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DUALITY FOR LINEAR MULTIPLICATIVE PROGRAMS
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Abstract

Linear multiplicative programs are an important class of nonconvex optimisation problems
that are currently the subject of considerable research as regards the development of com-
putational algorithms. In this paper, we show that mathematical programs of this nature are,
in fact, a special case of more general signomial programming, which in turn implies that
research on this latter problem may be valuable in analysing and solving linear multiplica-
tive programs. In particular, we use signomial programming duality theory to establish a
dual program for a nonconvex linear multiplicative program. An interpretation of the dual
variables is given.

1. Introduction

We consider mathematical programs of the form

Minimise ]_[(aiTx + b;) subjectto Dx > c, (P)

i=1

where x € R™ is a vector of variables and a; € R", b; e R, i =1,...,n,c € R¥
and D € R¥*™ are constants. We assume that the feasible region {x | Dx > ¢} is
nonempty and bounded so that program (P,) has a finite optimal solution.

We call program (P;) a linear multiplicative program. It is a nonconvex program
with multiple local optima. Applications include economic analysis [6], bond portfolio
optimisation [7] and VLSI chip design [12]. Matsui [13] shows that this program is
NP-hard. Extensive analysis of this problem was first carried out for n = 2 by
Forgo [5], Swarup [16] and Konno ez al. [8, 9], where several earlier references may
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be found. Subsequently further development particularly with regard to computational
methods for n > 2 occurred (see, for example, [1, 2, 10, 11, 15, 17]).

In this paper, we show that a linear multiplicative program is a particular case of a
signomial program and hence theory developed for signomial programs is transferable
to linear multiplicative programs. In particular, by making this correspondence, we
develop a dual program for a linear multiplicative program. An interesting interpre-
tation is given for the dual variables which is similar to that in prototype geometric
programming.

2. Signomial programming and duality

A general signomial problem is of the form
Minimise go(r) subjectto g, (1) <6 (==x1),k=1,...,p, and t > 0,

where g.(t) = Y,y 0ici 2 £,k =0,...,p, are signomial functions, which
are in general nonconvex. The index sets [k], k = O,..., p, form a sequential
partition of the integers 1 to n, thatis, [0] = {1,...,m}, [11={m +1,...,n},...,
ipl=1{n,+1,...,n}. Herec;,i =1, ..., n,arestrictly positiveand a;;,i =1, ..., n,
j = 1,...,m, are arbitrary coefficients. Further, o; = 1, i = 1,...,n, and
consequently, signomial programs are nonconvex programs with multiple local optima.
Note that signomial programs are an extension of prototype geometric programs [4]
from posynomial functions to signomials [14].
The corresponding dual program [14] is

a8 b
Maximise ]ﬁl I (;—) [T
k=1

k=0 ielk) d

subject to a generalised normality condition Z,em] 0:8; = 1, orthogonality conditions
2 i10:a;8,=0,j =1,...,m,linear inequality constraints 6, ), 0id; = A, 2 0,
-k =1, ..., p, and nonnegativity constraints

8>0, i=1,....,n, MN=0, k=1,...,p.

For every point t° where go(#) is a local minimum there exists a set of dual variables
89, 1% such that v(8°, A%) = go(1%).

Since a weak duality theorem does not hold, this dual is termed a pseudo-dual.
The global minimum is obtained through a process called pseudominimisation [14]
whereby all local maxima of the dual are obtained with the global minimum being
the minimum of these local maxima. This concept of “pseudo-duality” is similar to
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Craven’s concept of “quasi-duality” [3] which shows the existence of points termed
“quasimin” and “quasimax” where the duality gap is zero. In both of the above cases
which deal with nonconvex problems, a strong duality result holds without a weak
duality result.

A locally optimal primal solution can be constructed from a locally optimal dual
solution from the following relations between the primal and dual variables:

m ay
all._, ¢
sl 5 e
8o(1)
and
T 22 kl, k=1
c,-l—[tj = )‘-_k, ielkl, k=1,...,p.
j=1
3. Dual linear multiplicative program
For notational convenience, we assume that D, ¢, b;, i = 1, ..., n, are nonnegative

+

and a, =o0;a;, i=1,...,n,j =1,...,m, where o is a sign function defined by

+1, if q, >0,
g5 = )
—1, otherwise.

Note that a,;f > 0. Further, without loss of generality, we require that a’x + b; > 0
andx; >0,i=1,...,n.

Program (P;) may be written in the following form:

m
. Zorlja;xj+b,5s,., i=1,...,n,
Minimise I—[s,- subject to i=l (P)
i=] deijZCk, k=1,...,K
j=|

and finally as a signomial program:

) m s,."Zaija;xj-%-b,si"sl, i=1,...,n,
Minimise ns; subject to U (P)
i=i 'Y dyx; = 1, k=1,...,K,
j=1
withs; >0,i=1,...,nandx; >0,j =1,...,m.
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Using the prescription in Section 2, we may construct the following dual to pro-
gram (P3). This is

1 b n m a+ oydy n b B K m ck—ld Yy
Maximise (—-) (—i) (—') L A
8 n H 8 izt \Bi g ,l:! Yy

<[] [Tn (D3)

S =1, 3.1

the orthogonality conditions

So— ) 048 —fi=0, i=1,...,n, (3.2)

n K
20980—2)@:0, j=l,...,m
i=1 k=1

and
8= o8 +B. i=1...n, (3.3)
j=l
)’k-_-Z)’kjy 81] 20’ yk] ZO, 81‘201 ﬂiZO,
j=1
wherei=1,...,n,j=1,... mk=1,.

Combining results (3.1)—(3.3) shows that Z 1048, =1-8,i=1,...,nand
8, = 1. Hence the dual program (D;) may be sxmpllﬁed somewhat to yield:

oyéy, n b. B K m Ck_ld ' ~Yy K
mmmise TT1T(2) " T1(2) TI1 <_) I
i=1 ' k=1

1=1 j=I k=1 =1 Yij

subject to the linear constraints 37" 0,6, + 8 = 1, 3__, 0,8; ~ Y % =0,
Z;.":lykj—yk:O,J,-J Zo,ykao B >0, wherei =1,. Lnj=1,...,m,
k=1, ...,K.
Further, at optimality, the primal and dual variables are related by
s™'a Fx; =8,/8, s7'b, = 8,18, 'd,qxj =¥y /Yo

wherei=1,...,n,j=1,... mk=1,...,K.
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Since§; =1,i =1,..., n, it follows that

8 aij ﬂ bi
i’_zj]aaux,+b i_z ora,]xj+b
and
Vi
—cd -1 3.4
K Vi )

Note that the dual variables §; and 8; may be interpreted as the relative contribution of
each variable x; and parameter b; respectively to term 7 in the multiplicative objective
at optimality. In polynomial geometric programming, the dual variables §; have an
interpretation as the relative contribution of each term i to the optimal objective value.
Hence in both cases they have an interpretation in terms of a relative contribution.
Note also that the optimal primal variables are readily calculated from (3.4).
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