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Abstract

Selective withdrawal from a stratified stream is considered. The average density of the
withdrawn fluid and the flow pattern are found, within the limitations on the densimetric
Froude number and the withdrawal rate specified in this paper, to depend on the strength
and location of the sink, and very little on any slight variation in the velocity distribution
far upstream and the densimetric Froude number. The upstream density distribution is
assumed linear, but many other density distributions can be similarly treated.

1. Introduction

Power plants often draw their cooling water from a stream stratified in temperature and
therefore in density. Thus arises the interest in the problem of selective withdrawal.
The same problem is encountered when water is drawn from an estuary stratified in
salinity, and the smallest average salinity of the withdrawn water is desired, or else
when pollutants form a layer in a stream and are to be removed.

The problem of selective withdrawal was initiated by the theoretical work of Craya
[1] and the experimental work of Garie'l [3]. Craya used Richardson's formula [6]
to obtain an exact solution of the problem of two-dimensional flow into a sink. The
flowing fluid is bounded below by an interface with a stagnant heavier fluid and above
by two planes symmetrically inclined at an angle 6 = TT/3 with the vertically upward
direction and intersecting at the sink. This solution is exact and elegant, and has the
advantage that the fluids is at rest at infinity, so that the velocity discontinuity along
the interface has been developed spatially from rest if not temporally from a state of
rest everywhere. Craya postulated that the densimetric Froude number F (based on
an appropriately reduced gravitational acceleration) obtained in his solution is critical,
in the sense that if the number is exceeded the lower fluid will flow into the sink. This
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[2] Selective withdrawal from stratified streams 27

postulate has never been proved but is plausible. To apply his solution to GarieTs
experiment made in a channel with a horizontal bottom, Craya made a rough estimate
of the critical F for Gari61's flow from the result of his solution and obtained the value
0.75 for it. GarieTs experimental result agrees with this estimate fairly well.

Craya's work has been extended in recent years to include other values of 9, which
is n/3 in Craya's case. But the later workers have preferred to invert the geometry
and eliminate the stagnant fluid above the interface. Then the interface becomes a free
surface and the densimetric Froude number becomes the ordinary Froude number.
Tuck and Vanden-Broeck [7] studied the case of 0 = 0 (corresponding to a semi-
infinite fluid). Hocking [4] studied the cases 0 < 9 < JT/2. He found only one value
for F for each 9, including 9 = 7t/2. Then Vanden-Broeck and Keller [8] studied the
cases for 0 < 9 < n/2. Unique values of F (in agreement with Hocking's results if
attention is given to the difference between their definitions of the Froude number)
were found for all these values of 6. All these solutions, like Craya's, are physically
significant because the flow originates from infinity, where the fluid is at rest, provided
6 < n/2.

For the sink located at the bottom of the channel and 9 = n/2, Vanden-Broeck and
Keller [8] obtained the Froude number 1 by making 9 approach n/2 from below. This
is the critical Froude number for the case of channel flow. For 9 = n/2, however, they
found a range of possible values for F from some minimum value to infinity. Since the
VBK solutions apply to flows under a stagnant layer, for a discussion of the significance
of these supercritical solutions (for which F > 1) let us revert to the existence of an
upper stagnant layer. For F > 1 the upper fluid will probably enter the sink in spite of
the existence of the supercritical solutions, much as a fluid of uniform density will not
separate to give a stagnant layer (at an infinite F in that case), in spite of the existence
of the classical free-streamline solution. (In the latter case separation would violate
Kelvin's theorem on the persistence of irrotationality if the flow is established from
rest, and all the fluid will flow into the sink, allowing no separation.) The physical
significance of the supercritical solutions has to be decided by an examination of
their stability. Instability of such flows is implicit in Craya's postulate. The VBK
supercritical solutions do not contradict Craya's postulate. Indeed, the semi-infinite
range of possible supercritical Froude numbers surely suggests their lack of physical
significance. Thus the VBK supercritical solutions have gone a long way to support,
if not quite to prove, Craya's postulate. Furthermore, the Froude number 1 obtained
by making 9 approach n/2 from below, in agreement with Hocking's result, is exactly
what Craya sought to obtain for GarieTs experiment.

The problem of flows of a continuously stratified fluid in a channel into a sink was
treated by Yih [9], who found solutions without separation for F, the densimetric
Froude number, above l/n. As F approaches \/n from above, however, a more and
more elongated eddy occurs, in which there is inevitably density inversion, suggesting
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28 Chia-Shun Yih and Songping Zhu [3]

that even before F reaches l/n fluid separation will take place. This led Debler [2]
to do his pioneering work. He found that when F is low the flow separates into a
stagnant and a flowing region. As F decreases the depth of the flowing region also
decreases, in such a way that F', the densimetric Froude number based on the depth
of the flowing region, remains constant. Debler's experiment showed that constant to
be 0.24. The constancy of F' can be expected on theoretical grounds. Kao [5], by
numerical computation, found that

0.33 < F' < oo.

Only the number 0.33 is significant, much as in the problem of two fluid layers. The
figure 0.33 is consistent with Yih's results [9], and is of the same order of magnitude
as Debler's experimental value 0.24. The difference between the two figures is
understandable, since a velocity discontinuity cannot be achieved with a viscous fluid,
and the viscosity will always thicken a flowing layer and bring down the value of F'.

The foregoing account of the history of the problem of two-dimensional selective
withdrawal points to the lack of attention to the effect of a parallel flow (in addition
to the flow caused by the sink) on selective withdrawal. This paper addresses this
lack, and gives solutions for selective withdrawal from a stratified stream, which are
applicable to a wide range of problems of practical interest.

2. Analysis

We shall consider first the case of a uniform velocity U of the stream, of depth
d, before the sink, of strength (volume flux) q, is placed in the fluid. This case
corresponds to that of a sink moving in an otherwise quiescent fluid. The upper
surface is free, but is practically flat for the problem considered here, so that we can
assume the flow to be confined between two parallel rigid boundaries at distance d
apart. Such an assumption is consistent with the assumption of small fi made later.
The upstream velocity after the sink is introduced will be derived. Assuming that the
sink strength is built from zero to q in a large (compared with d2/q) period T, and
that during that period the flow far upstream is horizontal, we have, for the region far
upstream and with subscripts indicating partial differentiation,

pu, = -px, 0 = -py-gp, (1)

where p is the density, u is the horizontal component of the velocity, p is the pressure,
g is the gravitational acceleration, / is the time, and x and v are Cartesian coordinates.
We measure x from the position of the sink, and v from the horizontal bottom of the
channel. The density far upstream is assumed to be

^ - 1 y ) , (2)
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where fi «. 1 for all cases of practical interest. Yih [10] gave infinitely many upstream
density distributions which, with corresponding upstream velocity distributions, allow
the partial differential equation governing stratified flows to become linear. These pairs
of upstream distributions, and others differing little therefrom, can be treated in a way
similar to that given here.

Eliminating p from (1), we have, since p is a function of y only,

(pu)ly = 0,

the solution of which is

pu = f(y) + k(t), (3)

where

k(0)=0, k'(T) = 0, k(T) = aPQ. (4)

Initially the velocity is U, so that (3) can be written as

u = U + apo/p,

and this, with p given by (2), gives

u = U + a(l+pd-xy) + O(p2). (5)

The constant a is related to q. Integrating (5), we have

Ud + q = Ud + otd{\ + P/2) + O032),

from which we obtain, upon neglecting terms of O(/J2),

a = (q/d)(l - p/2). (6)

Then

u = U+q/d- (Pq/d)(l/2 - y/d). (7)

We shall make things dimensionless by using U + qd~l and d as the scales of
velocity and length, respectively. Then (7) becomes

y), (8)

and the stream function far upstream is obtained from this by integration to be

- y2). (9)
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In (8) and (9), q is defined by

q=q/(Ud + q). (10)

From (9), upon neglecting terms of O(/J2) we have

y = V + Wq/2)(i/ - i,2). (11)

To obtain the associated stream function \j/' used by Yih [9], we note that far upstream

p = Po(l-/3y), (12)

and

V = f (p/Po)U2d* = *- pf2/A (13)
Jo

upon neglecting O(02). From (13) and (9) one obtains, for x = —oo,

r = y-(P/2)[qy +(1/2-q)y2]. (14)

This will later be denoted by y]f'Q. From (14) we have

y = xl,' + (f}/2)[qi,' + (l/2-q)r2). (15)

Then at x = —oo,

P% P ^ / 2 ) [q + (1 2qW\ (16)T77 P% Pp0 ay' ay/'

with terms of O(/33) neglected.
The equation governing \fr' has been given by Yih [9]. In dimensionless terms, it is

^ ^ , (i7)

in which

V2 = 32/dx2 + d2/dy2, F2 = {U + qd~l)2/(gd), (18)

and dp/d\jr' is a function of \j/' only, given by (16). The function h(\jr') is to be
determined from the upstream conditions. We define a densimetric Froude number F
by

F-2 = /IF-2, (19)
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and shall regard F~2 as of 0(1). Substituting (14), (15), and (16) into (17), we have

hW) = - t f /2 ) ( l - 2q) - F~2 [(I + MW + (3j8/4)(l - 2q)fa] . (20)

Then (17) becomes

- F-2 {1 + (0/2) [q + (1 -
= -(0/2)(l - lq) - F-2 [(1 + 0 ^ ' + (30/4)(l - 2<?)V'2]. (21)

Let the \j/' far upstream, given by (14), be denoted by ir'o. Since (20) has been
obtained from the upstream conditions, it is obvious that \j/'Q should satisfy (21), as
can be verified. We shall then write

f' = ^ + <P, (22)

and substitute it into (21) to obtain, after some cancellations,

V > - (1/2)0F-2(1 - 2q)(j>y

= -F-2 {4> + 0 [q<j> + ( 3 / 4 ) ( l - 2q)<P(<t> + 2 ^ ) ] } . (23)

The <p corresponds to the flow induced by the sink. It is therefore proportional to q
and therefore of the order of q, which, as will be seen later, will be restricted to 1/7.
Ignoring terms of O(0<?) in (23) in comparison with those of O(<30, we have

V2(/> + F~24> = 0. (24)

For the reasons that will be explained later we shall assume

F > \/n. (25)

The solution of (24) is then

00

<f> = Y2An sin nnyexp(n2n2 - F"2)l/2x for x < 0, (26)

00

[-(«27r2-F-2)1/2x] for;t>0, (27)

where </>0 will be specified. Matching <px and <p at x = 0 we have

An = -Bn, (28)

K= \ My) sin nnydy. (29)
Jo
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If the sink is located at (0, 0),

<t>oiy) = ~ L. ' J- (30)
sin F~x

If it is located at (0, y s ) ,

= 4>+ = Aqsm[F-\l-y)] f o r y , < y < l , (31)

= </>- = Bq sin F~ly for 0 < y < ys, (32)

where A and B in these equations are determined by the two conditions

(i) d<po/dy must be continuous at y = ys, (33)
(ii) <t>+(ys)-<j>-{ys) = q. (34)

Thus

-Acosff- 'a -y,)] = BcosF~lys, (35)

A sin [F~'(l - ys)] - B sin F~lys = 1. (36)

Once A and B are determined, we can go far upstream to find y2 and yx where

^o(ys) + My,), ^'(>i) = iM*) + 0-(y,)- (37)

These formulae bear directly on the problem of pollutant removal. For a given F, we
determine q and ys to obtain the y2 and yi specified (some iteration may be necessary).
When yi = 0, we have ys = 0, and the determination of q to obtain the specified y2

is simple.
For a sink located at the bottom, the average density p of the fluid withdrawn is

p = q~l f 2 pdxlr, (38)
Jo

the integration being done at a section far upstream. For a linearly stratified fluid, the
use of (12) gives

p = pod - Pq/2), (39)

if terms of O(B2) are neglected. For a sink located at (0, ys), we note first that
\j/2 — \j/l = q. Then, using (11), we have

P=q]Po (l-By)df=Po-
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or

p = po(l - Pys) ~ - y A).

if again terms of O(/82) are neglected. The first term on the right-hand side of (40) is
the upstream density at y = ys. Thus (40) is the general formula containing (39) as a
special case.

2.1. Limitations on F and q We call attention to the fact that after a sink has been
placed in the stream, the density stratification immediately downstream from the sink
will be less than the original one, while the density distribution far downstream will be
the original one (even through the velocity far downstream may slow down after the
introduction of the sink), so that a density disturbance or density current will develop
downstream and may propagate upstream to invalidate the solution. To take care of
that, we require U to be greater than the linear wave velocity of the first (fastest) mode
in the fluid assumed at rest. In dimensionless terms, this requirement can be shown to
be

1/7T.

The value of q will be restricted to 1/7. To take care of amplitude effects, we require,
liberally,

F > 2/n. (41)

This condition is not stringent. It does not require U to be more than 1/3 ms~' under
realistic conditions (for /3 and d).

Near the sink there is a region of back flow and density inversion, and if this region
is too large, gravitational instability may result. We require that the distance between
the sink and the stagnation point downstream from it be only 1/20 of the depth d.
Then a rough estimate gives the limit

Ud/q > (40 - n)/2n or q < 2TT/(40 + it).

For simplicity we shall require

q < 1/7. (42)

This is not likely to be exceeded in practice.

2.2. Some numerical results and flow patterns Given /J, q and ys, the average
density of the fluid can be computed easily from the formula immediately following
(40), and therefore needs no tabulation or graphical representation.

In the problem of pollutant removal, y{ and y2 may be specified and, for a given
U, ys and q are to be determined, as stated in the foregoing. This involves an inverse
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34 Chia-Shun Yih and Songping Zhu [9]

calculation that may require iterations. We choose to exhibit ^i and y2 for given fi, q,
ys and F in Tables 1 to 7. For ys = 0, y2 can be determined from (9) upon putting
its right-hand side equal to q and solving for y. The results are given in Table 1
and are independent of F. Tables 2, 3 and 4 are for ys — 0.25. For fi = 0.01 and
q = 1/8, Table 2 shows that y\ and y2 are only weakly dependent on F for F > 2/7T.
Therefore, in Tables 3 and 4 we have taken F = 3/n only. Table 3 shows how Vi and
y2 vary with q for £ = 0.001, and Table 4 shows how they vary with fi for q = 1/9.
Correspondingly, for ys = 0.5, dependence of y\ and >>2 on F, q and £ is shown in
Tables 5, 6 and 7. All the tables show that y^ and y2 are largely independent of F and
£ and dependent only on q, for the range of F considered at least.

TABLE 1. y2 values with the sink located at ys = 0.

Q

1/7
1/8
1/9
1/11

£=0.01
0.1430
0.1251
0.1112
0.0910

P = 0.05

0.1435
0.1255
0.1115
0.0912

£ = 0.1
0.1442
0.1261
0.1120
0.0915

TABLE 2. yx and y2 values for p = 0.01 and q = 1/8 with the sink located at ys = 0.25.

F y\ yi

2/TC

3/n
4/TT

0.2095
0.2055
0.2043

0.3347
0.3307
0.3295

TABLE 3. y{ and y2 values for P = 0.01 and F = 3/TT with the sink located at ys = 0.25.

1/11
1/9
1/7

0.2176
0.2104
0.1991

0.3087
0.3217
0.3422

TABLE 4. yi and y2 values for q = 1/9 and F = 3/JT with the sink located at ys = 0.25.

0.01
0.05
0.1

yi

0.2104
0.2102
0.2099

yi

0.3217
0.3222
0.3227
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TABLE 5. y, and y2 values for 0 = 0.01 and q = 1/8 with the sink located at ys = 0.5.

35

F

2/7T

3/jr

4/jr

y\
0.4373
0.4373
0.4373

yi

0.5627
0.5627
0.5627

TABLE 6. yx and y2 values for fi = 0.01 and F = 3/n with the sink located at ys = 0.5.

q

I/II
1/9
1/7

Jl

0.4544
0.4443
0.4284

yi

0.5456
0.5557
0.5716

TABLE 7. yx and y2 values for q = 1/9 and F - 3/it with the sink located at ys = 0.5.

p
0.01
0.05
0.1

y\
0.4443
0.4437
0.4429

yi

0.5557
0.5562
0.5568

Under the limitations (41) and (42), the flow patterns are only weakly dependent
on F and /S. We have therefore chosen F = 3/n and fi = 0.01 in Figures 1, 2 and
3, for three locations of the sink. In these figures q = 1/8. When other values of
q satisfying (42) are used, the fluid flowing into the sink becomes thicker or thinner
as q increases or decreases, but the general flow pattern is otherwise little changed.
The lack of dramatic changes in the flow pattern as F and q are varied within the
limitations of (41) and (42) indicates that in a flowing stratified fluid (or for a moving
sink) control of selective withdrawal is certain and entirely at our disposal.

3. Analysis for other upstream velocities

For comparison with the results obtained for the upstream velocity distribution
given by (8), let us now keep the total discharge Ud + q and the limitations on F and
q, but assume

u = C(po/p)l/2, or r = (43)
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-0.5 0 0.5 1

FIGURE 1. The flow pattern when the sink is located at ys = 0 (/3 = 0.01, q = 1/8 and F = 3/n).

:i -0.5 0 0.5 1

FIGURE 2. The flow pattern when the sink is located at y, = 0.25 (fi = 0.01, q = 1/8 and F = 3/n).

far upstream. It can be verified that the total discharge is maintained if

C = = 1-/8/4 + O032). (44)
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-1 -0.5 0 0.5 1

FIGURE 3. The flow pattern when the sink is located at ys = 0.5 (£ = 0.01, q = 1/8 and F = 3/n).

Then (17) becomes, upon determination of h(xjr'),

Writing \jr' = Cy + (f>, we have

= 0.

With the new densimetric Froude number F defined by

(45) can be written as

= CF,

V2</> + F~2<\> = 0

(45)

(46)

(47)

The rest of the analysis is the same as in Section 2. Since (13) and (43) differ by
terms of O(/3) and so do (24) and (47), it is clear that (39) and (40) are unaffected,
and the determination of y2 and y{ will give results that differ from those determined
in Section 2 by quantities of O(y6) only.

If we use the upstream velocity given by Yih's theorem [11] based on shallow-
water theory, the same situation is obtained. In that paper, a transformation is used to
connect the actual velocity (u, v) with the transformed velocity ((/, V) for a uniform
fluid with the same flow pattern. That transformation is

(«, v) = k(p)(U, V), k2 = B(p),
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where B{p) is a function of p alone, determined by the density distribution in the
reservoir where the flow originates. In the present case B(p) is determined from
a linear density stratification in the reservoir, with the gradient B. [The density
distribution in the channel after the fluid issues from the reservoir is then given by (2),
with a linear quantity O(B2)y neglected.] Thus, we have

= \-B/2 + By- By2/! + O(B2),

so that the X. defined in that paper is

X = 1 - B/A + By/2 - By2/* + O(B2).

Then if we take the U in that paper to be 1 + B/12 far upstream, in order to make the
total dimensionless discharge equal to 1, we have the upstream velocity

u = (1 + B/12)X = 1-6/6 + By/2 - By2/4, (48)

upon neglect of O(B2). The rest of the analysis is the same as that in Section 2, and </>
is again governed by (47) if terms of O{Bq) are neglected and

F = (1 - B/6)F. (49)

Thus, accepting errors of O(B2) for p and of O(B) for y2 and yi and the flow pattern,
the results obtained in Section 2, or by using the simpler upstream condition (43), are
the required results for the upstream velocity given by (48).

The theorem of Yih [11] was not an extension of any special results for two
homogeneous layers, but was a completely new result for any density stratification.
Yih did not claim that all channel flows issuing from a large reservoir have the velocity
distributions given by his theorem, because that simply is not true, any later claims
by others to the contrary notwithstanding. A high barrier downstream, such as a
vertical boundary above a sink located at the bottom, would block part of the fluid
at low densimetric Froude numbers, and give rise to a stagnant layer extending all
the way back to the reservoir, thereby drastically invalidating the upstream velocity
distribution in the channel given by that theorem. Selective withdrawal from an
otherwise quiescent stratified fluid, explicitly or implicitly studied by all the authors
cited in the introduction, is, after all, an exploitation of the phenomenon of blocking.
The upstream influence of downstream geometry cannot be ignored. In the present
problem, the underlying assumptions of the shallow-water theory are violated near
the sink. But this violation probably does not have enough upstream influence to
invalidate (48). In any event, our purpose was to show that any slight variation from
uniformity in the upstream velocity has a negligible effect on the results.
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4. The use of 1/'

From the foregoing it is clear that, after the associated stream function \j/' has been
introduced to take care of convective acceleration once and for all, the flow pattern,
the result for p of the fluid withdrawn and the other results of interest depend very
little on any slight variation in the upstream velocity.

But this is not to say that the inertial effect of density variation is negligible. If one
adopts the Boussinesq approach and assumes the density to be constant (= p0) where
it is multiplied to the acceleration, but not where it is multiplied by g, one can obtain
a dimensionless equation

* ^ (50)

which has exactly the form of (17), except that ty has replaced ty'. Working with this
equation and assuming a uniform velocity far upstream, one can determine /z(VO and
obtain substantially the same results as presented in Section 2 or 3. One is then tempted
to say that the inertial effect of density variation is unimportant, and the introduction
of T/̂ ' in the analysis is unnecessary and therefore merely pedantic. But in neglecting
the inertial effect of density variation in the present problem, the Boussinesq equation
is seriously in error near the sink, where the velocity and acceleration are very large
and the inertial effect of density variation very great.

5. Conclusions

The results and their discussion presented above need not be repeated here. The
main conclusion of this paper is that selective withdrawal from a stratified fluid, be its
purpose control of the average temperature or salinity of the fluid withdrawn or removal
of pollutants, can certainly be achieved in a flowing stream or by a moving sink, under
the stated limitations on the (densimetric) Froude number and the discharge into the
sink. The thickness and location of the withdrawn layer are largely independent of
the Froude number and the density gradient, and depend mainly on the strength and
location of the sink. The difficulties encountered (see Yih, [9]) in attempts at selective
withdrawal by a stationary sink at high (that is, > l/n) Froude numbers from an
otherwise quiescent fluid are thus avoided.

References

[1] A. Craya, "Recherches the'oriques sur 1 '6coulement de couches superposees de fluides de densitfis
differentes", La Houille Blanche 4 (1949) 44-55.

https://doi.org/10.1017/S033427000000045X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000045X


40 Chia-Shun Yih and Songping Zhu [15]

[2] W. R. Debler, "Stratified flow into a line sink", / . Eng. Mech. Div., Proc. Am. Soc. Civ. Eng. 85
(1959) 51-65.

[3] P. Gari61, "Recherches expenmentales sur l'ecoulement de couches superposees de fluides de
densites differentes", La Houille Blanche 4 (1949) 56-64.

[4] G. C. Hocking, "Cusp-like free surface flows due to a submerged source or sink in the presence of
a flat or slopping bottom", J. Austral. Math. Soc. Ser. B 26 (1985) 470-486.

[5] T. W. Kao, "Free-streamline theory for inviscid stratified flow into a line sink", Phys. Fluids 13
(1970) 558-564.

[6] A. R. Richardson, "Stationary waves in water", Philos. Mag. 40 (1920) 79-110.
[7] E. O. Tuck and J.-M. Vanden-Broeck, "A cusp-like free-surface flow due to a submerged source

or sink", J. Austral. Math. Soc. Ser. B 25 (1984) 443-450.
[8] J.-M. Vanden-Broeck and J. B. Keller, "Free surface flow due to a sink",/. FluidMech. 175 (1987)

109-117.
[9] C.-S. Yih, "On the flow of a stratified fluid", Proc. 3rd U.S. Nat. Congr. Mech. (1958) 857-861.

[10] C.-S. Yih, "Exact solutions for steady two-dimensional flow of a stratified fluid", / . FluidMech. 9
(1960) 161-174.

[11] C.-S. Yih, "A Class of solutions for steady stratified flows", / . Fluid Mech. 36 (1969) 75-86.

https://doi.org/10.1017/S033427000000045X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000045X

