a random walk on the path of length
n, with nodes labeled 0 , 1 , . . . , n. We begin at 0, with the object of terminat-
ing at the stationary distribution.

The hitting times from endpoints are H(0,j) = H(n,n — j) = j 2 and the
stationary distribution is

J_ 1 1 1 1

The naive stopping rule has a halting node, namely n, and hence it is optimal.
From (11) we have

xk = 7tk(H(n, 0) - H(k, 0)) = wkH(n, k) = irk(n - kf

and

t=o ^n i=1 n 3 6

From this it is not difficult to derive that for a cycle of length n, n even,

H(3*) = ?- + ±
' 12 6

as compared with expected time

n - l n ( n - l ) _ (n - I)2

~~n 2 ~ 2

for staying at 0 with probability l/n else walking until the last new vertex is
hit as in the example discussed earlier.

The random walk on the following digraph is sometimes called the winning
streak Let V = { 0 , 1 , . . . ,n — 1}, and connect i to i + 1 by an edge for
i = 0 , . . . n — 2; also connect i to 0 for i = 1 , . . . , n — 1. It is easy to check
that the stationary distribution is

on—t —1
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Hence the exit frequencies Xi for an optimal rule from 0 to ?r can be determined
using Lemma 4.1, working backwards from i = n — 1, n — 2 , . . . , obtaining

on-t-l

Summing over all nodes, we get

Next we describe four optimal stopping rules.

The filling rule. This rule is the discrete version of the "filling scheme,"
introduced by Chacon and Ornstein [16] and shown by Baxter and Chacon
[10] to minimize expected number of steps. We call it the filling rule (from a
t o r ) , and define it recursively as follows. Let p1- be the probability of being
at node i after k steps (and thus not having stopped at a prior step); let q*
be the probability of stopping at node i in fewer than k steps. Then if we are
at node i after step fc, we stop with probability min(l, (TJ — qf)/Pi)>

Thus, the filling rule stops myopically as soon as it can without overshoot-
ing the target probability of its current node. One can prove that it is a finite
stopping rule and thus it does in fact achieve r when started at a. One can
also prove that it has a halting node.

The filling rule has a "now-or-never" property that once a node is exited,
we never stop there later. In fact, it can be described in terms of "deadlines"
gi\ we stop at node j if we hit it before this time; if we hit the node j at time
t where gj < t < gj -f 1, then we stop with probability gj + 1 — t; we don't
stop if we hit it after time gj + 1. A halting node j gets gj = oo.

The threshold rule. Every "threshold vector" h = (hu . . . , hn), hi G [0, oo]
gives rise to a stopping rule in a manner opposite to the "deadlines" mentioned
in connection with the filling rule: we stop at node j if we hit it after time
hj + l; if we hit the node j at time t where hj < t < hj + l, then we stop with
probability t — hj; we don't stop if we hit it before time hj. A rule obtained
this way is called a threshold rule.

The threshold vector may not be uniquely determined by a threshold rule
(e.g. all possible thresholds hi smaller than the time before any possible walk
reaches i are equivalent), but by convention we always consider the vector each
of whose coordinates is minimal. Then in view of Theorem 4.5, the threshold
rule is optimal just when some coordinate of the associated threshold vector
is zero.

Theorem 4.6 For every target distribution r there is a mean-optimal thresh-
old rule.
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The threshold rule has a couple of further properties that distinguish it
among other rules. First, if r has sufficient support then it is bounded:

Theorem 4.7 Suppose that every directed cycle contains a node i with T{ > 0.
Then there is a K > 0 such that, for every starting distribution, the threshold
rule always stops in fewer than K steps.

The condition of Theorem 6 is also necessary in the sense that if a cycle
with target probability 0 exists, then starting at a node of this cycle, no bound
can be given on the number of steps in the threshold (nor on the number of
steps of any other stopping rule).

The threshold rule is special among all rules in the following sense:

Theorem 4.8 The maximum number of steps taken by the threshold rule is
not larger than the maximum number of steps taken by any other rule from
the same starting distribution to the same target.

The local rule. Let Xi be the exit frequencies for an optimal stopping rule
from a to r, i.e., solutions of the conservation law with mint- xt = 0. (An easy
algebraic argument shows that for any a and r, there is a unique solution of
the conservation equation with this property.) Consider the following "local"
rule: if we are at node i, we stop with probability rt/(xt + rt), and move on
with probability Xi/(x{ + r,) (if X{ + rt; = 0 the stopping probability does not
need to be defined). Thus the probability of stopping depends only on the
current node, not the time.

One can prove that the local rule generates r. It is mean-optimality is
clear since the node j with Xj = 0 is a halting node.

The shopping rule. Any probability distribution on the subsets of the node
set V provides a stopping rule: "choose a subset U from />, and walk until
some node in U is hit." The naive rule is of course a special case, with p
concentrated on singletons. The special case when p is concentrated on a
chain of subsets is more efficient:

Theorem 4.9 For every target distribution r, there exists a unique distribu-
tion p which is concentrated on a chain of subsets and gives a stopping rule
for generating r. This stopping rule is optimal.

The chain supporting the distribution p can be constructed recursively,
starting from V and going down. Once we know that such a rule from a to T
exists, its optimality is obvious, since a node in the smallest member of the
chain is never exited.

Another rather neat way to think of this rule is to assign the real "price"
r (0 = H{p(U) : i G U} to each node i. The "shopping rule" is then
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implemented by choosing a random real "budget" r uniformly from [0,1] and
walking until a node j with r(j) < r is reached.

The shopping rule shares with the filling rule $ the "now-or-never" prop-
erty that once a node is exited, it can never be the node at which the rule
stops.

It is interesting to point out that the four stopping rules described above
have a lot of common features. Of course, they all have the same exit fre-
quencies and halting nodes. Each is described in terms of a numerical vector
on V (deadlines, thresholds, exit frequencies, prices). Each of these vectors
can be calculated from the starting and target distribution, by an algorithm
that is polynomial in the number of nodes (which is unfortunately not good
enough in a typical application of these techniques to sampling, where the
number of nodes is exponential).

Each of these rules (or the corresponding vector) defines an ordering (with
ties—technically, a "preorder") of the nodes for every a and r. These order-
ings are in general different.

On the other hand, the four rules described above are different, and have
in fact quite different properties. The threshold rule is bounded if, say, the
target distribution has full support; the other three are, in general, not. The
filling and shopping rules have the "now or never" property, but the other two
rules do not. Finally, the filling rule has the "inverse boundedness" property
that there is a time K so that it never stops after time K except in a halting
node, which is not shared by any of the others.

5 Mixing times

We can define the mixing time of a random walk as Tm\x = maxs H(s,7r).
This is not quite in line with the usual definition of mixing time, which is
the smallest t such that, for every initial distribution <7, the distribution cr1 of
the t-th. element is "close" to TT in one sense or another. To be specific, say
we want a\ > (9/10)TT? for all i. (In [37], the dependence on a parameter c
in place of 9/10 is also studied, but here we simplify our discussion by fixing
this value.)

It is not immediately clear how to compare these two definitions. On the
one hand, the traditional definition requires only approximate mixing, so it
could be much less than our mixing time. On the other hand, the traditional
definition is restricted to a trivial stopping rule (stop after t steps), and so it
could be lead to much larger stopping times.

To be precise, we have to make one more point. If the graph is periodic
(i.e., the lengths of its cycles have a common divisor larger than 1, say we
have a bipartite graph), then GX may never be close to TT. The way out is to
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do some kind of averaging: the (somewhat improperly named) "continuous
time" model corresponds to choosing t from a Poisson distribution, while the
"lazy walk" trick (see e.g. Lovasz and Simonovits [36] corresponds to choosing
t from a binomial distribution.

It turns out that none of these differences mean too much, at least if we
allow averaging. In fact, the following value is a lower bound on both versions
of mixing time; on the other hand, both versions are at most a constant factor
larger.

Let Tfiii denote the smallest T such that for every starting distribution
cr, there is a stopping rule $ with mean length at most T such that erf >
(9/10)rt- for all i. We can modify this definition, by using a different notion
of approximation, the so-called total variation distance: let Ttv denote the
smallest T such that for every starting distribution <r, there is a stopping rule
$ with mean length at most T such that |cr$(A) — n(A)\ < 1/10 for every set
A of nodes.

Obviously,
Ttv < ^fill < ?lnix-

The last two quantities are always close to each other (this is a consequence
of a simple folklore argument):

Theorem 5.1
T < 1 0T
^mix S -JT^fill-

On the other hand, Ttv and Tfm may be far apart, as the "winning streak"
example shows. Aldous (see e.g [5]) proved a converse inequality in the time-
reversible case. Adapted to our case (and improving the constant a little),
this implies:
Theorem 5.2 If the graph G is undirected, then

Tmix < 4Ttv.

In the general case, the following inequality can be proved (the "winning
streak" graph shows that it is tight).

Theorem 5.3
Tmix < O(log(l/7r))Ttv.

Now we turn to the issue of how to implement optimal or near-optimal
rules, to generate a node from the stationary distribution. It turns out that
there exist simple, easily implementable rules that give a good approximation
of the stationary distribution, while having a mean length only a constant
factor more than the mixing time.
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The uniform averaging rule $ = $t (t > 0) is defined as follows: choose a
random integer Y uniformly from the interval 0 < Z < t — 1, and stop after
Y steps. (To describe this as a stopping rule: stop after the j-th. step with
probability l/(i - j ) , j = 0, . . . , t - l ).

Theorem 5.4 Let Y be chosen uniformly from {0, . . . , £ } . Then for any
starting distribution a, any 0 < c < 1, and any A CV,

In particular, ift> (l/e)Tmix then

\<rY(A)-ir(A)\<s.

The contents of this (rather simple) theorem is that the averaging rule
does as well as any sophisticated stopping rule, at least up to an arbitrarily
small error and a constant factor in the running time. To illustrate how an
"arbitrary" stopping rule can be related to the averaging rule, we sketch the
proof.

Let \P be an optimal stopping rule from a to TT. Consider the following
rule: follow ^ until it stops at v*, then generate Z £ {0, . . . , t — 1} uniformly
and independently from the previous walk, and walk Y more steps. Since \t
stops with a node from the stationary distribution, a^+t is also stationary for
every t > 0 and hence so is cr*+z.

On the other hand, let Y = $ + Z (mod t), then Y is uniformly distributed
over {0, . . . , t — 1}, and so

aj = Pv{vY = i) > PT(V*+Z = i) - Pr(vPsi+z = i, vz ± i)

Hence for every set A of states,

7T[A) — a [A) = 7r[A) — a {A)-trr[v G A,

Now for any fixed value of \P, the probability that $ + Z > t is at most
and hence

Pr(* + Z > t) < E(*/0 = H^v\

which proves the theorem.
Theorem 5.4 only asserts closeness in the total variation distance, not

pointwise. Also, one would like that the error diminishes faster: it should be
enough to choose t proportional to log(l/e) rather than proportional to 1/e.
We can give a slightly more complicated rule that satisfies these requirements.
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Choose M = [loge], and let Y be the sum of M independent random vari-
ables, each being uniform over {0,.. . , [ST^x] }. Clearly EY « 4Tmix log(l/e).
Furthermore, stopping after Y steps gives a distribution very close to the sta-
tionary:

Theorem 5.5 For any starting distribution a,

aY >(l-e)ir.

(One little drawback in comparison with Theorem 5.4: we have to use
the worst-case bound on the mixing time, not the access time from the given
starting distribution.)

Blind rules. The averaging rules discussed above have an important prop-
erty, which makes them practical but, at the same time, somewhat contrary
to the philosophy of intelligent stopping rules: they don't look where they
are. More exactly, let us call a stopping rule T blind if T(w) depends only on
the length of the walk it;. Another way of describing a blind rule is to choose
a non-negative integer Y from some specific distribution, and stop after Y
steps.

The simplest blind stopping rule is the stopping rule used most often:
"stop after t steps." Several other practical methods to generate elements
from the stationary distribution (approximately) can also be viewed as blind
rules. Stopping a lazy or continuous time random walk after a fixed number
of steps corresponds to a blind rule for the original (discrete time) walk.

Our results above say that if we only want approximate mixing, then blind
rules do essentially as well as any more sophisticated rule. The situation is
very different if we want exact sampling. One cannot generate any distri-
bution by a blind stopping rule; for example, starting from the stationary
distribution, every blind rule generates the stationary distribution itself. We
shall restrict our attention to stopping rules generating the stationary distri-
bution (or at least approximations of it). Even this distribution cannot always
be generated by a blind rule. The next theorem gives a characterization for
the existence of a blind stopping rule for the stationary distribution.

Theorem 5.6 Let A1 ? . . . , An be the eigenvalues of M, \\ = \.

(a) If Ajt is positive real for some k > 2, then there exists a node s from
which no blind stopping rule can generate TT.

(b) If every \k, k > 2, is either non-real, negative or zero, then from any
starting distribution a there is a finite blind stopping rule that generates IT.

Interestingly, the condition formulated in the theorem is most restrictive
for undirected graphs; then all the eigenvalues are real, and typically many of
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them are positive. If there are no multiple edges, only complete multipartite
graphs give a spectrum with just one positive eigenvalue.

Almost blind rules for an unknown graph. Suppose that we do a random
walk on a digraph that we do not know. We are told the number of vertices,
and we are able to recognize a node if we have seen it before. It is easy to argue
that no matter how long we observe the walk, it is impossible to compute
the stationary distribution exactly. Thus it is a bit surprising that one can
achieve it exactly. Nonetheless that is what is done by Asmussen, Glynn and
Thorisson [9]: they give a stopping rule where the probability of stopping
after a walk woWiw2... depends only on the repetition pattern of nodes,
and which produces a node from exactly the stationary distribution. The
algorithm employed is complex and the expected number of steps required
appears to be super-polynomial in the maximum hitting time H(G), although
no bound or estimate is given in the paper.

Note the emphasis on "exactly". If we only require that the last node be
approximately from the stationary distribution, then a natural thing to do is
to stop, say, after Y steps, where Y is chosen, say, randomly and uniformly
from a sufficiently long interval. It is not at all obvious how to know (just by
observing the walk) how long is "sufficiently long". But Aldous [7] describes a
way to do so, and comes within total variation e of the stationary distribution
in time polynomial in l/e and linear in the maximum hitting time of the
graph.

In [39] we describe a simple stopping rule which can reach the stationary
distribution exactly, in any strongly connected digraph G. The rule requires
only coin-flips for its randomization and can even be made deterministic un-
less the digraph is a single cycle (possibly with multiple edges). The expected
number of steps is bounded by a polynomial in the maximum hitting time
H(G) of the graph.

The idea of the construction is to use formula (2) for the stationary distri-
bution. Choose a node v uniformly from the set of all nodes. While observing
the walk, mark the first exit from each node other than v. The edges we mark
can be viewed as independent choices of one edge out of each node different
from v. Hence given v = i, the probability that the n — 1 edges we marked
form a spanning tree is A{ \\ -^ d{ So by (2), the probability of getting an
in-arborescence rooted at i, conditional on getting an arborescence at all, is
jUSt 7Ti.

Thus if the edges of first exits form an arborescence, we can walk until we
hit v and stop; else, we start again.

Unfortunately, the probability of getting an arborescence may be expo-
nentially small, which would result in an exponentially long algorithm (in
expected time). The trick is to replace the digraph by one whose adjacency
matrix is a sufficiently large power of I + A] we omit the details here.
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Other mixing measures. Theorems 5.1 and 5.2, and, in a weaker way, 5.3
are special cases of a surprising phenomenon, first explored by Aldous ([5],
[6]). Mixing parameters of a random walk, that are only loosely related by
their definition, are often very close. In fact, there seem to be three groups
of parameters; within each group, any two are within (reasonably small)
absolute constant factors to each other. For the time-reversible case (where
these results are due to Aldous), the number of groups reduces to 2. We give
a little "random walk" through some of these mixing measures.

Hitting times to sets. Let S denote a set of nodes and let H(i, S) denote
the expected number of steps before a random walk starting at i hits the set
S. Of course, this number is larger if S is smaller, so it makes sense to scale
by the stationary probability of S and define Tset — maxsey,scv n{S)H(s, S).
The upper bound in the following theorem is (in a somewhat different setting)
due to Aldous, who also proved the lower bound for undirected graphs. The
lower bound follows by an analysis of the shopping rule.

Theorem 5.7

Tr\ ty — s e t — ^"*tv#

We remark that sometimes the following upper bound may be stronger:

-*set < -*mix

(but here a reverse inequality can only be claimed in the undirected case).

Forget time and reset time. From the point of view of statistics, the
following measure of mixing is important. The "forget time" Tforget of a
random walk is defined as the minimum mean length of any stopping rule
that yields a distribution r from the worst-case starting distribution for r. In
other words,

f̂orget = minmax#(<7, r) = min max iJ(s,r)

(since the worst starting distribution for any given target distribution r is
clearly concentrated on a single node). This notion is central to the modern
theory of Harris-recurrent chains; see e.g. [8].

In applications to sampling algorithms, we almost always have to draw
repeated samples; are later samples cheaper than the first sample? More
exactly, suppose that we have a node j from the stationary distribution; how
long do we have to walk to generate another node, also from the stationary
distribution, independent of the first? It is clear that the optimum stopping
rule for this task is to follow an optimal stopping rule from j to the stationary
distribution; so this stopping rule has mean length
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which we call the reset time of the random walk. Trivially, TreSet < Înix- The
following result is proved in [40].

Theorem 5.8 If the graph is undirected, then Tforget = Preset-

In the case of directed graphs, these two values may be arbitrarily far
apart. But the theorem can be generalized to arbitrary digraphs in the form
of an explicit formula for the forget time:

Theorem 5.9 For every digraph,

(iJ) - ^TT^TT, j).

(H(TT,J) on the right hand side could be replaced by H(k,j) with any k G V
by (5)0

Using this formula, one can prove the following inequalities (for the case
of undirected graphs, they were proved by Aldous [5]).

Theorem 5.10 For every digraph,

Tset < 7forget < 6Ttv.

(Hence (l/10)Ttv < Tforget < 6Ttv.) We conjecture that there is a constant
c such that for any digraph, Tmix < cTreSet-

Maximum time and pointwise mixing. We have seen that the threshold
rule was also optimal from the point of view that it minimizes the maximum
number of steps needed to achieve the target distribution. If the target distri-
bution is the stationary distribution, then we denote this maximum by Tm&x.
This value may be quite different from the mean length of optimal stopping
rules, even for undirected graphs. For example, let G be K^ with TV loops
added on one of the nodes a single loop added on the other. It is easy to com-
pute that Tmix = (2N + 2)/(N + 3) « 2, while (starting from the node with
one loop), we need about log N steps to decrease the probability of staying
there to the stationary value 2/(N + 3). Thus Tmax « log N.

A little unexpectedly, this value is also tied to mixing properties of
the walk. Suppose that we want to generate any distribution r such that
(9/10)TTZ < rt- < (10/9)TT;. If we allow an arbitrary stopping rule, then the
time needed for this is clearly between Tfui and T^x, and since these two
values are close by Theorem 5.1, we don't get anything new.

However, the situation changes if we use a blind rule. Let Tpw denote
the smallest T such that there exists a blind rule with maximum length T
that produces (from every starting distribution) a distribution r such that
(9/10)TTZ- < n < (10/9)TTZ.
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Theorem 5.11
max _ ^ilpw

In particular, it follows that if we take, say, the uniform averaging rule
then we have to average over the first fi(Tmax) steps to achieve pointwise
mixing (while in the filling sense, we only need C^Tmix) steps, and to achieve
mixing in total variation distance, we only need 0(Tforget) steps.

We conjecture that a reverse inequality also holds, in fact, averaging over
0(Tmax) steps yields a distribution that is pointwise close to the stationary.

6 Chip-firing
Let G be a strongly connected directed graph (many of the results below
extend to general digraphs, but for simplicity of presentation we restrict our
attention to the strongly connected case). Let us place a pile of S{ chips on
each node i of G. Recall that firing a node means to move one chip from this
node to each of its children. Clearly a node can be fired iff st > df. If no node
can be fired, we call the vector s = (si) a terminal configuration. A (finite
or infinite) sequence of firings is called a chip-firing game. The sequence of
points fired is called the record of the game. We denote by Cs the set of of all
records of finite games starting from the same initial configuration s, where
the digraph G = (V,E) is fixed. For a £ £ s , we denote by \a\ the length of
a. The multiset of nodes occuring in a is called the score of a.

The following properties of C have been proved in [13] for the undirected
case, and extended to the directed case in [14]; they are also closely related
to properties of abelian sandpiles proved by Dhar [20].

Proposition 6.1 The set Cs of records of chip-firing games starting with the
same configuration s has the following properties:

(a) Left-hereditary: whenever it contains a string, it contains all initial
segments of the string.

(b) Permutable: whenever a,(l £ Cs have the same score, and ax £ Cs

for some x £ V, we also have fix £ Cs.

(c) Locally free: whenever ax £ Cs and ay £ Cs for two distinct nodes
X->V £ V> we a^so have axy £ Cs.

It turns out that these three simple properties have rather strong conse-
quences. For example, it implies the following "antimatroid exchange prop-
erty" (cf Korte, Lovasz and Schrader [34]):

Proposition 6.2 If a, (3 £ C then there exists a subword a1 of a such that
fla' £ £ and the multiplicity of any v in /3a' is the maximum of its multiplic-
ities in a and /3.
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The following theorem summarizes some of the results from [13], obtained
using the above properties. It asserts that chip-firing games have a certain
"Church-Rosser" property.

Theorem 6.3 For a given directed graph G and initial distribution s of chips,
either every chip-firing game can be continued indefinitely, or every game
terminates after the same number of moves with the same terminal position.
The number of times a given node is fired is the same in every terminating
game. If a game is infinite, then every node gets fired infinitely often.

In the case of undirected graphs, Tardos [48] proved a strong converse of
the last assertion:

L e m m a 6.4 If a chip-firing game on an undirected graph is finite, then there
is a node that is never fired.

This assertion is analogous to Theorem 4.5 for stopping rules; however,
it does not remain true for general digraphs. It was shown in [14] that it
remains true for eulerian digraphs, and that it can be extended to digraphs
in a different way (see Lemma 6.6 below).

Given a graph, we may ask: what is the minimum number of chips that
allows an infinite game? What is the maximum number of chips that allows
a finite game? In [13] it was shown that for an undirected graph with n nodes
and m edges, more than 2m — n chips guarantees that the game is infinite;
fewer than m chips guarantee that the game is finite; for every number N
of chips with m < N < 2m — n, there are initial positions that lead to an
infinite game and initial positions that lead to a finite game.

For directed graphs, the second question can still be answered trivially: if
G is a directed graph with n nodes and m edges, and we have N > m — n
chips, then the game is infinite (there is always a node that can be fired, by
the pigeonhole principle), and N < n — m chips can be placed so that the
game terminates in 0 steps.

It is not known how to determine the minimum number of chips allowing
an infinite game on a general digraph. This is not just a function of the
number of nodes and edges. For eulerian digraphs, it was mentioned in a
remark added in proof to [14] that the minimum number of chips that can
start an infinite game is the edge-feedback number, i.e., the minimum number
of edges whose removal destroys all directed cycles. Moreover, the feedback
number is always a lower bound on the number of chips in an infinite game.

Chip conservation. A useful tool in the study of chip-firing games is the
following "chip conservation equation" from [13] (cf. Lemma 4.1). Let s be
the initial and t, the final configuration of a finite game, and let x, denote

https://doi.org/10.1017/CBO9780511662096.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511662096.007


Mixing of random walks and other diffusions on a graph 145

the number of times the node i is fired. Let a^ be the number of edges from
node i to node j . Then

Y^ djiXj - dtx% = U ~ Si. (13)
j

Let L G \RVxV be the matrix defined by

We call L the Laplacian of the digraph G. Note that LI = 0, so L is singular.
It is also well known that for strongly connected digraphs, the co-rank of L
is 1. Let v = (vi) denote the solution of L v = 0, scaled so that the V{ are
coprime integers. From the Frobenius-Perron theory it follows that we may
assume that v > 0. If G is an digraph (in particular, if G is an undirected
graph), then v = 1. The quantities \v\ := £ t u t and \\v\\ := Y^i^iVi play an
important role in chip-firing.

The Laplacian is also related to the transition probability matrix of the
random walk:

M = D-XL + I,

where D is the diagonal matrix with the outdegrees in the diagonal. It follows
that the stationary probabilities are given by

iw
It follows by (3) that the maximum hitting time can be estimated as follows:

H(G)<\\v\\J2-<n\\v\\. (14)

In terms of the Laplacian, equation (13) can be written as

LJx = t-s.

Period length. As a first application of this identity, we discuss periodic
games. More exactly, consider a period, i.e., a game that starts and ends with
the same configuration. Let x be its score vector; then

LJx = 0,

whence it follows that x = tv for some positive integer t. It is easy to see
that x = v can be realized: just place a very large number of chips on each
node, and fire each node i V{ times in any order. The conservation equation
implies that we return to the starting configuration.

A key property of the vector v is the following:
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L e m m a 6.5 Let a £ Cs. Let af be obtained by deleting the first V{ occur-
rences of node i in a (if i occurs fewer then V{ times, we delete all of its
occurrences). Then a1 is the record of a game from the same initial position.

This lemma (which is easy to prove by counting chips) has a number of
consequences. First, 6.2 implies that the deleted elements can be added to
a', and so we get a game that is a rearrangement of a but starts with ol.
From this it is easy to derive that if a configuration starts a periodic game, it
also starts one with period score v. We also get an extension of Lemma 6.4:

L e m m a 6.6 In every terminating game, there is a node i that is fired fewer
than Vi times.

From these considerations, one obtains:

Proposition 6.7 The minimum length of a period of any game on the graph
G is \v\, and the number of chips moved during a minimal period is \\v\\.

Game length. Deviating from earlier papers, we measure the length of a
game by the number of chip-motions (so the firing of a node of outdegree d
contributes d to the length). This is of course an upper bound on the number
of firings, and is never more than a factor of ra larger.

Tardos [48] proved that on an undirected graph, every terminating game
ends in a polynomial number of steps. We sketch a new proof based on the
conservation equation. Consider a game that terminates, and let Z{ be the
number of times node i is fired. Then we have

j

Here, by termination, Si < d{. We can rewrite this equation as

V ^ ! i ^Zj ^iZi — ^ "*" ^ ~ Si ^
j dj m m m m'

Thus the numbers diZi/m are the exit frequencies of a stopping rule from the
distribution defined by r, = (ti+di — Si)/m to ?r. By Lemma 6.4, the minimum
of these exit frequencies is 0, and hence the stopping rule is optimal. This
implies that

Hence we get:

Theorem 6.8 The number of chips moved during a terminating game on an
undirected graph G is at most
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Eriksson [28] showed that on a directed graph (even on a graph with all
but one edges undirected) a terminating game can be exponentially long.
It was proved in [14] that the maximum length of a terminating game can
exceed the period length by a polynomial factor only. It was conjectured that
a converse inequality, bounding the period length by a polynomial multiple
of the maximum game length, also holds. It turns out that this conjecture
is true, and in fact it follows quite simply using the conservation equation.
Results on random walks discussed above also yield an improvement in the
first direction.

Theorem 6.9 Let M denote the maximum number of chip-motions in a ter-
minating finite game. Then

\\v\\ — m < M < nm\\v\\.

Sketch of proof. 1. Consider a terminating game, and let p and q be the
beginning and terminating configurations of it. Obviously, \p\ = \q\ < m. Let
u be the score vector of the game. By Lemma 6.6, there is a node i such that
Ui < V{. Hence we can write u = tv + w, where 0 < t < 1 and min W{ = 0. By
the conservation equation, we have

and hence we also have

LJu = q-

L w = q — p.

Let TV denote the number of chips, then N < m—n since the game terminates.
We get that the numbers X{ = d^Wj/N are the exit frequencies of an optimum
stopping rule from (1/N)p to (1/N)q. This implies that

E
Thus by (14), the number of chips moved is

;,• < HI + NH(G) < nm\\v\

2. To prove the other inequality (and thereby verify a conjecture from
[14]), place d~ — 1 chips on node i. We claim that every game from this
starting position is finite; in fact, we claim that no node can be fired V{ times.
Assume that this is false, and consider the first step when a node i is fired
the Vi-th. time. Let y be the score vector up to and including this step, and
#, the configuration after this step. Then the conservation equation says:
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But here the left hand side is

which is a contradiction since <jt > 0.
Thus every game started from this position terminates. But with m — n

chips on board, the only terminating configuration is having df — 1 chips
on node i. Moreover, substitution into the chip conservation equation shows
that in order to get from d~ — 1 chips to df — 1 chips on each node, we have
to fire every node i exactly V{ — 1 times. Hence there is always a terminating
game of length

•
We have seen three relations between the three diffusion parameters we

considered: the maximum hitting time H(G), the period length ||v||, and the
maximum game length M. The last two are equal up to a polynomial factor,
while the first is at most this large.

The hitting time can be much smaller than the other two quantities. Con-
sider a 2-connected undirected graph G and orient one edge (leave the rest
two-way). Then one can argue that the hitting time remains polynomial; on
the other hand, the example of Eriksson mentioned above is of this type, and
here the game length and period length are exponentially large.

Algorithmic issues. Results mentioned above were used in [14] to give
an algorithm for checking whether a given position on an undirected graph
can be transformed to another given position by a sequence of firings. The
running time of the algorithm is polynomial in the period length ||v||, so in the
case of undirected graphs, it is polynomial in m. The idea is to use Lemma
6.6 in a manner similar to the proof of Theorem 6.9 to show that if there is
a sequence of chip-firings then there is one of length polynomial in ||v||, and
in fact the firing frequencies Z{ can be calculated by simple arithmetic. Then
one can show that any game with the additional restriction that no node % is
fired more than Z{ times, must terminate in the prescribed target position, or
else the target position is not reachable.

Unfortunately, no truly polynomial algorithm is known to decide the reach-
ability question. It is also not known how to decide in polynomial time
whether a given initial position starts a finite or infinite game.

These questions are quite interesting because chip-firing on a digraph may
be considered as a "totally asynchronous" distributed protocol (by Theorem
6.3). The comparison of the class of functions computable by such a protocol
with the class P seems both interesting and difficult.
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Avalanches. Let each node of a digraph represent a site where snow is
accumulating. One special node s is considered the "outside world". Once
the amount of snow on a site (other than s) surpasses a given threshold, the
site can "break", sending one unit of snow to each of its out-neighbors. This
may result in overloading some of the children of the node, and then these
nodes break etc. If the digraph is strongly connected (which we assume for
simplicity) then after a finite number of steps, no node will have too much
snow (except s, which cannot break), and the avalanche terminates.

To maintain the dynamics of the model, snow is supposed to fall on the
nodes. There are various ways to model this; simplest of these is to assume
that each node i gets a given a; amount of snow in unit time. We add snow
until some node reaches the breaking threshold and starts an avalanche again
(which happens so fast that no new snow falls during the avalanche).

The breaking threshold can be chosen, after some easy reductions, to be
the outdegree of the node; then the avalanche is just a chip-firing game (where
s is not allowed to be fired). But we can also include snow-fall in this model:
we connect s to node i by a; edges. Then a snowfall just corresponds to
firing node s. We assume that there is enough snow in s (all those oceans,
snow-caps etc) so that it can always be fired.

Thus a sequence of avalanche-snowfall-avalanche-snowfall-... is just an
infinite chip-firing game on the graph, with the additional restriction that
the special node s is only fired if no other node can be fired. We call such
a restricted chip-firing game an avalanche game. When an avalanche starts,
it consists of a sequence of firings which may happen in many ways, but the
length of the avalanche, the number of times a node is fired, as well as the
ending position are uniquely determined. The ending position of an avalanche
is called stable.

Consider a periodic avalanche game. The (stable) position immediately
before snowfall is called a recurrent position. A snowfall followed by an
avalanche leads to another recurrent position, and this defines a permuta-
tion of recurrent positions. Each cycle in this permutation corresponds to a
periodic avalanche game. The score vector of this game is an integer multiple
of the period vector v. It follows by an argument almost identical to the
second half of the proof of Theorem 6.9 that in fact we get the period vector.
Hence the number of recurrent positions in the cycle is vs. It follows that the
average length of an avalanche is

1 v-

independently of the cycle.
The conservation equation is very useful in the study of recurrent config-
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urations. Gabrielov ([31]) introduces the lattice

£ = {LJu:ue7Lv,us = 0}

The conservation equation implies that if a position p can be obtained from a
position q by a sequence of firings of nodes different from s, then p — q G C. It
is not difficult to prove that if two positions p and q satisfy p—qEC and pt-, qi
are large enough for all i =fi s, then there is a position that can be reached from
each of p and q. Hence the stable positions in which the avalanches starting
from p and q end are the same. It is also easy to see that this position is
recurrent. These considerations imply that every translated copy u + C of
the lattice C (with u G Z ) contains a unique recurrent position. Thus the
number of recurrent positions is the same as the number of cosets of C in 7L ,
which is det(£). Hence an easy computation gives the following interesting
theorem of Dhar ([20]):

Theorem 6.10 The number of recurrent positions is det(Lf), where V is the
matrix obtained from L by deleting the row and column corresponding to the
node s.

The reader may recognize that this determinant is just the number of
spanning arborescences of G rooted at s, by the "Matrix-Tree Theorem" of
Tutte. This relation is explained and exploited in [30], [31].

There are many characterizations of recurrent positions. For example, a
position p is recurrent if and only if there exists a position q with pi < qi for
each node i ^ s such that the avalanche starting from q ends with p.

Speer [46] gives a characterization that gives a way to test for recurrence.
To describe this, we introduce a version of the period vector. We say that
a vector v G Z+ is reducing, if vs — 0 and starting with TV chips on each
node (where N is a large integer), and firing each node i V{ times, we obtain
a position with at most N chips on each node i ^ s. It is easy to see that
a reducing vector must satisfy V{ > 0 for i ^ s. So we may fire every node
once right away. This may produce a position with more than N chips on
some node; this node must be fired at least twice during the game, so we may
as well fire it right away, etc. This way we construct a "canonical" reducing
vector v such that v < v for every reducing vector v.

Now one can prove that following analogue of Lemma 6.5:

Lemma 6.11 Let a G Cv, and assume that a does not contain s. Let a! be
obtained by deleting the first V{ occurrences of node i from a (if i occurs fewer
then Vi times, we delete all of its occurrences). Then a' G Cv.

Corollary 6.12 A stable configuration p is recurrent if and only if the
avalanche starting from p — L v ends with p.
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