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Abstract

The objective of this paper is to find some sufficient conditions to ensure the conjugacy of supplements
of a normal subgroup of a soluble group.
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1. Introduction

All groups considered in this paper are finite. We shall adhere to the notation and
terminology of [1, 3].

We recall that a formation is a class of groups F which is closed under taking
epimorphic images and subdirect products. We say that F is saturated if a group
G belongs to F whenever the Frattini factor group G/Φ(G) belongs to F. A Schunck
class is a class of groups such that a group is in the class if and only if every primitive
factor group is in the class. It is known that a formation is a Schunck class if and only
if it is saturated.

Our main goal here is to find some sufficient conditions to ensure the conjugacy of
supplements of a normal subgroup of a soluble group. Our results spring basically
from two sources: classical results about projectors associated to Schunck classes
and saturated formations; and a recent result of Parker and Rowley on conjugacy of
supplements of a nilpotent normal subgroup [4].

The search for conjugacy classes of subgroups to give knowledge on the structure
of the groups, has attracted the attention of many group theorists after the celebrated
Sylow theorems (see [1, 3]). In this context, in [4] the authors proved the following
result.
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T 1.1. Let G be a soluble group and Q a nilpotent normal subgroup of G such
that no G-chief factor of G/Q is G-isomorphic to a G-chief factor of Q. If U and V
are supplements to Q in G with U ∩ Q = V ∩ Q, then U and V are G-conjugate.

This theorem can be easily interpreted in terms of Schunck classes and projectors
and can be deduced as a consequence of a known result of this theory. In fact, we can
consider the Schunck class H of all soluble groups whose primitive epimorphic images
belong to the class of all primitive epimorphic images of G/Q, and we can argue by
minimal counterexample. Then G = 〈U, Vg〉, for all g ∈G, and U ∩ Q = V ∩ Q = 1. A
well-known lemma on projectors due to Gaschütz [3, III, 3.14] implies that U and V are
contained in H-projectors U∗ and V∗ of G respectively. Hence G ∈ H, a contradiction
proving the result.

The question arises whether it is possible to find sufficient conditions on Q, weaker
than nilpotency, and sufficient conditions on the intersections U ∩ Q and V ∩ Q,
weaker than equality, to imply the conjugacy of U and V . The results of this paper
give us some answers.

2. Supplemented normal subgroups

If we turn the situation on its head and look for structural conditions on a normal
subgroup Q of a not necessarily soluble group G having a conjugacy class of
supplements, we have the following theorem.

T 2.1. Suppose that G is a group and Q is a normal subgroup of G such that
any two maximal subgroups of G supplementing Q in G are G-conjugate. Then Q is a
soluble group of nilpotent length at most 2.

P. We suppose that the theorem is false and derive a contradiction. Let (G, Q) be a
counterexample with G of minimal order. Let N be a nontrivial normal subgroup of G
and consider the quotient group G = G/N. Write Q = QN/N. Suppose that U = U/N
and V = V/N are two maximal subgroups of G supplementing Q in G. Then U and
V are two maximal subgroups of G which are supplements to Q in G. By hypothesis
U and V are G-conjugate. Therefore U and V are G-conjugate. It follows from the
minimal choice of G that Q is a group of nilpotent length at most 2. Since the class
of group of nilpotent length at most 2 is a saturated formation, it follows that G has a
unique minimal normal subgroup, N say, and N ≤ Q.

If N ≤ Φ(G), then Q is of nilpotent length at most 2, by [2, Theorem 3.5]. Therefore
Φ(G) = 1. This means that Soc(G) = N is a supplemented minimal normal subgroup
of G.

Suppose that N is nonsoluble. Then G is a primitive group of type 2 whose core-free
maximal subgroups are G-conjugate. This is not possible (see [1, Ch. 1, Section 1.1,
Paragraph 1.1.11, Remark 4]). Hence N = Soc(G) is an abelian minimal normal
subgroup of G.

Let U be a core-free maximal subgroup of G. Then U is a complement to N in G.
Write R = U ∩ Q and A = F(R). Then Q = RN. Since R � Q/N has nilpotent length
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at most 2, we have that R/A is nilpotent. Note that R is a normal subgroup of U and
so is A. If A ≤ Φ(U), then R would be nilpotent, by [2, Theorem 3.5], and Q would
be a group of nilpotent length at most 2. But then G would not be a counterexample.
Therefore A is not contained in Φ(U).

Let S be a maximal subgroup of U such that U = AS and consider the subgroup
V = S N. Then V is maximal in G and G = UN = AS N = AV = QV . In other words,
V is a supplement to Q in G. By hypothesis, V and U are conjugate. This is not
possible because N ≤ V and N ∩ U = 1. Therefore no counterexample exists and Q is
of nilpotent length at most 2. �

The bound of Theorem 2.1 is best possible, as the following example shows.

E 2.2. Consider the group X = SL(2, 3) acting on a two-dimensional vector
space V over the Galois field GF(3). Construct the semidirect product G = [V]X.
Recall that X = PC, where P is a normal subgroup of X and P is isomorphic to the
quaternion group of order eight and C is a cyclic group of order three. If Z = Z(X), the
centre of X, then Q = ZV is a supersoluble nonnilpotent normal subgroup of G. The
set of maximal subgroups supplementing Q in G is the conjugacy class of all core-free
maximal subgroups of G complementing V .

3. The converse

Next we present some results which can be viewed as partial converses of
Theorem 2.1. In fact, our second theorem describes a minimal configuration
encountered in the study of conjugacy of supplements of normal nilpotent subgroups
of soluble groups, from which sufficient conditions and counterexamples emerge. The
following example shows that some conditions should be imposed on the intersections.

E 3.1. Let G = 〈a, b, x : a3 = b3 = x2 = 1 = [a, b], ax = a−1, bx = b−1〉. If Q =

〈a, b〉 �C3 ×C3, then the subgroups U = 〈a, x〉 and V = 〈b, x〉 are two supplements
to Q in G which are not G-conjugate.

Note that in this example, U ∩ Q = 〈a〉 and V ∩ Q = 〈b〉 are two different normal
subgroups of G, which are not G-conjugate.

It seems reasonable, therefore, to impose local conjugacy on the intersections since
a minimal configuration usually implies that Q is of prime power order.

Recall that two subgroups A and B of a group G are locally G-conjugate if every
Sylow subgroup of A is G-conjugate to a Sylow subgroup of B (see [3, Ch. I, Section 6,
Definitions (6.13)]). Local conjugacy is an important subgroup embedding property in
soluble groups.

T 3.2. Let X be a Q-closed class of groups and let N be the class of nilpotent
groups. Consider the class

F = NX = (G : G/M ∈ X for some nilpotent normal subgroup M of G).
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Let G be a soluble group of minimal order in F among the groups satisfying the
following property:

(†) there exists a nilpotent normal subgroup Q of G and non-G-conjugate
supplements U and V of Q in G such that U ∩ Q is locally G-conjugate to V ∩ Q.

Then G is a p-group for some prime p.

P. Let Q be of minimal order among all nilpotent normal subgroups of G
supplemented by two non-G-conjugate subgroups U and V in G such that U ∩ Q is
locally G-conjugate to V ∩ Q. Then 1 , Q and U and V are proper subgroups of G.

The proof is divided into five steps, the first being a standard argument in proofs
involving conjugation.
Step 1. Let N be a minimal normal subgroup of G contained in Q. Then VgN = UN
for some g ∈G.

Consider the quotient group G = G/N. Then Q = Q/N is a nilpotent normal
subgroup of G and G/Q ∈ F . Write U = UN/N and V = VN/N. Then U and V are
supplements to Q in G. Moreover, U ∩ Q = (U ∩ Q)N/N and V ∩ Q = (V ∩ Q)N/N.
Therefore U ∩ Q and V ∩ Q are locally G-conjugate. The minimal choice of G implies
that VgN = UN for some element g ∈G.
Step 2. Q is a p-group for some prime p.

If p is a prime dividing the order of Q, let Qp denote the Sylow p-subgroup of Q. If
Qp ≤ U, then Qp is the Sylow p-subgroup of U ∩ Q and since Qp is normal in G, we
have that Qp ≤ V by hypothesis. Therefore there exists a prime p dividing the order
of Q such that U is a proper subgroup of UQp. Since Qp is normal in G, there exists
an element g ∈G such that UQp = VgQp, by Step 1. Denote X = UQp = VgQp. Note
that U ∩ Qp is a Sylow p-subgroup of U ∩ Q and Vg ∩ Qp is a Sylow p-subgroup of
Vg ∩ Q. Since G = XQ = XQp′ , where Qp′ is the Hall p′-subgroup of Q, it follows
that U ∩ Qp and Vg ∩ Qp are X-conjugate. Moreover, X/(X ∩ Q) �G/Q. Therefore
X ∈ F . If X is a proper subgroup of G, then U and Vg are G-conjugate and this is
not possible. Hence G = X. Now if Qp is a proper subgroup of Q, then U and Vg are
conjugate by minimality of Q. Therefore Q is a p-group.
Step 3.
(1) G = 〈U, V x〉 for any x ∈G; and
(2) Q is a minimal normal subgroup of G.

By Step 2, there exists an element g ∈G such that Q ∩ U = (Q ∩ V)g = Q ∩ Vg.
Consider the subgroup Z = 〈U, Vg〉 and assume that Z is a proper subgroup of G. Then
Z = UQ ∩ Z = U(Q ∩ Z) = Vg(Q ∩ Z). Moreover, G/Q � Z/(Z ∩ Q), since G = ZQ,
and then Z ∈ F . Now

U ∩ Q ∩ Z = U ∩ Q = Vg ∩ Q = Vg ∩ Q ∩ Z.

By minimality of G, the subgroups U and Vg are Z-conjugate. Hence U and V
are G-conjugate, contrary to supposition. Therefore G = Z = 〈U, Vg〉. This implies
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that U ∩ Q = Vg ∩ Q is normalised by U and Vg. Thus U ∩ Q is normal in G and
U ∩ Q = V ∩ Q. Now, if x ∈G, then U ∩ Q = V x ∩ Q. Arguing as above, G = 〈U, V x〉.

Let N be a minimal normal subgroup of G contained in Q. Then, by Step 1,
UN = V xN for some x ∈G. Then G = UN = V xN. If U = G, we have V ≤G and
Q = Q ∩ U. Since Q is a nilpotent normal subgroup of G, we have Q ≤ V and then
G = V . Then U and V are trivially G-conjugate. Hence U and V x are maximal
subgroups of G complementing N. Then Q = N by the minimal choice of G.

Step 4. Op′(U) = 1.

Suppose that Op′(U) , 1 and let M be a minimal normal p′-subgroup of U. Then
Q = [M, Q] × CQ(M) by [3, Ch. A, Section 12, Theorem (12.5)]. Note that U
normalises [M, Q] and CQ(M). Thus they are normal subgroups of G. By minimality
of Q, we have that either CQ(M) = 1 or CQ(M) = Q.

Suppose that CQ(M) = Q. Then M is normal in G. This implies that M ≤ Op′(G).
Since V contains a Hall p′-subgroup of G, we have that M ≤ U ∩ V . By Step 1, U
and V are G-conjugate. Therefore CQ(M) = 1. Hence Q is a ZM-module whose M-
submodule QM composed of all fixed points is trivial. In particular, H1(U/M, QM) = 0.
By [3, Ch. A, Section 11, Theorem (11.3)]), H1(M, Q) = 0. Applying [5, Ch. III,
Section 3.4, Proposition 3.4.2], the sequence

0 −→H1(U/M, CQ(M)) = 0
inf
−→H1(U, Q)

res
−→H1(M, Q) = 0

is exact. This implies that H1(U, Q) = 0. This is equivalent to saying that all
complements of Q in G are conjugate. In particular, U and V are G-conjugate. This
contradiction yields Op′(U) = 1.

Step 5. Conclusion.

By Step 4, we have that Op(U) , 1 and Op(G) = Q Op(U) = Q Op(V). Assume
that Op(G) is a proper subgroup of G. The minimal choice of G implies that
Op(U) = Op(V)g for some g ∈ Op(G). Then Op(U) is normalised by U and by Vg

and then Op(U) is normal in G = 〈U, Vg〉. In particular, Op(U) ≤ U ∩ V . By step 1, U
and V are G-conjugate, contrary to supposition. Hence G is a p-group. �

Theorem 3.2 allows us to obtain a number of results on conjugacy of supplements
of nilpotent normal subgroups of soluble groups.

If Y is a class of soluble primitive groups then by [3, Ch. III, Section 2, Theorem
(2.7)] the class HY composed of all soluble groups whose primitive epimorphic images
are in Y is a Schunck class.

C 3.3. Let G be a soluble group and Q a nilpotent normal subgroup of G
such that no G-chief factor of G/Q is G-isomorphic to a G-chief factor of Q.

If U and V are supplements to Q in G such that U ∩ Q and V ∩ Q are locally G-
conjugate, then U and V are G-conjugate.

P. Let Y be the class of all primitive groups which are isomorphic to a factor
group of G/Q. Consider the Schunck class H = HY. Then G/Q ∈ H and then G ∈ NH.
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If G is a minimal counterexample to the corollary, then G is a group of minimal order
in NH satisfying (†). By Theorem 3.2, G is a p-group. Therefore H =Sp, the class of
p-groups. But then the hypothesis forces Q = G or Q = 1. If Q = 1, then U = V = G.
If G = Q, then U and V are G-conjugate by hypothesis. Thus no possibility can happen
and the minimal counterexample does not exist. �

Note that Theorem 1.1 is a particular case of Corollary 3.3.
We shall show now by an example that no statement of a similar kind is possible if

we remove the hypothesis on the chief factors.

E 3.4. Let Q be a group isomorphic to the quaternion group of order eight.
Then Aut(Q) is isomorphic to S , the symmetric group on four letters. Consider
a subgroup T of S isomorphic to the symmetric group on three letters. Write
T = 〈b, c : b3 = c2 = 1, bc = b−1〉. Set B = 〈b〉 and C = 〈c〉. Construct the semidirect
product G = [Q]T . Write Z = Z(Q) = 〈z〉. Note that G/QB is a complemented central
2-chief factor of G over Q and Z/1 is also a central G-chief factor of G. Consider the
subgroups U = 〈b, c〉 and V = 〈b, zc〉. Then U and V are two supplements to Q in G.
Moreover, U ∩ Q = 1 = V ∩ Q.

If Ug = V for some g ∈G, then g ∈ NG(〈b〉) = Z × U. This would imply that U = V .
But then z = (zc)c ∈ U and this is not true.

C 3.5. Suppose that G is a soluble group and Q is a nilpotent normal
subgroup of G. If U and V are supplements to Q in G such that U and V are locally
G-conjugate, then U and V are G-conjugate.

P. Consider the class X of all soluble groups X such that X possesses a nilpotent
normal subgroup W supplemented in X by two locally X-conjugate proper subgroups
Y and Z of X. Clearly the class X is Q-closed. Write F = NX.

Let G be a minimal counterexample to the corollary. There exists a nilpotent normal
subgroup Q of G and supplemented by two non-G-conjugate subgroups U and V which
are locally G-conjugate. Hence U ∩ Q and V ∩ Q are locally G-conjugate. Therefore
G is a group of minimal order in F among the groups satisfying (†). By Theorem 3.2,
G is a p-group for some prime p. Then U and V are G-conjugate. This is the desired
contradiction. �

Let F be a saturated formation. If G is a group and G < F, then the F-residual GF

of G, the smallest normal subgroup of G with quotient in F, is a nontrivial normal
subgroup of G which is supplemented in G by every F-projector of G.

C 3.6. Let F be a saturated formation and let G be a soluble group whose
F-residual GF is nilpotent. Then any two supplements U and V of GF in G are
G-conjugate provided U ∩GF and V ∩GF are locally G-conjugate.

P. Let F be the class of all groups whose F-residual is nilpotent. Then F = NF.
If G is minimal counterexample to the corollary, then G is a group of minimal order in
NF satisfying (†). Applying Theorem 3.2 to the class F , it follows that G is a p-group.
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Hence either GF = G, and then U and V are G-conjugate by hypothesis, or GF = 1, and
then U = V = G. In any case G is not a counterexample and the corollary holds. �

The case where GF is abelian is particularly interesting. In this case GF is
complemented in G and its complements form a conjugacy class of subgroups of G by
[3, Ch. IV, Section 5, Theorem (5.18)]. We see that when GF is abelian, Corollary 3.6
is equivalent to the fact that the complements of GF are conjugate in G.

C 3.7. Let F be a saturated formation and let G be a soluble group whose
F-residual GF is abelian. The following conditions are equivalent:

(1) any two supplements U and V of GF in G are G-conjugate provided U ∩GF and
V ∩GF are locally G-conjugate;

(2) any two complements U and V of GF in G are G-conjugate.

P. Since clearly (1) ⇒ (2) we have only to prove (2) ⇒ (1). Assume that the
F-residual GF is abelian and let U and V be two supplements of GF in G with U ∩GF

and V ∩GF locally G-conjugate. If P is a Sylow p-subgroup of U ∩GF and R is a
Sylow p-subgroup of V ∩GF, then R = Px for some x ∈ U. Therefore R ≤ U ∩GF

and then R = P. Therefore U ∩GF = V ∩GF. Moreover N = U ∩GF is normal in G.
Then U/N and V/N are complements of GF/N = (G/N)F in G/N. By (2), U and V are
conjugate in G. �
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