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Numerical simulations are conducted to investigate particle suspension and deposition
within turbidity currents. Utilizing Lagrangian particle tracking and a discrete element
model, our numerical approach enables a detailed examination of autosuspension,
deposition and bulk behaviours of turbidity current. We specifically focus on flow regimes
where particle settling and buoyancy-induced hydrodynamics play equally important roles.
Our discussion is divided into three parts. Firstly, we examine the main body of the
current formed by suspended particles, revealing a temporal evolution consisting of initial
slumping, propagation and dissipation stages. Our particle calculation allows for the
tracking of autosuspended particles, enabling a deeper understanding of the connection
between autosuspension and current propagation through energy budget analysis. In the
second part, we delve into particle deposition, highlighting transverse and longitudinal
variations. Transverse variations arise from lobe-and-cleft (LC) flow features, while
longitudinal variations result from vortex detachment, particularly notable with large-sized
particles. We observe that as particle size increases, leading to a particle Stokes number
greater than 0.1, rapid particle settling suppresses the LC flow structure, resulting in wider
lobes at the deposition height. Lastly, we propose a new scaling law for the propagation
speed and current length. Our simulation results demonstrate close agreement with this
new scaling law, providing valuable insights into turbidity current dynamics.

Key words: gravity currents, sediment transport, particle/fluid flow

1. Introduction

Gravity currents induced by density differences in fluids are prevalent in various
environmental and industrial flows. Under specific conditions, such currents can arise due
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to disparities in bulk density caused by suspended fine particles, commonly referred to as
turbidity currents in geophysical contexts. Turbidity currents play a crucial role in sediment
transport in the ocean, thereby significantly influencing the underwater environment
(Milliman & Syvitski 1992; Meiburg & Kneller 2010). Consequently, numerous studies
have been undertaken to investigate turbidity currents through laboratory experiments
(Sequeiros, Mosquera & Pedocchi 2018; Ouillon, Meiburg & Sutherland 2019; Lippert
& Woods 2020; Hitomi et al. 2021; Gadal et al. 2023), field observation (Warrick &
Milliman 2003; Dadson et al. 2005) and numerical simulations (Necker et al. 2002;
Cantero, Balachandar & Garcia 2008b; El-Gawad et al. 2012; Chen, Geyer & Hsu 2013;
Nasr-Azadani & Meiburg 2014; Espath et al. 2015; Tseng & Chou 2018). Studies in the
numerical simulation category are typically conducted to examine large-scale dynamics
using circulation models (El-Gawad et al. 2012; Chen et al. 2013; Tseng & Chou 2018) or
to explore detailed flow physics using high-resolution computational fluid dynamics (CFD)
solvers, such as direct numerical simulation (DNS) or large eddy simulation (Necker et al.
2002; Cantero et al. 2008b; El-Gawad et al. 2012; Nasr-Azadani & Meiburg 2014; Espath
et al. 2015). While it typically requires less parameterization for computing the fluid phase,
the second methodology enables investigation into detailed physics. However, there exists
a scale gap between field observations and what can be resolved by high-resolution CFD
tools. The CFD studies usually aim to quantify specific dynamics in non-dimensional
parameter spaces, allowing findings to be scaled up to more realistic scenarios. In the
subsequent sections, we provide a survey of some important works in this category.

An early study by Necker et al. (2002) was among the first to utilize a high-resolution
flow solver to investigate turbidity currents in a lock-exchange configuration. By
assuming inertialess particles in dilute suspension, the authors were able to model the
transport of the particle concentration field using a single-phase scalar transport model.
Incorporating this model with DNS enabled a detailed examination of flow structures,
particle resuspension and deposition within turbidity currents. Necker et al. (2002)
also compared two-dimensional and three-dimensional simulation results, highlighting
pronounced differences between the two strategies over a long time evolution. In a
subsequent study employing a similar simulation strategy in a fully developed channel
flow, Cantero et al. (2008a) revealed intriguing results regarding self-stratification
manifested through Reynolds-averaged sediment concentration, which led to turbulence
suppression and flow relaminarization near the bottom. The authors proposed a criterion
for identifying this flow regime based on an appropriately defined settling speed of
particles. This issue of turbulence suppression was then further investigated in subsequent
studies by the same group (Cantero et al. 2008a; Shringarpure, Cantero & Balachandar
2012; Cantero, Shringarpure & Balachandar 2012). Unlike the aforementioned studies
modelling inertialess particles, Cantero et al. (2008b), drawing on scaling arguments from
Ferry & Balachandar (2001), introduced a more advanced transport model accounting for
particle inertia due to drag. Their two-dimensional simulation results using this new model
revealed changes in the spatial distribution of particles in the current due to particle–vortex
interaction, including phenomena such as turbophoresis and preferential concentration.
Moving beyond studies focusing on turbidity currents over flat channels, Nasr-Azadani
& Meiburg (2014) conducted numerical investigations of currents interacting with the
idealized bottom topography, i.e. a three-dimensional Gaussian bump. In addition to
revealing changes in fine-scale flow structures induced by the bump, they found that
the smaller bump resulted in faster current speeds by increasing the current’s height,
while the taller bump slowed the current down due to more rigorous three-dimensional
motion. Another interesting feature of turbidity currents, or gravity currents more
generally, is the lobe-and-cleft (LC) structure at the current’s front, documented in
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numerous three-dimensional high-resolution numerical results, including those mentioned
previously. Through highly resolved numerical simulations, Espath et al. (2015) provided
deposition maps in response to the LC structure and demonstrated that this pattern can
also be found at deposited particles.

All the aforementioned numerical studies computed the transport of particle
concentration by solving the scalar transport equation, rather than tracking the motion
of individual particles. This approach allows for easy incorporation with the original DNS
code and facilitates fast computation. However, there are drawbacks associated with this
strategy. For example, while suspended particles with sizes ranging from d0 ∼ O(1 μm) to
O(100 μm) where d0 is the particle diameter, molecular diffusion is infinitesimally small
and negligible. Nevertheless, numerical diffusion or artificially added diffusivity in the
numerical simulation is unavoidable. Another issue arises at the bottom where particles
deposit. In fact, for the scalar transport model, deposition results in a slight change in
domain height. Unless one employs a dynamic mesh technique, such as those implemented
in Chou & Fringer (2010) and Chou et al. (2019), accurate representation of the deposition
of particle concentration becomes challenging. In this regard, these studies have utilized
the penetration boundary condition, which allows the concentration flux of deposition
to pass through the bottom boundary. However, this artificial boundary condition could
lead to incorrect prediction of deposition, especially for large-sized, rapidly depositing
particles. Consequently, most numerical studies have focused on suspension-dominated
fine particles.

Recently, the successful integration of the discrete element model (DEM) and CFD,
known as CFD-DEM (Kloss et al. 2012; Blais et al. 2016; Yang et al. 2018), has enabled
the simulation of turbidity currents by tracking the motion of individual particles. This
advancement holds promise for producing results closer to real-world situations. In a
recent study by Xie et al. (2023), a CFD-DEM model incorporating LIGGGHTS and
OpenFoam was utilized to investigate turbidity currents propagating down an inclined
slope, with a specific focus on autosuspension. The study was able to discern the
trajectory of autosuspended particles at the front of the current. Importantly, this approach
circumvented the aforementioned issues associated with the scalar transport model and
afforded a more comprehensive consideration of hydrodynamic forces acting on particles.
The study uncovered significant characteristics of autosuspension at the current’s front.
However, due to the computationally intensive nature of tracking massive numbers of
particles, the study was limited to lower Reynolds numbers (approximately 50), in
contrast to previous studies employing scalar transport models. Consequently, for more
rigorous flow regimes, such as those with Reynolds numbers typically of O(1000) in the
aforementioned studies, a more detailed examination of particle–fluid interactions within
turbidity currents remains necessary.

This study presents a series of numerical investigations of turbidity currents, with a
particular focus on particle suspension and deposition. We are specifically interested
in flow regimes akin to those observed in previous studies (i.e. Reynolds number
∼O(1000)). To achieve a more precise modelling of particle motion, we employ a
strategy similar to CFD-DEM. The fast particle tracking scheme (Chou, Gu & Shao
2015) employed in our numerical model allows for the handling of a large number of
particles within fine-resolution computational domains. Rather than focusing solely on the
suspension-dominant regime for fine particles, our analyses delve into flow regimes where
deposition plays a significant role. Through detailed numerical investigations utilizing
particle tracking and DEM, this study aims to provide deeper insights into the dynamics
of particle-laden turbidity currents across both suspension- and deposition-dominant
regimes.
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After introducing the methodology in § 2, the remainder of the paper is structured to
achieve three primary goals. Firstly, we elucidate how flow structures of turbidity currents
are influenced by varying particle sizes, thereby affecting particle suspension. This is
discussed in § 3, followed by quantitative analyses for autosuspension in § 3.2. Secondly,
we explore patterns of particle deposition in response to different flow features and particle
sizes. This is detailed in § 4, where we elucidate the mechanisms leading to transverse and
longitudinal variations in deposition height. Lastly, we propose a new scaling law to predict
the bulk behaviour of the current, presented in § 5.

2. Methods

2.1. Governing equations for the particle phase
To describe particle motion, the momentum of a spherical particle with the diameter d0
and mass mp is described as

mp
dup

dt
= α3πd0μ(u|p − up) + mf

1
2

(
Du
Dt

∣∣∣∣
p
− dup

dt

)
− Vp∇P + (mp − mf )g

+ 0.51Jπd2
0

√
μρf

|ω| (u|p − up) × ω + F , (2.1)

where α is a coefficient to correct the drag accounting for finite Reynolds number and
concentration, d/dt is the material derivative of the particle moving with velocity up, μ is
the viscosity of the fluid phase, u is the velocity of the fluid phase, mf is the mass of the
fluid, Vp is the volume of the particle, P is the pressure, g is the gravitational acceleration,
J is a varying coefficient depending on the flow field, flow property and particle size,
ρf is the density of the fluid, ω is the vorticity in the fluid phase, F is the collisional
force and the notation |p indicates that the quantity is evaluated at the particle location
xp. The terms in the right-hand side of (2.1) are (from left to right) drag, added mass,
pressure, buoyant force, lift force and collisional force. In this study, we do not consider
the Basset history force, which requires considerable computational effort but makes an
insignificant difference in the numerical cases of the present study. This agrees with the
previous studies by Xie et al. (2023), who also suggested to neglect the history effect
when modelling turbidity currents. For particle drag, we adopt the formulation proposed
by Gidaspow (1994), for which the correction coefficient α in (2.1) is written as

α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 − φ

[
1 + 0.15

(
Rep

1 − φ

)0.687
]

for
Rep

1 − φ
< 1000,

0.44
Rep

24
for

Rep

1 − φ
≥ 1000,

(2.2)

where

Rep = ρf |(u|p − up)|d0

μ
(2.3)

is the particle Reynolds number, and φ is the volume fraction of particles. It should be
noted that although the whole regime in (2.2) is considered in our numerical flow solver,
only the first criterion is met in the present simulation cases. For particle lift, we consider
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the Saffman lift force (Saffman 1965), in which, following McLaughlin (1991) and Mei
(1992), the function J is expressed as

J = 0.3

{
1 + tanh

[
5
2

(
log10

√
ω∗

Rep
+ 0.191

)]}{
2
3

+ tanh

[
6

√
ω∗

Rep

]}
, (2.4)

where ω∗ = |ω|d0/|(u|p − up)|.
Particle collision is a result of normal and tangential collisions. The collisional force on

the particle k when it comes with particle l is written as

F kl = F n,kl + F t,kl, (2.5)

where the subscript n and t indicate normal and tangential directions, respectively. In the
present study, the soft-sphere collision model by Cundall & Strack (1979) is used to model
particle–particle and particle–wall collisions, which is expressed as

F n,kl =
{

−γ δkl,nnkl − ξukl,n if dkl < rk + rl + λ,
0 otherwise,

(2.6)

where γ is a stiffness parameter, ξ is the damping parameter, dkl is the distance between
the centres of the particles, δkl is the overlap between particles, nkl is the unit vector from
the centre of particle k to that of particle l, λ is the force range, and rk and rl are the radii
of particles k and l, respectively. The relative normal velocity ukl is given by

ukl = [(uk − ul) · nkl]nkl. (2.7)

Following Capecelatro & Desjardins (2013), we employ a model for the damping
parameter with the coefficient of restitution e (0 < e < 1) and the effective mass mp,kl =
(1/mp,k + 1/mp,l)

−1, which is expressed as

ξ = −2 ln e
√mp,klγ√
π2 + (ln e)2

. (2.8)

An expression of the stiffness parameter γ related to the collision time τcol is given by

γ = mp,kl

τ 2
col

(π2 + ln(e)2). (2.9)

In this study, we set e = 0.97 following Chang et al. (2023) and τcol as 15 times
the computational time step to ensure the proper resolution of collision. For tangential
collision, the collision force is described as

F kl,t = min(|F kl,t,LS|, μc|F kl,n|)et, (2.10)

where μc is the friction coefficient, et is the unit vector of the tangential direction of the
two colliding particles and

F kl,t,LS = −γtδkl,t − ξtukl,t. (2.11)

Here, the friction coefficient μc can represent either static friction μs or kinetic friction
μk depending on the criteria proposed by Biegert, Vowinckel & Meiburg (2017).
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2.2. Governing equations for the fluid phase
We focus on suspensions of spherical rigid particles in an incompressible fluid, for which
conservation of momentum for the fluid phase can be described as

∂

∂t
[(1 − φ)u] + ∇ · [(1 − φ)uu] = −(1 − φ)∇P − f p + ∇ · T vis, (2.12)

where φ is the volume fraction of the particle phase, u is the velocity of the fluid, P is the
dynamic pressure, f p is the momentum feedback of the particle phase to the fluid phase
and T vis is the bulk viscous stress modelled as

T vis = (1 − φ)ν[∇u + (∇u)T], (2.13)

where ν is the kinematic viscosity. Within the control volume (i.e. the grid cell), the
momentum feedback is calculated by

fp =
Nc∑
j=1

sφp,j

[
αj3πd0,jμ

mp
(u|p,j − up,j) + 1

2s

(
Du
Dt

∣∣∣∣
p,j

− dup,j

dt

)

+
0.51Jjπd2

0,j

mp

√
μρf

|ω| (u|p,j − up,j) × ω

]
, (2.14)

where j is the particle index, s = mp/mf is the specific weight and Nc is the number of
particles within the control volume.

2.3. Link to the scalar transport model and scaling
Considering the gravity dominant cases (i.e. Du/Dt ∼ dup/dt � g) and small particles,
(2.1) for a single particle (i.e. φ = 0 and F = 0) can be easily reduced to a drag-dominant
equilibrium-state approximation

up = u|p + τpg′

= u|p − wse3, (2.15)

where

τp = sd2
0

18ν
(2.16)

is the particle relaxation time, g′ = (1 − 1/s)g is the reduced gravitational acceleration,
ws = τpg′ is the settling velocity of the particle and e3 is the unit direction vector in the
z-direction, which is defined as the direction of the gravitational force. To reach (2.15), we
have also assumed α = 1 (i.e. Rep � 1) and we drop the term whose order of magnitude
is lower than O(d0) for those involving the velocity difference between the two phases.

Substituting the first identity of (2.15) for a number of particles resulting in a volume
concentration φ into (2.12) and assuming that φ � 1 for the case of dilute suspension,
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under the Boussinesq approximation, the momentum equation for the fluid phase can be
rewritten as

∂u
∂t

+ ∇ · (uu) = −∇P + φg′ + ν∇2u. (2.17)

Moreover, according to the second identity of (2.15), along with the particle diffusion,
transport of particle concentration φ can be modelled with

∂φ

∂t
+ ∇ · (uφ) + ws

∂φ

∂z
= κs∇2φ, (2.18)

where κs is the particle diffusivity arising from particle–particle and particle–
hydrodynamics interactions (e.g. Davis 1996; Segre et al. 2001). Equations (2.17) and
(2.18) are the simplified governing equations frequently used for modelling sediment
transport in both laboratory- and field-scale cases. As an in-depth discussion on different
modelling strategies is beyond the scope of the present study, readers may refer to Shao,
Hung & Chou (2017) for more detailed explanations about the relationship between
the Euler–Lagrange formulation and the traditional scalar transport model. Additionally,
readers can refer to earlier studies by Ferry & Balachandar (2001), Cantero et al. (2008b)
or Chou, Wu & Shih (2010) on non-Equilibrium sediment transport modelling for a more
detailed derivation on the connections between different modelling stratifies for sediment
transport.

In this approximation, the momentum feedback of particles to the bulk flow becomes
a buoyant force φg′. Therefore, using the initial height of the particle slump L0,z as the
characteristic length scale and initial particle concentration φ0, one may define a buoyancy
velocity scale

U =
√

1
2 L0,zφ0g′, (2.19)

where g′ = |g′|. A time scale of the bulk flow can be thus defined as

Tf = L0,z

U
. (2.20)

For a single particle, the buoyancy force per mass is g′, such that one may define a
buoyancy time scale for individual particles as

Tb = U
g′ . (2.21)

Using (2.19) and (2.20) as scaling parameters and dropping the particle collision term for
the dilute suspension regime, rearrangement of (2.1) yields

φ0

2

d∗u∗
p

d∗t∗
= α

u∗|p − u∗
p

St
+ φ0

4s

(
D∗u∗

D∗t∗

∣∣∣∣
p
− d∗up

d∗t∗

)
− φ0

2s
∇∗P∗ − e3

+ CLTb(u∗|p − u∗
p) × ω

|ω| , (2.22)

where the superscript ∗ denotes the dimensionless quantities, CL = 3.06J
√

ν|ω|(sd0)
−1 is

the lift coefficient, and

St = τp

Tb
(2.23)

is the Stokes number, which is also equivalent to the dimensionless settling speed,
w∗

s = ws/U. Equation (2.22) shows that in the dilute suspension regime where φ0 � 1
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and α ∼ 1, all the transient terms become negligible, and only the lift force causes the
deviation of the particle from its drag state (2.15). From (2.22) and the definition of CL,
the ratio between the drag and lift can be found as

drag
lift

= 5.88
s

Jd0

√
ν

|ω| . (2.24)

To obtain an estimation of the magnitude in (2.24) for suspension in water in this study,
substitution of a reference value J = 2.255 (McLaughlin 1991), the specific weight s =
2.65, the maximum particle size d0 = 99 μm and |ω| = 30 s−1, which is approximately
the maximum value of the vorticity in the present simulation cases, (2.24) gives a
magnitude of O(10) for the ratio between the drag and lift. This scaling analysis shows
that even though more complete hydrodynamic interactions between the particle and fluid
phases are considered in the present study, only the drag and buoyancy force dominate
particle motion, making (2.15) valid in the suspension regime.

2.4. Numerical methods
Calculations of particle momentum and movement are implemented in an incompressible
flow solver originally developed by Zang, Street & Koseff (1994) and then parallelized
by Cui (1999). In this code, the governing equations are discretized using a finite-volume
method on non-staggered grids. All spatial derivatives except the convective terms are
discretized with second-order central differences. The convective terms are discretized
using a variation of QUICK (Leonard 1979; Perng & Street 1989). The second-order
Crank–Nicolson scheme is used for the time advancement of the diagonal viscous terms,
and the second-order Adams–Bashforth method is used for all others. For the particle
phase, the third-order Runge–Kutta method is used for the time advancement of particle
motion. The original flow solver has been successfully applied to simulations of numerous
flow problems (e.g. Zang et al. 1994; Zang & Street 1995; Cui & Street 2001; Fringer
& Street 2003; Chou & Fringer 2008). More recently, the version along with a fast
point-particle tracking method was developed by Chou et al. (2015), which was then
applied to study convective sedimentation (Chou & Shao 2016; Shao et al. 2017), particle
segregation (Lai, Lin & Chou 2023) and direct energy deposition (Chou, Mai & Tseng
2021). In this flow solver, the added mass effect and pressure coupling between the particle
and fluid phases are treated implicitly. Details of the implementation for the calculation of
particles can be found in Chou et al. (2015).

2.5. Simulation set-up
Simulations were conducted by releasing a fixed-sized particle-laden fluid column in a
three-dimensional rectangular domain, as schematically shown in figure 1. In this study,
we use the initial height of the particle-laden fluid column, L0,z = 0.05 m, to normalize all
the spatial dimensions. With the gravitational force acting in the z-direction, the size of the
initial size of the particle-laden fluid column is given by L0,x × L0,y × L0,z = 0.4 × 2 × 1,
and the simulation domain is given by Lx × Ly × Lz = 6 × 2 × 1.5 with a grid resolution
of 1152 × 384 × 288. The periodic boundary condition was applied to the boundaries
in the y-direction. The no-slip boundary condition was applied to the boundaries at the
bottom and two ends in the x-direction, while the free-slip was applied to the top boundary.
We used three different initial particle concentrations, φ0 = 0.005, 0.01 and 0.02 (in
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z y

x
Ly, L0,y

L0,z

L0,x
Lx

Lz

Figure 1. Schematic showing the domain configuration of the present simulation. The grey shaded area
represents the initial particle-laden region.

volume fraction), with six different particle diameters d0 = 53, 65, 75, 84, 99, 112 μm.
The initial particle concentrations result in the Grashof number,

Gr =
(

UL0,z/2
ν

)2

, (2.25)

ranging from 1 × 106 to 5 × 106 and the Reynolds number,

Re = UL0,z

2ν
, (2.26)

ranging from 1000 to 2000. Given by the present particle sizes and initial concentrations,
the buoyancy Stokes number (referred to as the Stokes number here after) ranges
from O(0.01) to O(0.1). As each simulation case involves the computational handling
of a massive number of particles, the number of particles was based on our limited
computational resources, while its concentrations and initial current height are set to match
the values of the Grashof number in the previous study by Necker et al. (2002) using the
scalar transport model. Initially, particles were randomly distributed in the particle-laden
region, resulting in a concentration equivalent to the desired bulk concentration. Each
case was initialized with a fixed white-noise perturbation to each momentum component
with a mean velocity amplitude of 0.08. Moreover, to trigger turbulence, a multimode
perturbation is applied to the particle-laden interface in the x-direction (i.e. at x = 0.4)
with the wavelength ranging from 0.04 to 1 and mean displacement of 0.01.

As presented in Appendix A, a grid convergence test using the single-phase approach
was conducted to ensure that the convergence of the simulation result can be reached at
the current grid resolution given by the desired buoyancy condition. In what follows, we
adopt the convention in which cases are named with a combination of three significant
digits after the decimal point of the particle concentration following the letter ‘V’ and
two significant digits after the decimal point of St following the letters ‘St’. For example,
the case with the particle volume fraction φ0 = 0.01 and St = 0.10 (d0 = 84 μm) is
named case V010St10. For comparison, we also conducted two single-phase simulation
cases with φ0 = 0.01. In the first case, named V010SP, we solve the scalar transport with
an equivalent buoyant effect without a gravity-induced settling. The second single-phase
case, V010SPSt04, is similar to V010SP except that a settling speed (ws) was added to the
transport equation (2.18). The added ws is the same as the settling speed at the equilibrium
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Name d∗
0 (μm) φ∗

0 St No. of particles Re Note

V010St04 53 0.01 0.04 1.27 × 107 1590
V010St06 65 0.01 0.06 6.91 × 106 1590
V010St08 75 0.01 0.08 4.49 × 106 1590
V010St10 84 0.01 0.10 3.21 × 106 1590
V010St14 99 0.01 0.14 1.94 × 106 1590
V005St08 65 0.005 0.08 6.34 × 106 1125
V005St11 75 0.005 0.11 3.45 × 106 1125
V005St14 84 0.005 0.14 2.24 × 106 1125
V020St03 53 0.02 0.03 2.54 × 107 2249
V020St04 65 0.02 0.04 1.38 × 107 2249
V020St06 75 0.02 0.06 8.97 × 106 2249
V020St07 84 0.02 0.07 6.42 × 106 2249
V010SPSt04 53 0.01 0.04 1.27 × 107 1590 Single phase
V010SP N/A 0.01 N/A N/A 1590 Single phase

Table 1. Simulation set-up of the present cases. The superscript ∗ indicates the dimensional quantity.

state (i.e. (2.15)) in case V010St04. This case was conducted to compare the present
particle-tracking model with the traditional single-phase model. In both single-phase
cases, we employed a diffusivity κs = 10−7 m2 s−1, which is slightly higher than the
numerical diffusivity of our solver. Details for all of the present simulation cases are
summarized in table 1. The present simulation cases were conducted using the Intel
Platinum 8280L 28 Cores 2.7 GHz central processing unit (CPU) at the National Center
for High-performance Computing (NCHC). The Eulerian–Lagrangian calculations, such
as case V010St04, were conducted using 192 cores, which took approximately 54 h for
30 000 computational steps. Required CPU time increases when the number of particles
increase. The single phase calculation, such as case V010SP, took approximately 19 h
for 30 000 computational steps using the same computational resources. In the rest of
this paper, in addition to the aforementioned L0,z and U as the characteristic length and
velocity, respectively, T = L0,z/U and φ0 are characteristic time and concentration for the
non-dimensionalization of the respective physical quantities. In what follows, dimensional
quantities are denoted with the superscript ∗.

The validity of the point-force representation in the present simulation cases can be
justified by comparing the particle size with the smallest flow scale, the Kolmogorov scale,
which is expressed in non-dimensional form as

l0 =
(

1
Re3ε

)0.25

, (2.27)

where

ε = 1
Re

∂u′
i

∂xk

∂u′
i

∂xk
(2.28)

is the turbulent energy dissipation. To obtain the turbulent fluctuation quantity u′
i, an

ensemble mean of each velocity component 〈ui〉 is required. Here, 〈ui〉 is approximated by
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Figure 2. The estimated turbulent energy dissipation (ε) at t = 3.9 in case V020St03.

a spanwise average of the instantaneous velocity field 〈ui〉span, and the fluctuation quantity
is thus calculated by

u′
i = ui − 〈ui〉span. (2.29)

Figure 2 shows the estimated dissipation rate at a representative time step during the full
development of the current in case V020St03, which has the strongest buoyant forcing.
The highest value is approximately 0.03 in this figure, leading to l0 ∼ 0.007 according
to (2.27), which is larger than the largest dimensionless particle size, d0 = 0.002, and
dimensionless grid resolution (= 0.005) in this study. Therefore, it can be concluded that
the point-force representation is a valid approximation for the flow configuration of the
present study.

Figure 3 presents a comparison between the present simulation results in cases with
φ∗

0 and experimental data from Gladstone et al. (1998), showing the dimensionless time
histories of the front travel distance, xf . The simulation results indicate that xf initially
increases with time almost at a constant slope, followed by a smooth transition to the end
of the motion. It can be seen that before the transition, there is good agreement between the
present simulation results and experimental data. As discussed in the following section,
the cessation of the propagation is due to the increasing importance of particle settling.
Therefore, the propagation ends earlier with increasing particle size (i.e. large St). Figure 3
shows that our simulation results agree with experimental data before the transition to the
cessation. Moreover, as St = 0.01 was used in the experiment of Gladstone et al. (1998),
the transition occurs later in time compared with our simulation cases, which is consistent
with our simulation results.

3. Suspension

3.1. Flow evolution
Figure 4 presents the time histories of the front speed Uf , in cases V010St04, V010SPSt04
and V010SP, along with three-dimensional snapshots of particles in the former case at
representative time instants during the evolution of the current. In figure 4(b–e), particles
released from different initial regions are located by marking with different colours,
revealing the patterns of mass transport within the current. The front speed is obtained
by averaging the speed at the most frontal points in the current along the y-direction.
Figure 4(a) shows that the current first undergoes a fast acceleration stage due to the initial
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V010St04, St = 0.04

V010St06, St = 0.06

V010St08, St = 0.08

V010St10, St = 0.10

V010St14, St = 0.14

3 6

t
9

Figure 3. Comparison of the travel distance of the front, xf , as a function of time between the present
simulation results in cases of φ∗

0 = 0.01 with different St and the experimental data from Gladstone, Phillips &
Sparks (1998).

release of potential energy. A representative snapshot of the current is shown in figure 4(b).
After reaching a peak value, the front speed decreases rapidly, forming the second stage, as
indicated by the interval between the first two triangles in the case V010St04 in figure 4(a).
This second stage is marked by the rapid drop of the current’s height, which can be
observed by the locations of the pink-coloured layer in figure 4(b,c). The front velocity
decreases due to decreasing current height until the pink layer ceases falling, after which
the third stage begins. The first two stages make up the initial slumping stage, at the end
of which is the onset of the horizontal current, as shown in figure 4(c). It can be seen
from figure 4(a) that front speeds in particle-laden and scalar cases are fairly close to each
other in the initial slumping stage, indicating the dominance of the buoyancy effect during
this stage. It should be noted that the initial slumping stage referred to here differs from
the ‘slumping’ described in the early study by Rottman & Simpson (1983), which was
used to define the entire process of the density current. including the subsequent stage of
horizontal propagation.

In the third stage, the current moves horizontally, but at the same time, particles settle
onto the bed, causing the evolution of the front speed to drop more rapidly than in the
scalar case. A snapshot of particles in this stage is shown in figure 4(d). This stage, termed
the propagation stage hereafter, is characterized by the settling of particles and the induced
buoyancy effect being equally important. While the latter drives the current to propagate
horizontally, the former slows down the current through the reduction of the buoyancy
force. Also, the roll-up at the front becomes significant, as shown in figure 4(c,d), a large
portion of the particles initially located at the bottom are suspended into the fluid column.
After a relatively slow deceleration, the front speed drops abruptly at t ∼ 4. This is the time
when a large portion of particles have settled onto the bed, as shown in figure 4(e), while
those remaining in the water column continue to drive the slow motion of the current.
Due to the diminished buoyancy effect, this stage is primarily characterized by dissipation
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Figure 4. Time histories of the front speed in cases V010St04, V010SPSt04 and V010SP (a), along with
three-dimensional snapshots of particles at t = 0.6 (b), 1.4 (c), 2.9 (d) and 4.1 (e), which are representative
time instants marked by triangles in (a). In (b–e), particles released from different initial regions are located by
marking with different colours.

resulting from particle settling, and is henceforth referred to as the dissipation stage.
In contrast to the scalar case, where the deceleration of the front speed is primarily due to
mixing between the current and ambient fluid, in the particle case, the deceleration of the
front speed is more pronounced, primarily attributed to gravitational settling of particles.

A comparison between cases V010St04 and V010SPSt04 reveals that the front velocities
in these two cases are very close during the early stages (i.e. t < 5), with the latter case
showing lightly lower values. This similarity between them is due to the small St and
the dilute particle concentration (φ∗ ∼ 0.01) in the present cases. However, the results
from the two cases begin to deviate significantly from each other in the later stage
when t > 5. The disparities can be attributed to two reasons. First, as demonstrated by
the energy budget analysis in § 3.2, the equilibrium-state approximation (2.15) adopted
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Figure 5. Time histories of the front speed in all of the present cases.

by the single-phase model in case V010SPSt04 can result in slightly faster settling of
particles than that in the present inertia particle cases. The difference caused by this small
difference in particle settling can become significant in the later stage when a major portion
of particles have settled onto the bed. The second reason is the diffusive nature of the
scalar transport in the single phase model. Since particles in our study do not diffuse (i.e.
particles of the current sizes in nature typically have negligible molecular diffusivity), the
difference between scalar transport and particle tracking can become significant when the
concentration becomes extremely dilute in the later stage.

Figure 5 compares the time history of the front speed for all particle cases considered
in this study. It is evident that during the initial slumping stage, for cases with St < 0.1,
front speeds show little variation across different particle sizes, indicating the predominant
influence of buoyancy, particularly for small particles. The maximum front speed observed
in these cases is 0.72. However, in cases with St > 0.1, a slight decrease in front
speed is observed with increasing St, attributed to the rapid settling of particles which
hinders the development of the buoyancy effect. This suggests that for large particles
(St ≥ 0.1), particle settling outpaces the development of the buoyancy effect. Conversely,
in conditions where St < 0.1, such as those simulated in this study, gravitational settling
of particles is negligible in the initial slumping stage, with the dominant force being
buoyancy. Moving to the propagation stage, figure 5 illustrates notable differences among
cases with varying particle sizes. Particularly, it is observed that as the particle size
increases, the front speed drops more rapidly, highlighting the significant impact of particle
size during the propagation stage.

3.2. Autosuspension and energy budget
Figure 6 compares results from cases with two different particle sizes (cases V010St04
and V010St10), presenting particles coloured by their vertical velocity and superimposed
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Figure 6. Particles coloured by their vertical velocity and superimposed with flow velocity vectors at the
central slide in the y-direction in cases V010St10 (a–c) and V010St04 (d–f ) at t = 1.4 (a,d), 3.1 (b,e) and
3.7 (c, f ).

with flow velocity vectors at the central slide in the y-direction. In this figure, particles
exhibiting autosuspension are identified by observing the colours indicating the particle’s
vertical velocity. The autosuspension at the front region plays a crucial role in sustaining
the propagation of the current (Bagnold 1962). Here, particles instantaneously moving
upward are defined as autosuspended particles, following the classification in a recent
study by Xie et al. (2023). Unlike the low-Re cases in Xie et al. (2023), where
autosuspension regions are primarily observed only at the current’s head, a significant
portion of autosuspension is also found at the current’s body due to Kelvin–Helmholtz
instability in the smaller-particle case, clearly depicted in figure 6(e, f ). Additionally,
figure 6 reveals that the number of autosuspended particles increases with decreasing
particle size.

For Lagrangian particles, we analyse the total energy budget following the formulation
in Chou & Shao (2016), with modification of particle dissipation. That is, the release of
potential energy due to the movement of particles (�PEp) is the sum of the kinetic energy
of the carrier fluid (KEc), kinetic energy of particles (KEp), viscous dissipation (Θ) and
particle dissipation (PD), i.e.

�PEp(t) = KEc(t) + KEp(t) + Θ(t) + PD(t), (3.1)

where

�PEp(t) = 2
∫ t

t′=0
Vp

Ntot∑
j=1

up,j · êz dt′, (3.2)

KEp(t) = sVp

Ntot∑
j=1

1
2
|up,j|2, (3.3)

KEc(t) =
∫

Ω

1
2
(1 − φ∗)|u|2 dV, (3.4)

Θ(t) = 1
Re

∫ t

t′=0

∫
Ω

u · (∇ · T ) dV dt′ (3.5)
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and

PD(t) =
∫ t

t′=0
sVp

⎛⎝Ntot∑
j=1

|up,j − u|p,j|
St

+
Ntot∑
j=1

uj,k · C j +
Ntot∑
j=1

up,j · F j

⎞⎠ dt′, (3.6)

where dV = dx dy dz stands for the infinitesimal volume element of the computational
domain Ω . Equation (3.6) accounts for energy dissipation due to hydrodynamic
interactions and particle–particle collisions (see § 2), where Ck stands for all the
hydrodynamic forcing terms in the right-hand side of (2.22) except the drag. In (3.6),
the third term in the integral is important only in the deposition region where the particle
concentration is high, which occupies a very small portion of the domain. One may divide
the total number of particles (Ntot) into suspension and deposition regimes, i.e.

Ntot = Nsus + Ndep, (3.7)

where Nsus and Ndep represent the total number of particles in suspension and deposition,
respectively. Now, we define a equilibrium particle dissipation as

PDeq(t) =
∫ t

t′=0
sVp

⎛⎝Nsus +
Ndep∑
j=1

up,j · F col,j

⎞⎠ dt′, (3.8)

which is formulated based on the assumption that for each individual particle in
suspension, the hydrodynamic drag is in balance with the gravitational force, such that
up,k = u|p,k − wsê3 = u|p,k − St ê3. Because particles in deposition normally have very
low velocity, to obtain Nsus and Ndep in (3.8), particles with |up,k| < ws are treated as
deposited particles, while those with |up,k| ≥ ws are considered suspended particles.

Figure 7 presents the temporal evolution of the normalized energy budget in
representative cases, including one employing the scalar transport model. All quantities
in this figure are normalized by the initial available potential energy, denoted by a tilde. In
this figure, except for the scalar case shown in figure 7(c), each row represents cases with
the same initial concentration but increasing particle size (i.e. increasing St). In each case,
the accumulated release of potential energy of autoresuspended particles is also plotted.

Generally, the potential energy release (�P̃Ep) undergoes a sudden rise in the initial
slumping stage, leading to a corresponding increase in the flow’s kinetic energy. The
kinetic energy of particles is negligible in all particle cases due to their small volume
fractions. In contrast to the particle cases, where �P̃Eps soon reach their maximum
capacities (�P̃Ep ∼ 1) with smooth transitions, the scalar case (see figure 7c) exhibits
a slight drop followed by a slow increase in �P̃Ep at an almost constant rate. In the
scalar case, viscous dissipation is the primary mechanism for flow dissipation, while in the
particle cases, particle dissipation becomes equally important in dissipating flow energy.
The combination of particle dissipation and viscous dissipation significantly accelerates
the release of potential energy.

In cases involving fine particles (such as in figure 7a,d), a relatively flat region is
present in the time history of �P̃Ep following the initial sudden rise, as highlighted by the
region between two dashed lines in figure 7(a). This indicates a delay of particle settling,
which sustains the horizontal motion of the current. The significance of this flattened
zone decreases with increasing particle size and is almost absent in the largest-particle
cases (e.g. figure 7f,i), indicating the dominance of initial slumping without significant
horizontal propagation. Furthermore, figure 7(a,d) demonstrate that this flattened zone
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Figure 7. Temporal evolution of energy budget in cases (a) V020St03, (b) V020St06, (c) V010SP,
(d) V010St04, (e) V010St10, ( f ) V010St14, (g) V005St06, (h) V005St11 and (i) V005St14. In (a), the two
dashed lines highlight the flattened region of �P̃Ep following the initial sudden rise, and the arrow indicates a
value of P̃D that is much higher than P̃Deq.

is accompanied by an increase in negative potential energy release of autosuspended
particles, �P̃Eauto. Note that a negative value of potential energy release indicates
particle suspension. The flattened zone ceases when �P̃Eauto reaches its negative peak,
suggesting that autosuspension drives the horizontal propagation of turbidity currents.
In cases involving large particles where St > 0.1, significantly fewer particles can be
autosuspended due to the limited range of the vertical velocity at the front region.
Consequently, the change in potential energy release due to autosuspension becomes
negligible, as shown in figure 7(c, f,h,i).

A crucial observation in figure 7 highlights the disparity between the actual particle
dissipation (P̃D) and the equilibrium model (P̃Deq), which neglects particle inertia.
Notably, the latter, combined with the scalar transport model, have been extensively
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utilized in the sediment transport community (see § 2.1). Figure 7 illustrates that during the
initial slumping stage (i.e. t < 1), neglecting particle inertia can lead to an underestimation
of particle dissipation. This underestimation becomes particularly pronounced for smaller
St. For instance, in the case with the smallest St (= 0.03), the underestimation nearly
reaches 50 % of its original magnitude, as indicated by the arrow in figure 7(a). Conversely,
in those cases with St > 0.1, this underestimation is negligible, and the equilibrium
assumption closely aligns with actual particle dissipation (figure 7f,h,i). This suggests that
particle inertia enhances settling during the initial slumping stage, during which vertical
motion dominates. The enhancement is more significant for cases with smaller St.

When the horizontal motion becomes dominant following the conclusion of the initial
slumping stage, the equilibrium assumption starts to slightly overestimate the particle
dissipation. This implies that when horizontal motion dominates, assuming the particle
drag balances the gravitational force, can lead to an overestimate of particle dissipation
(i.e. faster settling). This overestimation becomes more pronounced with increasing St.
In the case of the largest St, the overestimate reaches approximately 10 % of the actual
particle dissipation (figure 7f ). Conversely, for the smallest St, P̃Deq closely matches P̃D,
suggesting that the equilibrium assumption can be a suitable approximation for small
particles (e.g. St � 1) in predicting horizontal current propagation.

4. Deposition

4.1. Deposition in response to LC structure
The formation of LC features at the interface of a density current front is a well-known
phenomenon. In this section, our objective is to elucidate particle deposition within
the current in response to the LC structure. Taking case V010St04 as an illustration,
figure 8 showcases the isosurface of bulk particle concentration (φ), the corresponding
velocity field in the bottom-most horizontal plane, and the velocity field superimposed
with particles at a representative cross-section at the front. This figure serves as a typical
example of how particles respond to the LC instability at the current’s front region.
In figure 8(b), the z-component vorticity field (ω3) is overlaid with velocity arrows to
aid in distinguishing between the converging and diverging horizontal flow. In this figure,
particle zones that show neither blue nor red colours indicate divergent flow, while those
with adjacent blue and red colours represent converging flow. It is evident in figure 8(b)
that the lobe structure corresponds to a divergence of the horizontal flow, while the cleft
corresponds to convergence. Due to mass conservation, convergence of the horizontal flow
at the cleft leads to an upward flow, suspending particles, while particles in the lobe region
continue to settle. This is illustrated in figure 8(c), where we present snapshots of the
flow field superimposed with particles on three consecutive vertical slices (z–y plane) in
the front region indicated in figure 8(a). This dynamic process results in the formation
of an LC pattern in the deposition height, where lobes are separated by ditches formed
by particle suspension at the cleft region. This phenomenon is demonstrated in figure 9,
where we present the height of particle deposition (hd) within the current at representative
time steps in case V010St04. Here, the height is calculated by summing the equivalent
height in each cell where the particle concentration reaches close packing, i.e.

hd(x, y) = 1
1 − n∗

⎛⎝Ncp∑
k=1

φ∗
k + φ∗

Ncp+1

⎞⎠�z, (4.1)
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Figure 8. (a) The isosurface of the bulk particle concentration (φ = 1) at t = 2.7 in case V010St04, (b) the
corresponding horizontal velocity arrows at the bottom-most plane (x–y plane at z = 2.6 × 10−3 superimposed
with the vorticity (ω3) and particles and (c) the vertical velocity superimposed with particles and velocity
arrows on the vertical slices (z–y plane) in the front region shown in (a).

where k is the cell index in the z-direction, n∗ is the void ratio and Ncp is the cell index of
the grid cell within which particles are close packed (i.e. φ∗ ≥ 1 − n∗) (i.e. close packed).
According to Scott & Kilgour (1969), the void ratio for the close-packed particles ranges
from 0.3 to 0.5. Here, we simply set n∗ to 0.4. The second term on the right-hand side of
(4.1) represents the particle concentration in the cell, which is partially occupied by the
close-packed particles, on top of the grid cell with index Ncp.

As shown in figure 9(a), fine LC structures of deposition are present at the very
early stage. Subsequent to this, figure 9(b,c) demonstrate the gradual coarsening of
the LC deposition pattern due to the amalgamation of fine LC structures. Notably, the
deposition pattern in hd is primarily observed in close proximity to the front region, where
significant upward flow prevails. Behind the front region, the LC pattern vanishes due
to the continuous deposition of suspended particles. As the current progresses into its
dissipation stage, its velocity decreases notably owing to the diminished driving buoyancy
force. During this phase, smaller lobes tend to merge while larger ones remain relatively
unchanged, as shown in figure 9(d,e).

Figure 10 illustrates particles superimposed with the velocity field in representative
vertical slices (z–y plane) in the front regions corresponding to the cases depicted in
figure 9(d–f ). In contrast to the flow development at the earlier stage depicted in figure 8(c),
figure 10(a) demonstrates the disappearance of the small-scale flow structures, while larger
flow features with circulation in the x-direction persist. As time progresses, the circulation
weakens due to reduced buoyancy strength, and the suspended particles continue to settle,
as depicted in figure 10(b,c). Eventually, the majority of particles settle onto the bed,
and only those particles susceptible to resuspension due to shear instabilities remain
in the water column. With the diminishing influence of buoyancy, the diluted particles
gradually propagate and settle onto the bed without exhibiting any discernible LC pattern.
Consequently, the original LC pattern in deposition fades away, leaving only coarse
transverse variations in deposition height at the final stage, as shown in figure 9( f ).
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Figure 9. The deposition height (hd) at t = 1.3 (a), 2.5 (b), 3.8 (c), 5.1 (d), 6.4 (e) and 8.9 ( f ) in case
V010St04. The red arrows in (d–f ) indicate the positions of the vertical slices depicted in figure 10.

Figure 11 presents the temporal evolution of the deposition pattern at the front in
cases V010St04, V010St10 and V010St14. In addition, figure 12 presents statistical results
of the lobe width and length in these cases. In figure 12(a), each vertical bar denotes
the upper and lower bounds of the lobe width measured from the low-pass filtered
deposition contours at each time step. The low-pass filter is applied to eliminate the
small fluctuations (wavelength � lobe width) within each individual lobe, as detailed
in Appendix B. All deposition contours in each case in figure 11 are plotted in black
until the onset of the dissipation stage, after which the contours are plotted in blue.
It can be seen from figure 11(a,b) that there are no significant disparities between cases
V010St04 and V010St10 during the propagation stage (black contour lines), except for the
longer propagation distance in the case with finer particles. However, once propagation
ceases at the dissipation stage, the two cases differ in that the fine particles remain
suspended, causing the current containing residual particles to slowly propagate, resulting
in a coarsening of the LC pattern. As a result, the final deposition pattern in the fine particle
case has a wavelength that is much greater than the LC pattern during propagation, as
shown in figures 11(a) and 12(a). In contrast, as shown in figure 11(b), the coarse particles
settle rapidly, so the final deposition pattern is almost identical to the LC pattern during
propagation.

When the particle size increases further, such that St = 1.4, as shown in figure 11(c),
wider lobes become apparent, which is also evident in figure 12(a). In these cases, particles
respond to LC instability when the upward flow velocity in the cleft region exceeds the
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Figure 10. Particles superimposed with the velocity field in representative vertical slices (z–y plane) in the
front regions corresponding to the cases depicted in figure 9(d–f ). The locations of the slices are indicated by
red arrows in figure 9(d–f ).
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Figure 11. Temporal evolution of the deposition contour at the front for cases V010St04 (a), V010St10 (b) and
V010St14 (c). Blue contours indicate deposition during the dissipation stage. Black contours are plotted every
time step (�t = 0.13), while the blue contours in (a) are plotted every three time steps.
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Figure 12. Statistical results of the lobe width (a) and mean lobe length (b) in cases V010St04, V010St10 and
V010St14. In (a), each vertical bar represents the mean lobe width with upper and lower bounds at each time
step.

settling velocity. Moreover, figure 12(b) reveals a trend of increasingly significant LC
pattern (larger lobe length) as St decreases, which responds to the flow more easily.
It also shows that once the pattern forms, the mean lobe length does not significantly
vary with time, despite exhibiting certain fluctuations. This is because the LC pattern can
only be observed in the front region, as previously mentioned. In the finest-particle case
(V010St04), the lobe length increases with time at the dissipation stage (t > 6.5). However,
the dilute condition at this stage leads to a fairly low deposition height (hd), making the
pattern insignificant, as shown in figure 9( f ).

At the front, the magnitude of the dimensional upward velocity at the cleft region is
found to be approximately 0.1U∗ or greater. Therefore, it is noted that the LC pattern
of deposition exhibits no significant differences among different particle size cases when
St < 0.1 (i.e. w∗

s < 0.1U∗), as particles can respond to most LC structures in the flow.
However, for larger particle sizes such that St > 0.1, particles can only respond to those
with an upward velocity greater than 0.1U∗, and only larger lobes between clefts with the
stronger upward velocity are present in this case. This observation is further supported
in figure 13, where the deposition height (hd) in the x–y plane and the corresponding
flow field superimposed with particles in the z–y plane at the front region at t = 1.7
are presented for cases V010St10 and V010St14. It shows that for larger particles, fewer
regions associated with upward flow are discernible. Moreover, a few regions associated
with weaker upward flow are submerged in the particle-laden layer, such as x ∼ 1.25 in
figure 13(d), which characterize the suppression of the vertical velocity by larger particles.
Such alterations in the LC flow structure induced by larger particles are also reflected in
particle deposition, as illustrated in figure 13(a,b).

4.2. Longitudinal variation
Figure 6(c, f ) shows that in the later stage during current propagation, there is noticeable
difference: very few particles are entrained into the primary vortical structure in the
larger-particle case, leading to the detachment of the vortical structure from the current’s
body. In contrast, continuous entrainment of particles into the vortex occurs in the
smaller-particle case, resulting in the destruction of the primary vortical structure,
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Figure 13. The deposition height (hd) at t = 1.7 in cases V010St10 (a) and V010St14 (b) and the corresponding
flow velocity arrows superimposed with particles in the vertical slices (z–y plane) at x = 1.34 (c) and 1.32
(d) indicated by red arrows in (a) and (b).

followed by dissipation into small flow structures behind the current’s head (figure 6f ).
Therefore, it can be seen that varying particle sizes can lead to different flow structures,
wherein a larger-sized particle may induce detachment of the primary vortex generated
by shear instability at the interface. This detachment results in the persistence of a strong
vortex behind the main body of the current. As schematically illustrated in figure 14, an
intriguing feature arises when being accompanied by the vortex generated at the current
front, the presence of a corotating vortex pair induces a counter-rotating flow above the
wall between the two vortices. This in turn generates a significant backflow in the near-wall
region. A zoomed-in snapshot of the velocity field superimposed with the y-component
vorticity field and particles in case V010St10 at t = 3.4 is shown in figure 15, where one
can identify the flow structure generated by the corotating vortex pair. Such a flow structure
is particularly significant when the primary vortex detaches.

Figure 16 presents the instantaneous x-component of the flow velocity at the near-wall
region (y = 0.02) in cases V010St10, V011St04 and V010SP, along with the corresponding
deposition height in the particle cases. As shown in figure 16(a), a notable backflow
(negative velocity) with less spanwise variation can be found at x ∼ 1.5. However, this
backflow diminishes in significance with smaller particle sizes, as shown in figure 16(b).
In figure 16(a), the backflow leads to a region of flow convergence. Conversely, in
the scalar case where ws = 0, as shown in figure 16(c), the backflow is absent while
maintaining significant fine streaky structures resulting from turbulence in the boundary
layer. The flow convergence in the near-wall region in the case of larger particles results
in a notable accumulation of particles during the current’s propagation, as shown in
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Figure 14. A schematic showing the detached primary vortex, secondary vortex generated at current’s head,
and the resulting counter-rotating flow (dashed line) in the depositing current. Along with the propagation
of the current, the counter-rotating flow results in a localized accumulation due to flow convergence in the
near-wall region.
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Figure 15. A zoomed-in snapshot of the velocity field superimposed with the y-component vorticity field and
particles (grey dots) in case V010St10 at t = 3.4.

figure 16(d,e), marked by the green arrows. This results in a bump-like feature of the
deposition once all particles settle. An example of relatively less particle accumulation
(lower hd) in the fine-particle case is shown in figure 16(e).

Figure 17 presents the spanwise averaged deposition height, denoted as 〈hd〉span, at the
end of each simulation in all cases with φ∗

0 = 0.01. It can be seen that the bump-like
feature (highlighted by arrows) of particle deposition is evident in all cases, particularly
pronounced in cases V010St06, V010St08 and V010St10. This feature diminishes as St
increases to 0.14 (as seen in case V010St14), primarily due to the rapid settling of particles,
resulting in fewer particles available to be transported by the aforementioned backflow.
In the case with the smallest particle size (V010St04), the deposition height is relatively
flat due to weaker backflow, as shown in figure 17. It is noteworthy that a similar bump-like
feature has been observed in a previous experimental study by de Rooij & Dalziel (2001).
Our numerical simulation offers an explanation for a possible mechanism underlying the
spatial variation of deposition height in turbidity currents.
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Figure 16. The x-component of the flow velocity (u) at the bottom-most cells in cases V010St10 (a),
V010St04 (b) and V010SP (c), along with the corresponding deposition height (hd) in cases V010St10 (d)
and V010St04 (e). The arrows in (d) and (e) indicate regions of particle accumulation (higher hd).
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Figure 17. The spanwise-averaged deposition height (〈hd〉span) at the end of simulation in cases V010St04,
V010St06, V010St08, V010St10, V010St14.

5. Scaling law for the deceleration of the front speed

The temporal evolution of the front speed is crucial in predicting the travel distance of
the density current. As shown in figure 5, the front speed of the current exhibits variability
depending on the particle size. Hence, it may be feasible to establish a pertinent scaling law
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for the front speed based on the gravitational settling of particles. To do this, we initiate by
deriving the depth-integrated mass and momentum equations to delineate the propagation
of the particle-laden current. Firstly, we assume that the particle concentration is dilute and
the particle size is small such that up = u|p − wse3. Assuming uniformity in the spanwise
(y) direction, mass conservation within the particle-laden current, with a height h in the
x–z plane can be described as

∂

∂t
(φh) + ∂

∂x
(φUhh) = ∂η

∂t
φ, (5.1)

where Uh is the depth-averaged streamwise velocity within the current, and η represents
the change in the current height due to particle settling, which can be mathematically
expressed as

η =
{

−wst for h > 0
0 for h = 0

= −wstH(h), (5.2)

where H is the Heaviside function. It is worth noting that in the case of h > 0, (5.1), along
with (5.2), reduces to a more commonly used equation to describe the mass conservation
for the particle-laden current (e.g. Bonnecaze, Huppert & Lister 1993). As φ does not
change significantly within the current, (5.1) can be reduced to

Dh
Dt

+ h
∂Uh

∂x
= ∂η

∂t
, (5.3)

where D/Dt = ∂/∂t + U∂/∂x. Under the Boussinesq approximation, disregarding
entrainment and detrainment for the sake of simplicity, the depth-integrated dimensionless
momentum equation, without dissipation, can be written as

DUh

Dt
+ ∂h

∂x
= 0. (5.4)

The homogeneous version of (5.3) (∂η/∂t = 0) and (5.4) collectively constitute the
shallow-water equation, which has been extensively employed to analyse geophysical flows
wherein horizontal motion predominates. Rather than focusing on the solution of (5.3) and
(5.4), our objective is to derive a scaling law for the evolution of front speed resulting from
particle settling. To this end, we combine the two equations to obtain

D2Uh

Dt2
− ∂

∂x

(
h
∂Uh

∂x

)
= − ∂2η

∂x∂t
. (5.5)

While the left-hand side of (5.5) arises from the standard shallow water equation, the
right-hand side provides an additional sink/source due to the gravitational settling of
particles.

From (5.2), the right-hand side of (5.5) can be further reduced as

∂2η

∂x∂t
= −wsδ(h)

∂h
∂x

≈ −ws
1
εh

∂h
∂x

, (5.6)
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where δ is the delta function in h, and εh is a small length in the direction of h. The inverse
of εh represents a regularized delta function in h. The term ∂h/∂x in (5.6) characterizes
the geometry effect (i.e. aspect ratio) at the frontal region. One may also write

1
εL

= − 1
εh

∂h
∂x

, (5.7)

where εL is a horizontal length scale characterizing gradient change of the current’s head
due to particle settling, which depends on the geometry of the front, and the right-hand
side has a negative sign because the momentum is driven by the negative gradient of h
(i.e. Uh > 0 when ∂h/∂x < 0). Given (5.5)–(5.7), a momentum sink that decelerates the
current’s front velocity can be expressed as

D2Uh

Dt2
= −ws

εL
. (5.8)

It can be seen from (5.7) that the length scale εL is contingent upon the geometry of
the current’s head, suggesting a potential correlation with the initial configuration of the
current. We set Uf ∼ Uh, and from (5.8), one obtains

�Uf ∼ −ws

εL
�t2, (5.9)

where �Uf is the drop of the front speed (Uf ) due to particle settling, and �t is the elapsed
time since the start of the propagation stage. One may also write a semidimensional form
of (5.9) as

�Uf ∼ −ws
φ∗

0 g′∗

ε∗
L

�t∗2. (5.10)

In this study, all cases begin with identical initial configurations, directing our attention
towards the impact of particle settling. Therefore, for the present cases, one may have

�Uf ∼ −wsφ
∗
0 g′∗�t∗2. (5.11)

While the geometry effect (ε∗
L) warrants further examination, based on (5.11), we focus on

the effect of the gravitational settling to the deceleration of current’s front initialized with
the same configuration.

It is crucial to compare our scaling law with existing models for turbidity current. Here,
a comparison is made with the box model, a semiempirical model first developed by
Huppert & Simpson (1980) for predicting the travelling distance of density currents, and
later modified by Hallworth, Hogg & Hupert (1998) and Gladstone & Woods (2000) for
particle-laden currents. The box model assumes volume conservation during propagation,
while the particle concentration is diluted due to particle settling, as described by the
relationship

dφ∗

dt∗
= −w∗

s

h∗ φ∗, (5.12)

based on a fully developed two-dimensional configuration. In the original box model for
the density current, the front velocity is scaled as

U∗
f ∼

(L∗
0,z

h∗

)1/3

(sφ∗g′∗h∗)1/2. (5.13)
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For particle-laden density currents, the front velocity can be described by combining (5.12)
and (5.13) as

U∗
f ∼

(L∗
0,z

h∗

)1/3

(sφ∗
0 g′∗h∗)1/2 exp

(
−w∗

s t∗

2h∗

)
. (5.14)

It can be seen from (5.14) that both the dilution due to w∗
s and the change in h∗ can

decelerate U∗
f . To simplify the assessment, we assume a case where the influence of

dilution is significantly more pronounced than that influence due to the change in h∗,
allowing us to approximate h∗ as a constant. In the box model modified for particle-laden
currents, based on a reference front velocity U∗

f ,ref , the amount of velocity deceleration
due to particle settling can be thus scaled as

�U∗
f

U∗
f ,ref

∼
[

exp
(

−w∗
s �t∗

2h∗

)
− 1

]
. (5.15)

Equation (5.15) shows that the velocity drop data, normalized by their initial reference
values, collapse with respect to the rescaled non-dimensional parameter, w∗

s �t∗/(2h∗).
This differs from the quadratic relationship in our scaling law (5.10). In fact, the box
model does not align with our numerical results in two aspects. First, since particles settle
onto the bed, volume conservation does not hold for the turbidity current. Second, in
our simulation, particle settling leads to the descending motion of the current interface,
indicated by a decrease in h, rather than a dilution of φ.

Figure 18 compares the two different models, (5.11) and (5.15), for the velocity scaling.
The rescaled relationship in (5.11) for the velocity drop resulting from particle settling is
corroborated by figure 18(a), where we plot �Uf against wsφ

∗
0 g′∗�t∗2. It can be seen

that the time histories of the front speed in cases with varying initial concentrations
and particle sizes (settling velocities) nearly collapse onto a single curve until the later
stage, where nearly all particles settle and their current’s speeds rapidly diminish. Minor
deviations from this collapsed trend can be found in cases involving large particles (i.e,
ws ≥ 0.1), where the velocity drops more rapidly than the collapsed value in cases with
smaller particles. This is because in such cases, particle settling can exert a more dominant
influence during the initial slumping stage, potentially leading to an overestimation of the
front speed by the buoyancy scaling. Figure 18(a) suggests that the buoyancy scaling and
the scaling law proposed in this work remain valid under the condition where dimensional
particle settling velocity is no more than one-tenth of the scale of its induced buoyancy
velocity. In contrast to figure 18(a), a contradiction of (5.15) with our numerical results
can be observed in figure 18(b), where we present data points for the left-hand side of
(5.15) plotted against estimated values of w∗

s �t∗/(2h∗), along with (5.15). It is important
to note that the box model is an analytic model in which the height h∗ is obtained from
volume conservation, i.e. h∗l∗ = constant, where l∗ is the length of the current. Due to
the non-conservative nature caused by deposition, the h∗ in the box model is not available
in this study. Therefore, we use a simplified value of h̄∗ = 0.25L∗

0,z as a scale for the
mean h∗ during the current’s propagation phase. Additionally, we take the front velocity
at the beginning of the propagation stage as the reference speed U∗

f ,ref in figure 18(b).
Figure 18(b) clearly indicates that the data points do not collapse with respect to the
rescaled factor. Moreover, the trend of the velocity drop from our numerical results does
not align with (5.15).

To summarize, although past studies suggest that the front speed deceleration primarily
results from the dilution of particle concentration due to settling, we propose that the
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Figure 18. The velocity drop due to particle settling against (a) the square of the rescaled time based on particle
settling (5.11) and (b) w∗

s �t∗/(2h̄∗) as used in the box model (5.15). Panel (a) demonstrates the collapse of all
cases with small ws (ws < 0.1) during the propagation stage.

deceleration is actually caused by the descent of the particle-laden interface, while the
particle concentration within the current remains constant. Based on the shallow water
equations, which have been employed to model the particle-laden density currents (e.g.
Bonnecaze et al. 1993), we thus derived a novel quadratic scaling relationship with elapsed
time. This relationship proves more effective in collapsing the data into a unified functional
form compared with the previous scaling law based on particle dilution. However, it is
important to note that in scenarios with stronger buoyancy and higher turbulent intensities,
the effects of entrainment and detrainment may also need to be considered.

Once the deposition time scale is obtained from (5.10), it can offer an estimation for
the effective length of the turbidity current across various particle sizes. This estimation is
based on the correlation between the total suspension volume, V , and deposition, i.e.

φ0V = φ0wsĀ�t, (5.16)

where Ā is the mean effective area of the current on the bottom plane. Substitution of �t
obtained from (5.9) into (5.16) gives

Ā ∼ V√|�Uf |εLws
. (5.17)

In the current study, considering identical initial configurations within an equal-width
channel, the effective length of the turbidity current, denoted as L̄c, can be scaled as

L̄c ∼ w−0.5
s . (5.18)

Here, we define L̄c as the length within which deposition occurs, which can be
straightforwardly calculated by determining the difference in hd (4.1) between consecutive
time steps. Figure 19 shows this quantity, labelled as �hd, at representative time steps
during the propagation stage in case V010St10. Edges demarcating regions of low and
high values of �hd are evident on both the rear and front sides of the current, as depicted
in figure 19(a,b). The width between the two edges defines the length of the current.
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Figure 19. Snapshots of the deposition difference �hd at the x–y plane in case V010St10 when (b) t = 2.5,
(d) 2.8, (e) 3.1 and ( f ) 3.3 along with the corresponding snapshots of particles at the central slice in (a) the
z-direction and the low-pass-filtered mean value obtained by averaging along (c) the z-direction. The interval
between two red lines in (c) defines the length of the current (L̄c) in this study. The red lines are plotted at the
location where �hd = 0.

Figures 19(b) and 19(d–f ) show that this length undergoes slight variations during the
current’s propagation. Due to the discrete spatial distribution of �hd, L̄c is determined by
measuring the length of regions of positive spanwise-averaged values of �hd, as shown
in figure 19(c). Figure 20 presents L̄c plotted against ws in all the cases, alongside the
relationship given by L̄c ∼ w−0.5

s . In cases with lower ws, L̄c exhibits a wider range of
variation due to a longer propagation period. Nonetheless, the little deviation between the
data points and the black line in figure 20 affirms the validity of (5.18).

6. Concluding remarks

We conducted numerical simulations to explore particle suspension and deposition
within turbidity currents. By integrating Lagrangian particle tracking and a discrete
element model, our numerical model facilitates a detailed examination of autosuspension,
deposition and bulk behaviours of turbidity currents. Our focus lies on flow regimes
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Figure 20. The length of the current (L̄c) plotted against the non-dimensional settling velocity (ws) in the
present cases during the current’s propagation along with the relationship L̄c ∼ w−0.5

s . Each vertical bar
represents the range of L̄c during propagation.

where particle settling and buoyancy-induced hydrodynamics are equally important. Our
discussion is divided into three parts.

The first part centres on the main body of the current formed by suspended particles.
Through an analysis of the time histories of the front speed, we identify distinct stages in
the temporal evolution, including initial slumping, propagation and dissipation. Notably,
we observe that particle settling becomes increasingly important during the later stages.
Leveraging our model’s capability to track autosuspended particles, our energy budget
analysis elucidates the close relationship between autosuspension and current propagation.
Additionally, we find that when the particle settling velocity exceeds 10 % of the buoyancy
velocity scale of the current, autosuspension becomes negligible. Consequently, the
temporal evolution of the released particle-laden fluid column is predominantly governed
by initial slumping.

The second part of our discussion delves into deposition mechanisms, with a particular
focus on elucidating the primary factors contributing to transverse and longitudinal
variations in deposition height. We demonstrate that during the transient stage, the LC
flow structure induces upward flow at the cleft and downward flow at the lobe, thereby
causing resuspension and deposition, respectively. This gives rise to the characteristic LC
pattern upon particle deposition. While this pattern remains relatively unchanged in cases
with a non-dimensional settling velocity (ws) below 0.1, it becomes coarsened when ws
exceeds 0.1 due to the suppression of vertical flow. Ultimately, as suspended particles
settle slowly, the LC pattern tends to become smeared and significantly less pronounced
over time. In addition to the transverse variation resulting from the LC structure, we found
that the detachment of the primary vortex can lead to localized accumulation, consequently
producing a ‘bump-like’ longitudinal variation in the deposition height.
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In the concluding segment of our discussion, we introduce a new scaling law for the
propagation stage, derived from the shallow water equation in conjunction with the settling
velocity of suspended particles. We show that the decrease in front speed during the
propagation stage can be effectively scaled with settling velocity, particle concentration
and the square of the elapsed time. Furthermore, we utilize this new scaling law to estimate
the length of the current in cases with various particle sizes and concentrations, with our
findings closely aligning with the results obtained from our simulations.

To the best of our knowledge, this study represents the pioneering effort to employ
Lagrangian particles for simulating particle-laden turbidity currents within the flow regime
of Re ∼ O(1000). Our simulation results vividly elucidate the suspension and deposition
of particles within turbidity currents. Unlike prior single-phase numerical studies that
predominantly focused on fine particles wherein buoyancy dominates the flow, our study
provides fresh insights into the dynamics of particles and the bulk behaviour of turbidity
current where particle settling and buoyant effects are equally consequential.
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Appendix A. Resolution study

To assess the impact of grid resolution on the current simulation cases, we conduct
numerical experiments for the single-phase scenario with identical configurations to
case V010SP but within a smaller domain given by Lx × Ly × Lz = 4 × 0.5 × 1. Various
grid resolutions are employed: Nx × Ny × Nz = 256 × 32 × 64; 512 × 64 × 128; 768 ×
96 × 192; 1024 × 128 × 256, with the third matching the resolution used in the present
simulation cases. Figure 21 presents snapshots of the normalized concentration at the
central slice in the z-direction at t = 2.6. It shows that the simulated concentration
changes with increasing resolution for cases with resolutions below 512 × 64 × 128, as
shown in figure 21(a–c). Conversely, figure 22(c,d) demonstrate that the concentration
pattern remains largely unchanged when the grid resolution exceeds 512 × 64 × 128,
albeit with the finer-resolution case exhibiting sharper contrast due to the utilization
of more grid points used for the visualization. Furthermore, figure 22 presents the
corresponding horizontal velocity profiles at x = 1.1 (see the red dashed line in
figure 21a) in all cases in figure 21. Similar to the observations for the concentration
field, the velocity profile undergoes significant variations when the resolution is below
512 × 64 × 128, while grid resolution higher than 512 × 64 × 128 result in minimal
differences in the velocity profile. Additionally, it is essential to note that for the
current simulation cases incorporating Lagrangian particles, the grid size also must
be sufficiently large to consider the feedback of particles on the fluid phase as point
forces. Hence, we adopt the same resolution as in the case with 512 × 64 × 128 for the
present cases.
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Figure 21. The normalized concentration field at the central slice in the z-direction at t = 2.6 simulated using
the single phase method in the domain given by Lx × Ly × Lz = 4 × 0.5 × 1 using grid resolutions Nx × Ny ×
Nz = 256 × 32 × 64 (a), 512 × 64 × 128 (b), 768 × 96 × 192 (c) and 1024 × 128 × 256 (d). The red dashed
line in (a) indicates the position of x = 1.1, which is used for the examination of the horizontal velocity profile
in figure 22.
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Appendix B. Analysis for the lobe-and-cleft deposition pattern

Due to discrete characteristics of particles, small-scale fluctuations can be typically found
at the measured contours of the deposition height (hd), especially at the later stage where
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Figure 23. Unfiltered (black) and low-pass filtered (grey) hd contours of the deposition height (hd) in case
V010St04 at t = 6.5 (left) and 10.1 (right). The blue and red dashed lines illustrate the measurement of
x-coordinates of troughs and crests, respectively, of the filtered contour line.

the buoyancy effect is weakened. To eliminate these fluctuations when measuring the LC
pattern, a low-pass filter is applied to obtain smoother hd contours at the front. Figure 23
presents examples of the original and filtered hd contours for case V010St04 at two
representative time instants. During the propagation phase, as shown by the contours
at t = 6.5 in figure 23, a passband with a frequency of 0.lπ rad sample−1 (using the
MATLAB function ‘lowpass’) is used. After the density current enters its dissipation
stage, where the buoyancy effect is weakened and particle settling becomes dominant,
a relatively lower passband frequency of 0.01π rad sample−1 is required to smooth out the
stronger small-scale fluctuations, as shown by the contours at t = 10.1 in figure 23. The
lobe width is then defined by the distance between two troughs of the filtered contours,
and the lobe length is defined by the distance between the trough and crest (see figure 23).
The mean value of the latter is then obtained by measuring the distance between the mean
x-coordinate of the troughs, as illustrated by blue dashed lines in figure 23, and the mean
x-coordinate of the crests, as illustrated by the red dashed in figure 23.
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