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ABSTRACT

This article proposes a complex economic scenario generator that nests ver-
sions of well-known actuarial frameworks. The generator estimation relies on
the Bayesian paradigm and accounts for both model and parameter uncer-
tainty via Markov chain Monte Carlo methods. So, to the question is less
more?, we answer maybe, but it depends on your criteria. From an in-sample
fit perspective, on the one hand, a complex economic scenario generator seems
better. From the conservatism, forecasting and coverage perspectives, on the
other hand, the situation is less clear: havingmore complexmodels for the short
rate, term structure and stock index returns is clearly beneficial. However, that
is not the case for inflation and the dividend yield.

KEYWORDS
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1. INTRODUCTION

Economic scenario generators (ESGs) or investment models are comprehen-
sive frameworks that produce scenarios of the joint behaviour of financial
market values and economic variables. They are parametric models used by
actuaries and risk managers in pension, life insurance and banking for numer-
ous purposes: asset and liability management, financial planning, regulatory
compliance, investment strategy and risk attribution, amongst others. These
generators are different from other economic and financial models because
their primary goal is to generate a set of future scenarios that span the range of
realistic outcomes over the long run.
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ESGs are helpful but—like most models—they are far from perfect. Indeed,
“a model is an imperfect representation of a more complex reality” (Collins
et al., 2015). As we do not know the true data generating process, one of the
major concerns is model risk that results from using insufficiently accurate
models.

One could solve this issue by constructing a complicated, general frame-
work that accounts for as many stylized facts as possible. We indeed have
the knowledge and the technology to do so nowadays. However, this process
would lead to a highly parametrized model, which goes against the idea of
parsimony in statistics—the desire to explain phenomena using fewer parame-
ters. This paper investigates this tradeoff: would a more complex ESG perform
better, or would a simple model accomplish the same performance?

To answer this question, we develop a new, state-of-the-art ESG that
focuses on four different variables: the inflation rate, the risk-free interest
rate term structure, the dividend yield and stock index returns.1 The ESG
is based on three main principles. First, we consider a cascade structure
to capture some of the dependency amongst the model variables. Second,
we rely on regime-switching dynamics modelled by a Markov chain; in this
article, they are observable—unlike most studies—and rely on monetary pol-
icy. Working with an observable regime is not only beneficial because it
allows for a better interpretation of our model variables, but also because
it leads to more straightforward parameter estimation procedures. Third, we
consider the changing nature of the distribution over time by allowing for
dynamic variances via generalized autoregressive conditional heteroskedastic-
ity (GARCH) models. Again, the variances are observable in this case because
the one-step-ahead variance is known in GARCH models. This ESG brings
the appropriate level of complexity: it captures multiple stylized facts without
being overly complicated, and it relies on well-known models and observed
variables.

This framework is not the first ESG proposed in the actuarial literature,
however (for an in-depth review of ESGs, see Pedersen et al., 2016). The lit-
erature on this class of models dates to the mid-1980s with the publication of
an influential study by Wilkie (1986). Based on the Box–Jenkins approach, his
framework is composed of four connected models: an inflation model, an inter-
est rate model, a dividend yield model and a stock index return model. It has
been the object of multiple studies over the years (e.g., Geoghegan et al., 1992;
Wilkie, 1995; Huber, 1997; Zhang et al., 2018; Bégin, 2019).

Advances in computing power and technology paved the way for more
complex models based on time series methods and applications of stochas-
tic processes in finance and financial econometrics. For instance, Chan (1998)
proposed a continuous-time ESG based on Lévy processes. Threshold auto-
regressive models were employed by Whitten and Thomas (1999) and Chan
et al. (2004). Chan (2002) generalized Wilkie’s framework by allowing for
multiple autoregressive and moving average effects. Ahlgrim et al. (2005) pro-
posed a model similar to Wilkie’s, but allowed for regime-switching dynamics
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for stock index returns and a second interest rate factor to model long rates.
Dynamic volatility—similar to that used in this study—was proposed by Şahin
et al. (2008), but those authors only considered autoregressive conditional
heteroskedasticity (ARCH) dynamics. More recently, Sneddon et al. (2016)
proposed the Simulation of Uncertainty for Pension Analysis (SUPA) model.

The literature above focused mainly on the modelling issue, paying less
attention to the estimation issue. Most studies used classical (frequentist)
approaches like the method of least square or maximum likelihood estima-
tion, without substantial emphasis or discussion on the statistical procedures
employed. These methods assume that the parameter values are known once
the estimation procedure is carried out. It contrasts with another popular
school of thought in statistics—the Bayesian paradigm—which allows for a
much more general definition of uncertainty: besides the apparent process
uncertainty related to the stochastic nature of the random process under study,
this paradigm also considers parameter and model uncertainty (see Chapter 6
of Bernardo and Smith, 2001, for details).

The notion of parameter uncertainty, on the one hand, is not a new con-
cern for actuaries and has been studied on multiple occasions; for instance,
see Hartman et al. (2017) and references therein for a general review, and Bégin
(2019) for an application to ESGs. Model uncertainty, on the other hand, has
been less of a consideration. One notable exception is Cairns (2000) who dis-
cussed a full Bayesian approach for both parameter and model uncertainty in
the context of stochastic interest models and ruin theory. Our research ques-
tion is related to the notion of model uncertainty because it investigates and
compares different model features; this makes the use of Bayesian statistics a
very natural choice to answer our question.

This paper contributes to the literature in the following ways. First, we
introduce a new ESG for the actuarial profession that nests versions of well-
known actuarial frameworks (i.e., a Wilkie-like model, an extendedWilkie-like
model based on his 1995 extension and an Ahlgrim, D’Arcy, and Gorvett-like
model). The model considers inflation, the term structure of risk-free inter-
est rates, the dividend yield and stock index returns. Second, we propose a
Bayesian-based Markov chain Monte Carlo (MCMC) estimation procedure
that accounts for both parameter and model uncertainty. The method uses
an adaptive Metropolis algorithm in the spirit of Haario et al. (2001), along
with the reversible jump MCMC found in Green (1995). Third, we empirically
investigate the performance of the new model and its nested variants on US
data. We find that the most complex ESG works better from an in-sample fit
perspective. From the conservatism, forecasting and coverage perspectives, the
situation is less clear. Models for interest rates and stock index returns benefit
from more sophisticated dynamics. It is the opposite for the inflation and the
dividend yield, however.

The remainder of this article is organized as follows. Section 2 intro-
duces a novel, state-of-the-art ESG for the actuarial profession and discusses
models that are nested in this general framework. The Bayesian estimation
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methodology used to estimate the new ESG is presented in Section 3. Section 4
explains our datasets and displays some of our empirical results. Section 5
goes further and provides a coherent mechanism to assess model uncer-
tainty and selection. Then, in Section 6, the new ESG and other relevant
generators are compared in an out-of-sample exercise that focuses on conser-
vatism, forecasting and coverage. Section 7 concludes and discusses possible
extensions.

2. A NEW ECONOMIC SCENARIO GENERATOR FOR THE ACTUARIAL
PROFESSION

To assess the usefulness of more complex ESGs, we introduce a general frame-
work that embeds models with features similar to those of Wilkie (1986, 1995)
and Ahlgrim et al. (2005). The new ESG is based on three main principles:

1. Cascade structure. Like Wilkie (1986, 1995) and Ahlgrim et al. (2005), we
capture some of the dependency amongst the model variables via a cascade
structure—each subsequent variable in the structure depends only on prior
variable values. For the proposed model, the monetary policy is the primary
driver and impacts most variables in our framework.

2. Observable regime-switching dynamics. Unlike most ESGs proposed in
the existing actuarial literature, we rely on a regime variable—monetary
policy—to give our model more structure. Indeed, monetary policy impacts
multiple facets of the economy such as the inflation, the short rate and stock
returns (see, e.g., Engle et al., 2017, for the impact on the short rate dynam-
ics and Ioannidis and Kontonikas, 2008, for the effects on stock returns).
We rely on observable instead of latent regimes because they allow for a
better interpretation of our model variables and are easier to deal with from
an estimation perspective.

3. Observable dynamic variances. This study relies on GARCH models to cap-
ture the varying nature of volatility over time. Specifically, we use non-linear
asymmetric GARCH dynamics in the spirit of Engle and Ng (1993). In
addition, as with regime-switching dynamics, we aim for a model that only
allows for observable variables. GARCH dynamics are indeed very conve-
nient to work with because the one-step-ahead conditional variance depends
only on past observations, unlike stochastic volatility-type models.

Based on these three principles, we build a general framework. As shown in
Figure 1, the framework relies on six models: monetary policy, inflation, the
short rate, the term structure of interest rates, the dividend yield and stock
index returns. We start by introducing each component. Then, we describe
three nested economic scenario generators: (1) a simplified version of Wilkie’s
(1986) model, (2) a model based on his 1995 extension and (3) a variant of the
framework proposed by Ahlgrim et al. (2005).
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FIGURE 1: Cascade structure of the new economic scenario generator.

2.1. Monetary policy regimes

The first level of our proposed ESG models the monetary policy. We suggest a
regime-switching dynamics to capture the changing nature of the policy in the
spirit of Renne (2017).

Let mt be a discrete-time observable Markov chain with three states: tight-
ening or upward (u), status quo (s) and accommodating or downward (d). The
transition probabilities of this Markov chain are given as follows:

� =
⎡
⎣puu pus 0
psu pss psd
0 pds pdd

⎤
⎦ =

⎡
⎣puu 1− puu 0
psu 1− psu − psd psd
0 1− pdd pdd

⎤
⎦ ,

because puu + pus = 1, psu + pss + psd = 1, and pds + pdd = 1.
We infer the states of this Markov chain from a reference rate Rt—fixed by

the central bank—following Engle et al. (2017):2

mt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u if ∃ t′ ∈ [t− 3, t] and t′′ ∈ [t, t+ 3] such that Rt −Rt′ > 0 and
Rt′′ −Rt > 0

d if ∃ t′ ∈ [t− 3, t] and t′′ ∈ [t, t+ 3] such that Rt −Rt′ < 0 and
Rt′′ −Rt < 0

s otherwise.

(2.1)

In lay terms, we consider an upward regime at time t whenever an increase
in the reference rate happened less than 3 months earlier and the subsequent
increase happens during the next 3 months. Similarly, we consider a down-
ward regime at time t whenever a decrease in the reference rate happened less
than 3 months earlier and the subsequent decrease happens during the next
3 months.

Note that, as opposed to most studies using regime-switching environments
in the ESG literature, our model uses observable—economically meaningful—
states instead of latent ones.

2.2. Inflation model

Let CPIt be the level of the consumer price index (CPI) at time t. For most—if
not all—economies, the CPI time series contain a unit root. Hence, instead

https://doi.org/10.1017/asb.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.21


784 J.-F. BÉGIN

of modelling the level itself, it is common to model the rate of change of
the CPI. In our setting, it is captured by an autoregressive model of order
one, AR(1), with a regime-dependent long-run mean level and conditional
heteroscedasticity:

qt = log
(

CPIt
CPIt−1

)

= μq,mt + aq
(
qt−1 − μq,mt

) + σq,t εq,t, εq,t ∼N (0, 1), (2.2)

σ 2
q,t+1 = σ 2

q + αq

((
σq,tεq,t − σq,tγq

)2 − σ 2
q

(
1+ γ 2

q

)) + βq
(
σ 2
q,t − σ 2

q

)
, (2.3)

where μq,u, μq,s and μq,d are the regime-dependent long-run levels of the infla-
tion rate and aq is the autoregressive parameter. The inflation rate update
of Equation (2.2) is reminiscent of the AR model used by Wilkie (1986) and
Ahlgrim et al. (2005), amongst others. Nonetheless, it also includes the poten-
tial for heteroscedasticity (i.e., Equation (2.3)) and σ 2

q,t is the time-t conditional
variance of the inflation. The variance is updated via a GARCH model sim-
ilar to those used by Kilian and Manganelli (2007) and Bégin (2016) in the
context of inflation modelling. The long-run variance level of the inflation rate
is given by σ 2

q , and αq, βq and γq are the reaction, persistence and asymmetry
parameters, respectively.

This model could be generalized by including regime dependence in our
volatility process and its parameters. However, our initial analysis of the US
data shows that average inflation tends to be impacted by the regimes, whereas
the standard deviation is not. To keep the economic scenario generator as
parsimonious as possible, we do not include such regime-dependent variance
levels, but one could do so if the data warrant their use.

2.3. Risk-free interest rates

Interest rates are one of the most critical components in many economies. They
influence the cost of borrowing, the return on savings and the total return of
many investments. Consequently, the literature associated with interest rate
models is voluminous (the interested reader may refer to Brigo and Mercurio,
2007, for an exhaustive review of interest rate modelling). In the context of
ESGs, the risk-free yield curve is also considered as one of the core components
because of its importance in discounting liability cash flows and in determining
returns on fixed-income instruments.

Our framework’s risk-free interest rate is comprised of two components: a
short rate model and a term structure component constructed on top of it. We
introduce each component separately.

2.3.1. Short rate
Over the years, a debate has raged over the stylized facts required for short rate
modelling. Most people agree that shorter rates tend to be more volatile than
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longer rates (Ahlgrim et al., 2005) and that the short rate appears to revert to
some average level—a feature modelled in very early interest rate studies, such
as Vasicek (1977). Nonetheless, the question of the possibility of negative rates
has not yet been settled. Some authors proposed dynamics that could become
negative (e.g., Vasicek, 1977), while others prevented the short rate from being
negative (e.g., Rendleman and Bartter, 1980; Cox et al., 1985). Another avenue
is to apply a logarithmic transform to the rates directly before modelling them
so that they remain positive.

The literature on ESG also shows divisions on this issue: Wilkie (1986,
1995) uses a logarithm transformation to ensure that real interest rates are
positive, whereas Ahlgrim et al. (2005) allow for negative rates. Our model
embeds both approaches. Specifically, we rely on a transformation reminis-
cent of Engle et al. (2017) by incorporating a piecewise function that deals
differently with high and low rates: we use a linear transform for higher rates
and a logarithmic transform for lower rates. The transformed (continuously
compounded) short rate is given by

r̃t ≡Tr (rt)=
{
rt if rt > r
cr,0 + cr,1 log (rt − cr) if rt ≤ r ,

where cr,0 = r− (r− cr) log (r− cr) and cr,1 = r− cr, which makes function Tr

continuously differentiable and strictly monotonic for all rt > cr. Our approach
is slightly more general, as negative rates are permitted if cr < 0; for instance, an
actuary may determine that the natural limit for the short rate could be lower
than zero. Our approach allows for some flexibility in this respect.3

Similar to the inflation model introduced above, the transformed short
rate is modelled by an AR(1) model with a regime-dependent mean level and
conditional heteroscedasticity:

r̃t = μr,mt + ar
(
r̃t−1 − μr,mt

) + σr,t εr,t, εr,t ∼N (0, 1),

σ 2
r,t+1 = σ 2

r + αr

((
σr,tεr,t − σr,tγr

)2 − σ 2
r

(
1+ γ 2

r

)) + βr
(
σ 2
r,t − σ 2

r

)
,

where μr,u, μr,s and μr,d are the regime-dependent long-run levels of the short
rate. The other parameters are analogous to those introduced in Section 2.2.

Finally, to capture the potential relationship between inflation and the short
rate innovations, we assume a non-nil correlation between εq,t and εr,t; that
is, Corr

(
εq,t, εr,t

) = ρq,r. Note that the correlation captures similar dynamics to
Wilkie’s explicit loading on qt in his interest rate model.4

2.3.2. Term structure
As a basis for the rest of our term structure, we use (continuously com-
pounded) forward rates constructed from yields. We denote fi,t as the forward
rate observed at time t for a contract starting at t+ τi−1 and ending at the next
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available maturity, t+ τi. The latter is computed in the following way:

fi,t = 1
τi − τi−1

(
τi ri,t − τi−1 ri−1,t

)
, i ∈ {1, 2, ..., n},

where ri,t is the zero-coupon bond yield for tenor τi and the shortest maturity
available is assumed to be our short rate, that is, r0,t = rt.

To prevent the chance of any forward rates of becoming negative, we use a
similar transformation to that proposed in Section 2.3.1:

f̃i,t ≡Tf (fi,t)=
{
fi,t if fi,t > f
cf ,0 + cf ,1 log

(
fi,t − cf

)
if fi,t ≤ f

,

where cf ,0 = f − (f − cf ) log (f − cf ) and cf ,1 = f − cf .5

While interest rate—and forward rates for that matter—movements are
complex, Litterman and Scheinkman (1991) show that 99% of the yield curve’s
total variation can be explained by three fundamental shifts: a level compo-
nent, a slope component and a curvature component. We apply a similar idea
to our transformed forward rates using the slope and the curvature as observ-
able factors to explain the term structure; we do not consider the level as part
of our forward rate model because it already accounted for by the short rate
model.6 This strategy also allows us to cope with the dimensionality associated
with modelling each forward rate individually.

Specifically, we model the term structure by assuming that the spreads—
defined as the difference between the transformed forward rates and the
transformed short rate—are generated by observable factors:

f̃ff t − 1n r̃t = μf +AAAf FFFt + �f εf ,t, εf ,t ∼Nn(0n, In),

where f̃ff t = [ f̃1,t f̃2,t ... f̃n,t ]	, 1n is an n-dimensional vector of ones, μf is
an n-dimensional vector containing average spread levels, AAAf is an n× 2 matrix
defined below, �f is an n× n diagonal matrix that contains the standard devia-
tions of the measurement errors andNn(0n, In) is an n-dimensional multivariate
normal distribution with mean 0n and variance In denoting the n× n identity
matrix. Each row of matrix AAAf is given by

AAAfi =
[
afi ,1 afi ,2

]
.

As commonly done in the interest rate literature, the factors are calculated
in the following way:

Slope: F1,t ≡ f̃n,t − f̃1,t,

Curvature: F2,t ≡ f̃1,t + f̃n,t − 2f̃j,t,

where 1< j< n. We then assume that the observable factors summarizing the
spreads follow a two-dimensional autoregressive model given by the following
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dynamics:

FFFt = μF +AAAF (FFFt−1 − μF) + �F εF ,t, εF ,t ∼N2(02, I2),

where FFFt = [ F1,t F2,t ]	, μF is a two-dimensional vector containing the long-
run mean parameters and AAAF and �F are 2× 2 diagonal matrices containing
the autoregressive parameters and variance parameters, respectively.7

2.4. Dividend yield

Most ESGs in the actuarial literature rely on AR(1) dynamics to model the log-
arithm of the dividend yield (Wilkie, 1986, 1995; Hibbert et al., 2001; Ahlgrim
et al., 2005; Sneddon et al., 2016). We generalize these dynamics to account for
a regime-dependent long-run mean and conditional heteroscedasticity:

log (dt) = log
(
μd,mt

) + ad
(
log (dt−1) − log

(
μd,mt

)) + σd,t εd,t, εd,t ∼N (0, 1),

σ 2
d,t+1 = σ 2

d + αd

((
σd,tεd,t − σd,tγd

)2 − σ 2
d

(
1+ γ 2

d

)) + βd
(
σ 2
d,t − σ 2

d

)
,

where μd,u, μd,s and μd,d are the regime-dependent long-run levels of the divi-
dend yield. The interpretation of parameters ad , σ 2

d , αd , βd and γd is similar to
their inflation and short rate counterparts.

Also, identically to the relationship between inflation and the short rate, we
assume a non-nil correlation between εq,t, εr,t and εd,t; that is, Corr

(
εq,t, εd,t

) =
ρq,d and Corr

(
εr,t, εd,t

) = ρr,d .

2.5. Stock index returns

Like interest rates, many studies have examined the behaviour of stock index
and equity returns. Frequently, stock index returns are assumed to follow
a normal distribution, similar to the assumption used in Black and Scholes
(1973). Unfortunately, this very simplistic model does not fit historical obser-
vations of stock index returns; they reveal fatter tails than those implied by the
normality assumption (Campbell et al., 1997).

Several alternative approaches have been proposed to cope with this issue:
GARCH models (e.g., Bollerslev, 1986), regime-switching frameworks (e.g.,
Hamilton, 1989) and jump-diffusion models (e.g., Heston, 1993; Duffie et al.,
2000). The two former models have been popularized in actuarial science by
Hardy (2001) and the Canadian Institute of Actuaries (2002). The latter class
of models received increasing attention from actuaries and has recently been
used in academic studies (e.g., Cui et al., 2017; Bégin, 2020).

In the spirit of Hardy (2001), Ahlgrim et al. (2005) and Collins et al. (2015),
we propose a regime-switching model for stock returns in this study. Instead of
considering latent regimes, however, we use the observable monetary regimes
of Section 2.1, which capture the changing nature of the average return. In
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addition, we add aGARCH structure to capture the changing nature of volatil-
ity over time. Assuming that St is the time-t price of the index and yt is the
time-t return, we have the following:

yt = log
(
St
St−1

)

= rt
12

+ μy,mt + σy,t εy,t, εy,t ∼N (0, 1),

σ 2
y,t+1 = σ 2

y + αy

((
σy,tεy,t − σy,tγy

)2 − σ 2
y

(
1+ γ 2

y

)) + βy
(
σ 2
y,t − σ 2

y

)
,

where μy,u, μy,s and μy,d are the regime-dependent long-run average returns
in excess of the short rate. Again, the GARCH parameters have a similar
interpretation to those already used for the inflation, short rate and dividend
models.8

2.6. Nested specifications

In addition to the full framework explained above, three nested cases are used
in this study. These three nested models were selected because they are compa-
rable to well-known frameworks in the ESG literature. They allow us to make
comparisons readily without relying on additional modelling frameworks.

– M1: A Wilkie-like framework. The most elementary model considered in
this study is a framework reminiscent of Wilkie (1986). It is obtained by
assuming only one monetary regime and homoscedastic innovations for the
inflation rate, short rate, dividend yield and stock index returns. To force
the interest rate model to use only one factor—the one associated with the
short rate—we set all the entries of AAAf to zero. More technical details on this
model are given in Section SM.A.1 of the Supplementary Material.

– M2: An extended Wilkie-like framework. The term structure model consists
of one factor (i.e., slope), bringing the total number of interest rate factors
to two, similar to Wilkie (1995). For more technical details on this model,
refer to Section SM.A.2 of the Supplementary Material.

– M3: An Ahlgrim, D’Arcy, and Gorvett-like framework. The model is slightly
more complex than M2, as it allows for regimes. The regime only impacts
the mean and the variance of the stock index returns, however. All other
dynamics, except for the stock index returns, are homoscedastic and highly
similar to those used in M2. The term structure model consists of one fac-
tor, similar toM2.9 More details on this Ahlgrim, D’Arcy, and Gorvett-like
framework are given in Section SM.A.3 of the Supplementary Material.

– M4: The new framework. This is the full ESG described in the current
section.

Table 1 summarizes the main features of the three nested models as well as the
entire model.
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TABLE 1

SUMMARY OF FRAMEWORK PROPERTIES.

M1 M2 M3 M4

Inflation
Autoregressive 3 3 3 3
Regime-switching long-run mean 7 7 7 3
Dynamic GARCH variance 7 7 7 3

Risk-free interest rates
Autoregressive 3 3 3 3
Multiple factors 7 3 3 3
Regime-switching long-run mean 7 7 7 3
Dynamic GARCH variance 7 7 7 3

Dividend yield
Autoregressive 3 3 3 3
Regime-switching long-run mean 7 7 7 3
Dynamic GARCH variance 7 7 7 3

Stock index returns
Regime-switching long-run mean 7 7 3 3
Regime-switching long-run variance 7 7 3 7
Dynamic GARCH variance 7 7 7 3

M1 stands for the Wilkie-like framework, M2 for the 1995 extended version of Wilkie’s
model, M3 for Ahlgrim et al.’s (2005) framework andM4 for the new ESG.

3. ESTIMATION

This section introduces the main building blocks of Bayesian inference: we
describe what is needed to estimate our models while accounting for param-
eter uncertainty. We then briefly present the parameter prior distributions
employed in this study. Finally, the MCMC-based methodology used to
estimate the models is explained.

3.1. Building blocks of Bayesian inference

The ESG parameters introduced above are unknown and therefore need to
be estimated. In this study, we consider a Bayesian inference about �, the
model parameters. This paradigm has the benefit of allowing for parameter and
model uncertainty in a consistent manner (the notion of model uncertainty is
investigated in Section 5). As a result of this inference step, we understand the
plausible values of � and the extent of the uncertainty associated with these
estimates.

Parameter estimation under the Bayesian paradigm relies on three building
blocks: the likelihood function, the parameter prior and the posterior distri-
bution of the parameters. The latter distribution is obtained by employing the
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Bayes theorem and combining the likelihood and the prior distribution:

π (� |XXX ,M)︸ ︷︷ ︸
Parameter Posterior

∝ L (XXX | �,M)︸ ︷︷ ︸
Likelihood

π (� |M)︸ ︷︷ ︸
Parameter Prior

, (3.1)

where XXX = {qt, r̃t, FFFt, f̃ff t, dt, yt}Tt=1 denotes the data. Note that this parame-
ter posterior distribution depends on model M; indeed, we will obtain one
parameter posterior distribution per model at first.

Under the modelling assumptions of Section 2, the likelihood function is
easily derived. Section SM.B.1 of the Supplementary Material explains the
construction of this function.

3.2. Parameter prior

Information about the model parameters’ value should be incorporated in the
estimation somehow; this is achieved by setting a prior distribution in Bayesian
inference. When the modeller does not have strong prior beliefs or relevant
information about the parameters, however, the prior distribution should have
minimal influence on the inference. Typically, in this case, non-informative pri-
ors are used. In their most elementary forms, these priors are rectangular (i.e.,
flat) distributions over the feasible set of parameter values (Upton and Cook,
2014).

A flat prior is improper if the feasible set is infinite (i.e., when the model
parameters are unbounded). This may lead to an improper posterior, meaning
that no Bayesian inference can be reliably achieved. One way to cope with this
issue is by using diffuse priors—distributions with a considerable dispersion.

In this study, we rely on such non-informative priors. Specifically, all the
mean and long-run level parameters have normal priors with unit variance.
The autoregressive parameters rely on uniform priors over the interval (−1, 1)
to ensure that the dynamics are stationary. The priors associated with vari-
ance parameters are exponentially distributed with a rate parameter of one.
The GARCH reaction and persistence parameters have prior distributions
that are uniform over the unit internal, and we consider only parameters that
lead to a stationary variance process. The GARCH asymmetry parameters,
on the other hand, have normally distributed priors with a large variance of
100. Finally, correlation parameters use a prior based on the Lewandowski
et al. (2009) distribution, thus assuring that all correlation matrices are positive
semidefinite.

3.3. Estimation methodology

Equation (3.1) lays out a theoretical foundation to understand parameter
uncertainty for a given model. Computing this posterior distribution, however,
can be quite cumbersome in practice, as it involves multiple high-dimensional
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integrals. Many methods have been proposed to recover such a posteriori
distributions numerically.

In this study, we use an MCMC scheme to generate parameter samples
from the posterior distribution. Specifically, we rely on a version of the adap-
tive Metropolis algorithm of Haario et al. (2001). This procedure employs
multidimensional random walk Metropolis steps along with a proposal based
on amixture of two normal distributions centred at the current parameter value
in the Markov chain. The variance of the first mixture component is based on
the target distribution’s covariance structure based on the run so far. The vari-
ance of the second mixture component, on the other hand, relies on the identity
matrix multiplied by some scaling parameters. This second mixture component
assures that the proposal does not get stuck.

In our implementation, we use a blocking strategy—separation of sampling
between certain sets of parameters—divided according to the different models
introduced in Section 2. More details on the estimation methodology are given
in Section SM.B.2 of the Supplementary Material.

4. EMPIRICAL RESULTS

4.1. Data

We begin this section by describing the data. This study focuses exclusively
on post-1982 monthly data for the United States as some of our series starts
in 1982. Specifically, our data begin in September 1982 and finish in January
2020.

We select the intended US Federal Reserve (Fed) funds rate as the reference
interest rate for the US economy; it is the intended rate at which commercial
banks in the United States lend to each other overnight.10 The data—the tar-
get rate before 2009 and the target range after 2009—are extracted from the
Federal Reserve Economic Data (FRED) website maintained by the Federal
Bank of St. Louis and converted into monthly time series by taking the
beginning-of-month rate.11 To make the range comparable with pre-2009 data,
we take the midpoint as the intended Fed funds rate. The black line of Figure 2
shows the intended Fed funds rate used. Its average is almost 4% over the past
37 years. Over time, the intended Fed funds rate decreased: it was about 10%
in 1982 and dropped to almost 0% between 2009 and 2015.

Second, the monthly inflation rate is constructed from the non-seasonally
adjusted US Consumer Price Index for All Urban Consumers (CPURNSA)
series. The CPI level data are also extracted from FRED and converted into
monthly rates by taking the (log) return of the index. The annualized stan-
dard deviation of the series is 0.86%, and the series exhibits heteroscedasticity;
for instance, the series variance is smaller between 1991 and 1999 and larger
between 2005 and 2010.
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FIGURE 2: Intended US federal reserve funds rate and monetary policy regimes.
This figure shows the intended federal funds rate and the estimated monetary policy regimes. State u denotes
a tightening or upward regime, s a status quo regime and d an accommodating or downward regime.

Third, the monthly term structure of risk-free interest rates is based upon
the Federal Reserve Board’s H.15 release and obtained via the Wharton
Research Data Service. This study focuses on 3-month and 1-, 2-, 3-, 5-, 7-,
10-, and 30-year interest rates. The 3-month rate is used as a proxy for the
short rate, and the other rates are used to estimate the term structure model.
The yield curve is upward sloping during most months, except during turmoil
such as the bursting of the dot-com bubble and the Great Recession. Like
the intended Fed funds rate, the risk-free interest rates decreased over the last
37 years.

Fourth, the stock index dividend yields in the US economy are proxied by
the dividends paid out on the stocks of the S&P 500. They are extracted from
the Bloomberg terminal and constructed by taking the sum of the gross divi-
dend payments over the previous 12 months and dividing it by the value of the
index at the end of this period.

Finally, the stock index returns are constructed from the S&P 500 level
and also obtained from the Bloomberg terminal. Similar to our process for
inflation, we build our returns out of monthly index values. Interestingly, and
consistently with previous studies (e.g., Bégin and Boudreault, forthcoming),
we find heteroscedasticity, negative skewness (−1.02) and large positive excess
kurtosis (3.63) for the monthly S&P 500 returns.

4.2. Monetary policy regimes

Before estimating the four models with our MCMC method, we first need to
extract the monetary policy regimes. They are constructed from the intended
Fed funds rate using Equation (2.1).

Figure 2 reports the time series of the intended Fed funds rate and their
associated monetary regimes: state u (blue) denotes a tightening or upward
regime, s (turquoise) a status quo regime and d (yellow) an accommodating
or downward regime. Between 1982 and 2020, the US economy has been in a
tight—contractionary—monetary policy about 21% of the time. This figure is
about 17% for the accommodative monetary policy. The economy has been in
a status quo state for the rest, which accounts for 62%.
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4.3. Results and discussion

We apply the adaptive Metropolis algorithm from Section 3 to the four mod-
els of Section 2.6. This process yields four Markov chains that represent the
posterior distributions of the model parameters. For each parameter, we get
a sample of 100,000 values from which we compute the average and standard
deviation for the Wilkie-like framework (M1), the extended Wilkie-like frame-
work (M2), the Ahlgrim, D’Arcy, and Gorvett-like framework (M3) and the
new ESG (M4). The average parameters and their standard deviations are
available in Table SM.1 of the Supplementary Material.

From these estimated parameters, we can also obtain future scenarios by
using the following posterior-predictive density:

f (YYY |XXX ,M) =
∫
f (YYY | �,M) π (� |XXX ,M) d�, (4.1)

where YYY = {qt, r̃t, FFFt, f̃ff t, dt, yt}T+τ
t=T+1 and π (� |XXX ,M) is obtained from

Equation (3.1). The latter is used to construct funnels of doubt.12

Regarding the monetary regime parameters, all regimes tend to be some-
what persistent, with a probability of staying in the same regime above 75%
in all cases. The uncertainty about these values is rather small (i.e., standard
deviations below 5%). Based on the average, the stationary state probabilities
are consistent with the empirical proportion of months spent in each regime:
21% for the upward regime, 62% for the status quo regime and 17% for the
downward regime.

The average inflation parameters for M1, M2 and M3 are virtually the
same, which is to be expected because the three frameworks share the same
inflation model. Interestingly, the estimated regime-dependent long-run levels
for M4 are consistent with theory, on average. On the one hand, the upward
regime aims at slowing down overheated economic growth as inflation is rising
too fast, consistently with the higher value estimated in this regime. On the
other hand, the downward regime does the opposite, and we witness a lower
average long-run level in this state. All four models find that the inflation rate
is not persistent, with aq ranging between 0.341 and 0.433, on average. The
average variance parameters are similar for all four models, yielding annualized
volatility between 0.7 and 1.1%. This figure is indeed consistent with the sample
inflation rate standard deviation (i.e., 0.86% when annualized).

Panel A of Figure 3 shows the past inflation rate and the inflation funnels
of doubt for the four models over the next 30 years. M1, M2 and M3 unsur-
prisingly yield the same uncertainty. Overall, the new ESG allows for higher
inflation rates than the three other models, leading to larger inflation rates and
index values, on average. The distributions are nonetheless very similar and the
total uncertainty not significantly different.

For the new ESG, the short rate long-run levels are in accordance with
theory: μr,u is positive, μr,s is close to zero and μr,d is negative, as expected. All
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FIGURE 3: Funnels of doubt for relevant economic and financial variables.
This figure shows the past series along with the funnels of doubt for the four models over the next 30 years. The
figure reports the inflation rate (Panel A), the short rate (Panel B), the 1-, 5- and 30-year interest rates (Panels
C–E, respectively), the dividend yield (Panel F) and the stock index returns (Panel G). Solid lines represent
median and dashed lines the 90% confidence interval. Dark blue is used for M1, light blue for M2, turquoise
for M3 and yellow for M4.

four models exhibit high persistence—above 0.99, on average; this result is con-
sistent with other studies (e.g., Engle et al., 2017). The short rate innovations
display a low correlation with the inflation innovations for all four models,
on average. Indeed, multiple studies have argued that the dependence between
short-run interest rate and inflation is less than that prescribed by Fisher’s
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equation (e.g., Mishkin, 1992). GARCH reaction and persistence parameters
are high, whereas the asymmetry parameter is close to zero, on average. The
GARCH parameters are quite uncertain, however.

The short rate funnels of doubt are shown in Panel B of Figure 3. Overall,
M4 leads to a more conservative view than the three other models, with wider
confidence intervals. The median is also quite different: it trends to zero for
M4, whereas it stays relatively constant at about 2% forM1,M2 andM3.

The term structure model builds on the short rate. For M1, the mean and
variance parameters increase as a function of the tenor; this captures the aver-
age upward slope of the term structure and the additional risk in longer tenors.
We obtain a very different behaviour for M2, M3 and M4: indeed, the mean
and variance parameters are rather constant as a function of the tenor. For
M2,M3 andM4, the slope factor loading increases as a function of maturity:
it is close to zero for 1-year rates and close to one for 30-year rates. The curva-
ture loading—only used inM4—is larger for short and long tenors and smaller
for midterm tenors.

Panels C–E of Figure 3 report the funnels of doubt for three tenors: 1-year,
5-year and 30-year rates, respectively. In sum, M4 yields higher uncertainty
than M2 and M3. M1, M2 and M3 are similar for short tenors but dif-
ferent for longer ones, with the extended Wilkie- and the Ahlgrim, D’Arcy,
and Gorvett-like frameworks being more uncertain than the Wilkie-like frame-
work.

Interestingly, the interest rate funnels of doubt (i.e., Panels B–E of Figure 3)
reveal that the first part of the historical observations (roughly 1982–1985) is
outside the confidence intervals for all four models. To test whether pre-1986
data impacts our conclusions, we reestimate the models using data between
January 1986 and January 2020 instead. The estimated parameters are almost
identical for both datasets, except for the long-run level of the short rate for
M1, M2 and M3: it is larger for 1982–2020 and smaller for 1986–2020, as
expected. The long-run level parameters for M4 are not significantly differ-
ent, however. This impacts the interest rate funnels of doubt, yielding wider
ones when using 1982–2020 for M1, M2 and M3. One compelling conjecture
explaining the difference between the two sets of results is model misspecifica-
tion: simpler models are more likely to be misspecified, and parameters tend to
be less robust in these cases.

Additional results on the term structure fit are given in Table 2. The lat-
ter reports in-sample (average) root-mean-square errors (RMSEs) on the rates
used in the estimation. Overall, the most complex modelM4 yields the smallest
errors. The performance of M1, M2 and M3 is similar for shorter tenors, but
M2 and M3 are better than M1 for longer maturities. This is expected, as the
second and third models include the slope of the forward rates in its modelling.

The average values of dividend yield parameters are virtually the same for
M1, M2 and M3 but very different than those obtained for M4. Indeed, for
the new ESG, the long-run average of the dividend yield tends to be lower in
the status quo monetary regime; it is larger in accommodating and tightening
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TABLE 2

IN-SAMPLE AVERAGE ROOT-MEAN-SQUARE ERRORS FOR THE TERM STRUCTURE AS A FUNCTION OF
THE TENOR.

Tenor

1-Year (%) 2-Year (%) 3-Year (%) 5-Year (%) 7-Year (%) 10-Year (%) 30-Year (%)

M1 0.32 0.55 0.68 0.91 1.06 1.20 1.45
M2 0.31 0.51 0.58 0.63 0.63 0.60 0.49
M3 0.31 0.51 0.58 0.63 0.63 0.60 0.49
M4 0.28 0.35 0.37 0.38 0.39 0.42 0.41

This table reports in-sample average root-mean-square errors (RMSEs) on rates used in
the estimation for the four models. Specifically, 1-, 2-, 3-, 5-, 7, 10- and 30-year rates are
used. The average of the RMSEs is taken across the 100,000 parameter sets obtained via the
MCMC sampler.

regimes. All models show high persistence in the log dividend yield rates, with a
parameter close to 0.99, on average. The GARCH dynamics ofM4 also exhibit
high persistence (in addition to a low reaction average parameter): this implies
that the conditional heteroskedasticity structure might not be needed for this
variable.

The dividend yield funnels of doubt are given in Panel F of Figure 3.
Generally speaking, the new ESG yields wider confidence intervals over the
next 30 years, especially for the upper bounds. The median, on the other hand,
is fairly similar for all four models.

The different monetary regimes allow for different mean parameters for the
stock index returns; generally speaking, the status quo regime is associated with
higher returns and the upward and downward regimes with lower returns. For
the Ahlgrim, D’Arcy, and Gorvett-like framework, the return variance is sig-
nificantly different from one regime to another, with the lowest volatility for the
upward regime—when the economy is overheating—and the highest volatil-
ity for the downward regime—when the economy is expanding. The GARCH
model used in the new ESG has a large asymmetry parameter, on average,
implying a negative correlation between stock index returns and their variance.
This observation is consistent with Black’s (1976) leverage effect.

Finally, Panel G of Figure 3 reports the stock index return funnels of
doubt. The new ESG yields more conservative estimates, as the funnel is lower
than the three other frameworks. It is closely followed by that of M3. The
Wilkie- and extended Wilkie-like frameworks unsurprisingly generate larger
returns.

In sum, the four ESGs yield different results. The new ESG inflation and
dividend yield future paths are not too different from those of M1, M2 and
M3. However, they are utterly different when it comes to interest rates and
stock index returns. In the next section, we investigate model selection and
averaging.
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TABLE 3

MODEL POSTERIOR PROBABILITIES.

M1 M2 M3 M4

Inflation 0.00 0.00 0.00 1.00
Short rate 0.00 0.00 0.00 1.00
Term structure 0.00 0.00 0.00 1.00
Dividends 0.00 0.00 0.00 1.00
Stock index returns 0.00 0.00 0.00 1.00

Complete framework 0.00 0.00 0.00 1.00

This table reports the posterior model probabilities for each component and
the entire framework. These are obtained via the reversible jump MCMC
methodology introduced by Green (1995). For details on the method, see
Section SM.B.3 of the Supplementary Material.

5. PROVIDING A COHERENT MECHANISM FOR MODEL SELECTION

This section first aims at finding the model posterior probabilities and then
discusses Bayesian model averaging. Again, by using Bayes’ theorem and com-
bining the likelihood function with prior distributions, we obtain the following
model posterior probabilities:

π (M |XXX)︸ ︷︷ ︸
Model Posterior

∝
∫

L (XXX | �,M)︸ ︷︷ ︸
Likelihood

π (� |M)︸ ︷︷ ︸
Parameter Prior

π (M)︸ ︷︷ ︸
Model Prior

d�. (5.1)

The latter equation requires the modeller’s initial beliefs about the models or a
model prior probability distribution π (M), in other words.13 We first consider
uniform probabilities such that π (Mk) = 1

4 for all models.
We rely on a reversible jump MCMC scheme to find the model poste-

rior probabilities of Equation (5.1). This methodology, introduced by Green
(1995), allows us to implement Bayesian model selection and estimate model
posterior probabilities readily by running a Markov chain similar to the adap-
tive Metropolis method used so far. Green’s method allows the chain to move
from one model to another, and the model posterior probability can therefore
be approximated by the proportion of time spent in each given model. The
implementation details of the methodology are given in Section SM.B.3 of the
Supplementary Material.

Table 3 reports the posterior model probabilities for each component as
well as the entire framework. The table’s results are unequivocal: the new ESG
is preferred with a posterior probability of one for each component and for the
complete framework (i.e., estimated probability of exactly 100%, compared to
0% for simpler models). The data give very weak evidence in favour of the
simpler modelsM1,M2 andM3.

Note, however, that a formal Bayesian treatment of this problem would
not discuss model selection directly but would combine the models based on
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their posterior probabilities. Bayesian model averaging, in fact, provides a
coherent way to account for model uncertainty by averaging the different out-
puts according to their posterior probabilities (see Hoeting et al., 1999, for an
excellent tutorial on Bayesian model averaging). Using the model-dependent
posterior-prediction density of Equation (4.1), we can derive the following
posterior-prediction density that accounts for both model and parameter
uncertainty:

f (YYY |XXX) =
4∑

k=1

∫
f (YYY | �,Mk) π (� |XXX ,Mk) π (Mk |XXX) d�.

In this case, it is synonymous with using the new ESG to perform all predictions
as π (M4 |XXX) = 1.

To assess whether the model posterior probability is robust to other choices
of model prior, we rerun the reversible jump MCMC scheme based on a dif-
ferent prior. Given that a more complicated model nesting simpler models as
special cases can always fit the data better than the nested models, we penalize
less parsimonious models by giving them smaller prior probabilities. Inspired
by the Akaike information criterion (Akaike, 1974), we assume that the model
prior for modelMk is related to the number of parameters:

π (Mk) ∝ e−dk ,

where dk is the number of parameters considered in modelMk.
Interestingly, the results based on the new prior are identical to those

reported in Table 3, meaning that the conclusion mentioned above is robust to
the use of priors penalizing for model complexity. Again, the posterior proba-
bilities associated with the most complex models are virtually 100%, favouring
M4 to the other simpler models.

6. OUT-OF-SAMPLE PERFORMANCE

The previous section showed that the most complex framework fits the data
better and is preferred. This result is important and interesting but should not
come as a surprise: a general model like M4 captures more stylized facts than
M1,M2 andM3.

Nonetheless, as ESGs are used to generate future paths, the in-sample
fit might not be the only dimension on which one should focus. In fact,
we should be careful when drawing conclusions from these in-sample com-
parisons. Models may pass statistical goodness-of-fit tests, but they may not
perform well ex ante.

In this section, we therefore assess the four economic scenario generators
using different criteria:

1. Conservatism. Whether the framework yields conservative figures.
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2. Forecasting performance.Whether the framework yields median values that
are close to past realized values.

3. Coverage. Whether the framework yields a range of outcomes consistent
with past realized values.

Depending on the situation at hand, some of these criteria might not be of
interest to the end user. We let the end user determine which criteria make
more sense for their application.

We wish to do our performance testing on an ex ante basis. We therefore
reestimate the four models at the end of each year based on an expanding
window that starts in 1982; the expanding window must contain at least 15
years of data so that our first estimation uses the 1982–1996 data, the second
one the 1982–1997 data, and so forth. Then, we select the most recent estima-
tion results for a given month and generate 5 years of monthly variables (for
instance, scenarios starting in June 1997 depend on parameters estimated with
the 1982–1996 data and on variable values observed inMay 1997). This process
yields multiple measures—confidence interval, forecasts, coverage errors—that
are out of sample by construction.

6.1. Conservatism

In this section, we assess our first criterion and verify that the ex ante views
provided by our ESGs are suitably conservative, which are essential to preserve
the profitability of a line of business and the solvency of a pension plan or an
insurance company.

We rely on individual variables as a proxy to understand how conserva-
tive each model is. Typically, one would need a specific example to assess the
interaction between the different variables (and their impact on the example
at hand). It is very hard, unfortunately, to assess this properly without the
introduction of multiple examples mimicking typical problems ESG end users
encounter. We leave these complex applications for future research.14

Table 4 reports the average 5th (lower bound) and 95th (upper bound) per-
centiles used to construct 90% confidence intervals for the cumulative inflation
rate, the short rate, the dividend yield, the cumulative stock index returns and
key interest rates over different horizons. Generally speaking, the new ESG
leads to more conservative numbers, followed by the Ahlgrim, D’Arcy, and
Gorvett-like framework, the extended Wilkie-like framework, and then the
Wilkie-like framework.

Similar to the results of Section 4, cumulative inflation rates are larger for
M4, leading to more significant lower and upper bounds for this model (see
Panel A of Table 4). As both very low and very high inflation rates can be
problematic for insurers (Bégin, 2016), it is unclear whether one model would
be more conservative than the others from an inflation perspective.

The average bounds of the short rate are given in Panel B. In this case,
the new ESG leads to more conservative figures, whereas M1, M2 and M3
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TABLE 4

AVERAGE LOWER AND UPPER BOUNDS FOR 90% CONFIDENCE INTERVALS OVER DIFFERENT HORIZONS.

Panel A: Cumulative inflation rate

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 −0.001 −0.001 0.002 0.010 0.031 0.054 0.079 0.104 0.006 0.015 0.027 0.048 0.087 0.125 0.162 0.198
M2 −0.001 −0.001 0.002 0.010 0.031 0.054 0.079 0.104 0.006 0.015 0.027 0.048 0.087 0.125 0.162 0.198
M3 −0.001 −0.001 0.002 0.010 0.031 0.054 0.079 0.104 0.006 0.015 0.027 0.048 0.087 0.125 0.162 0.198
M4 −0.001 0.000 0.004 0.014 0.038 0.063 0.089 0.117 0.006 0.015 0.028 0.051 0.093 0.132 0.172 0.210

Panel B: Short rate

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 0.018 0.016 0.014 0.012 0.009 0.008 0.007 0.007 0.026 0.030 0.034 0.039 0.046 0.052 0.057 0.061
M2 0.018 0.016 0.014 0.012 0.009 0.008 0.007 0.007 0.026 0.030 0.034 0.039 0.046 0.052 0.057 0.061
M3 0.018 0.016 0.014 0.012 0.009 0.008 0.007 0.007 0.026 0.030 0.034 0.039 0.046 0.052 0.057 0.061
M4 0.018 0.015 0.012 0.008 0.004 0.002 0.001 0.000 0.026 0.031 0.036 0.045 0.058 0.067 0.074 0.080

Panel C: Dividend yield.

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.020 0.021 0.022 0.023 0.025 0.027 0.028 0.028
M2 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.020 0.021 0.022 0.023 0.025 0.027 0.028 0.028
M3 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.020 0.021 0.022 0.023 0.025 0.027 0.028 0.028
M4 0.017 0.016 0.015 0.014 0.012 0.011 0.010 0.010 0.020 0.021 0.022 0.024 0.026 0.028 0.029 0.030
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TABLE 4

CONTINUED.

Panel D: Cumulative stock index returns

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 −0.066 −0.106 −0.141 −0.181 −0.220 −0.234 −0.236 −0.228 0.078 0.142 0.213 0.326 0.513 0.684 0.850 1.014
M2 −0.066 −0.106 −0.141 −0.181 −0.220 −0.234 −0.236 −0.228 0.078 0.142 0.213 0.326 0.513 0.684 0.850 1.014
M3 −0.066 −0.108 −0.145 −0.189 −0.237 −0.258 −0.265 −0.261 0.079 0.145 0.217 0.333 0.524 0.697 0.865 1.031
M4 −0.067 −0.124 −0.173 −0.235 −0.310 −0.355 −0.384 −0.403 0.078 0.134 0.202 0.314 0.504 0.676 0.842 1.004

Panel E: 1-year interest rate

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 0.019 0.017 0.015 0.013 0.011 0.010 0.009 0.008 0.033 0.036 0.039 0.044 0.051 0.057 0.061 0.066
M2 0.019 0.017 0.015 0.013 0.011 0.010 0.009 0.008 0.033 0.036 0.039 0.044 0.051 0.057 0.062 0.066
M3 0.019 0.017 0.015 0.013 0.011 0.010 0.009 0.008 0.033 0.036 0.039 0.044 0.051 0.057 0.062 0.066
M4 0.018 0.016 0.013 0.009 0.005 0.003 0.002 0.001 0.031 0.035 0.041 0.050 0.062 0.071 0.078 0.084

Panel F: 5-year interest rate

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 0.025 0.023 0.021 0.019 0.016 0.014 0.014 0.013 0.046 0.048 0.051 0.055 0.062 0.067 0.072 0.076
M2 0.029 0.027 0.024 0.021 0.016 0.014 0.013 0.012 0.045 0.049 0.052 0.058 0.066 0.072 0.077 0.082
M3 0.029 0.027 0.024 0.021 0.016 0.014 0.013 0.012 0.045 0.049 0.052 0.058 0.066 0.072 0.077 0.082
M4 0.025 0.022 0.018 0.013 0.007 0.004 0.003 0.002 0.041 0.047 0.054 0.063 0.077 0.086 0.093 0.099
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TABLE 4

CONTINUED.

Panel G: 30-year interest rate

Lower bound Upper bound

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year 1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year

M1 0.026 0.025 0.024 0.021 0.019 0.017 0.016 0.016 0.059 0.060 0.063 0.066 0.072 0.077 0.081 0.085
M2 0.038 0.034 0.031 0.026 0.020 0.016 0.014 0.012 0.055 0.060 0.064 0.071 0.080 0.087 0.093 0.098
M3 0.038 0.034 0.031 0.026 0.020 0.016 0.014 0.012 0.055 0.060 0.064 0.071 0.080 0.087 0.093 0.098
M4 0.035 0.031 0.026 0.018 0.009 0.005 0.003 0.002 0.053 0.059 0.065 0.076 0.089 0.099 0.107 0.113

This table reports the average lower and upper bounds of 90% confidence intervals for the cumulative inflation rate, the short rate, the dividend
yield, the cumulative stock index returns, the 1-, 5- and 30-year interest rates. We take the averages over ex ante estimates of the 5th (lower
bound) and 95th quantiles (upper bound) obtained by reestimating the four models at the end of each year. For a given month, we select the
most recent estimation results and generate 5 years of monthly variables. These economic and financial quantities are taken over horizons of
1, 3 and 6 months, and 1, 2, 3, 4 and 5 years.
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lead to less conservative estimates, on average. This contrasts with the average
dividend yield quantiles (Panel C of Table 4); the bounds are relatively similar
for all models.

Stock index returns are generally more conservative forM4, as reported in
Panel D of Table 4. Lower bounds are smaller for M3 when compared to M1

andM2.
Panels E–G of Table 4 show the average lower and upper bounds of 90%

confidence interval for three key interest rates: 1-year, 5-year and 30-year.
Overall, the new ESG leads to more conservative estimates, followed by the
Ahlgrim, D’Arcy, and Gorvett-like and the extended Wilkie-like frameworks,
and then theWilkie-like framework, except for very short horizons. In fact,M2

and M3 yield more conservative upper bounds than M4 over 1- and 3-month
horizons.

Notice that “this does not imply that the model generating worst-case
results is the most credible. However, it does suggest that inappropriate [...]
advice may be offered [...] based on outputs from overly simplistic mod-
els” (Collins et al., 2015). Indeed, interest rate models—short rate and term
structure—and the stock index return model benefited from more complex
models. Conservatism is not the only criterion, however.

6.2. Forecasting performance

We now investigate the out-of-sample forecasting accuracy of the median fore-
cast for the four models by means of RMSEs. We define the prediction error
as the difference between the median scenario and the observed value. The
errors are computed for 1-, 3- and 6-month, and 1-, 2-, 3-, 4- and 5-year
horizons.

Table 5 reports the RMSEs (multiplied by 100) for each model, horizon
and economic series considered; that is, cumulative inflation rate, short rate,
dividend yield, stock index returns, 1-, 2-, 3-, 5-, 7-, 10-, and 30-year interest
rates.

The new ESG yields the most accurate forecasts, on average, for the short
rate, stock index returns, and term structure of interest rates. Indeed, the aver-
age short rate forecast RMSEs for the new ESG are 5% lower than for M1,
M2 and M3 (see Panel B of Table 5). We obtain similar figures for the term
structure of interest rates; across all tenors and maturities, M4 decreases the
RMSEs by 17% when compared to M2 and M3, and by 24% when compared
to M1. For the cumulative stock index returns, the RMSEs are large, gen-
erally speaking, as it is more challenging to forecast returns. Nonetheless, as
presented in Panel D of Table 5, M4 performs better than the other models,
with average decreases in the RMSEs of about 4%.

The tale is different when it comes to inflation and the dividend yield. The
new ESG performs as well as M1, M2 and M3 when it comes to the divi-
dend yield (see Panel C of Table 5). This result is consistent with the in-sample
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TABLE 5

OUT-OF-SAMPLE FORECAST ROOT-MEAN-SQUARE ERRORS OVER DIFFERENT HORIZONS.

Panel A: Cumulative inflation rate

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.256 0.611 0.930 1.409 2.294 3.144 4.097 5.085 2.228
M2 0.256 0.611 0.930 1.409 2.294 3.144 4.097 5.085 2.228
M3 0.256 0.611 0.930 1.409 2.294 3.144 4.097 5.085 2.228
M4 0.263 0.617 0.950 1.474 2.504 3.549 4.698 5.877 2.492

Panel B: Short rate

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.211 0.436 0.735 1.274 2.032 2.449 2.609 2.606 1.544
M2 0.211 0.436 0.735 1.274 2.032 2.449 2.609 2.606 1.544
M3 0.211 0.436 0.735 1.274 2.032 2.449 2.609 2.606 1.544
M4 0.195 0.362 0.599 1.127 1.988 2.467 2.603 2.442 1.473

Panel C: Dividend yield

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.092 0.171 0.265 0.365 0.449 0.449 0.456 0.477 0.340
M2 0.092 0.171 0.265 0.365 0.449 0.449 0.456 0.477 0.340
M3 0.092 0.171 0.265 0.365 0.449 0.449 0.456 0.477 0.340
M4 0.092 0.171 0.265 0.366 0.450 0.445 0.463 0.503 0.344

Panel D: Cumulative stock index returns

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 4.305 7.755 11.809 18.030 28.870 36.629 43.139 49.009 24.943
M2 4.305 7.755 11.809 18.030 28.870 36.629 43.139 49.009 24.943
M3 4.296 7.731 11.759 17.929 28.765 36.518 43.101 48.985 24.886
M4 4.288 7.741 11.713 17.705 28.087 35.262 41.075 46.115 23.998

evidence presented in Section 4. Model M4 is worse for inflation with an
average increase in the RMSEs of about 12%.

6.3. Coverage

Our last criterion is coverage; it assesses whether the model-implied range of
outcomes is consistent with past realized values. To do so, we count how
many times the realized values were within the 90% confidence interval for
each series and horizon (based on the out-of-sample 5th and 95th percentiles).
This number divided by the total number of realized values—the coverage
probability—should be close to 90% by construction.

Table 6 shows coverage errors (defined as the absolute value of the dif-
ference between the coverage probability and 0.9) for each model, horizon,
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TABLE 5

CONTINUED.

Panel E: M1

Horizon

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Tenor 1-year 0.384 0.580 0.842 1.316 2.039 2.471 2.661 2.691 1.623
2-year 0.628 0.774 0.974 1.360 2.006 2.427 2.651 2.749 1.696
3-year 0.741 0.857 1.016 1.333 1.906 2.302 2.547 2.684 1.673
5-year 0.921 0.986 1.080 1.271 1.694 2.020 2.278 2.466 1.589
7-year 1.055 1.098 1.157 1.269 1.560 1.822 2.078 2.294 1.542
10-year 1.194 1.216 1.245 1.292 1.464 1.640 1.868 2.076 1.499
30-year 1.444 1.443 1.434 1.392 1.360 1.367 1.501 1.692 1.454

Panel F: M2 and M3

Horizon

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Tenor 1-year 0.401 0.594 0.854 1.322 2.037 2.463 2.653 2.694 1.627
2-year 0.661 0.804 1.001 1.368 1.979 2.378 2.610 2.742 1.693
3-year 0.754 0.874 1.038 1.339 1.868 2.231 2.488 2.675 1.659
5-year 0.808 0.901 1.031 1.248 1.652 1.936 2.216 2.468 1.533
7-year 0.798 0.886 1.006 1.188 1.517 1.753 2.039 2.319 1.438
10-year 0.744 0.826 0.942 1.105 1.385 1.569 1.848 2.129 1.318
30-year 0.579 0.667 0.786 0.928 1.141 1.263 1.523 1.794 1.085

Panel G: M4

Horizon

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Tenor 1-year 0.299 0.476 0.720 1.184 1.966 2.452 2.602 2.482 1.523
2-year 0.395 0.583 0.819 1.201 1.849 2.287 2.441 2.405 1.498
3-year 0.411 0.608 0.841 1.165 1.712 2.095 2.253 2.281 1.421
5-year 0.431 0.619 0.846 1.086 1.464 1.731 1.880 1.998 1.257
7-year 0.440 0.629 0.856 1.061 1.330 1.511 1.643 1.808 1.160
10-year 0.464 0.631 0.844 1.020 1.208 1.307 1.419 1.600 1.062
30-year 0.421 0.581 0.781 0.926 1.007 0.991 1.051 1.239 0.875

This table reports RMSEs for each model, horizon, and economic series considered, that is,
cumulative inflation rate, short rate, dividend yield, cumulative stock index returns, 1-, 2-, 3-,
5-, 7, 10- and 30-year interest rates. We define the prediction error as the difference between
the median scenario and the observed value, which is computed for 1-, 3- and 6-month, and
1-, 2-, 3-, 4- and 5-year horizons. RMSEs are multiplied by 100 in the table.

and economic series considered. The table also reports whether these errors
are statistically different from zero at a significance level of 5% by means of
asterisks.15 Similar to the results presented above, the most complex short rate
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TABLE 6

OUT-OF-SAMPLE COVERAGE ERRORS OVER DIFFERENT HORIZONS.

Panel A: Cumulative inflation rate

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.034 0.020 0.007 0.065 0.136 0.235 0.287 0.382∗ 0.146
M2 0.034 0.020 0.007 0.065 0.136 0.235 0.287 0.382∗ 0.146
M3 0.034 0.020 0.007 0.065 0.136 0.235 0.287 0.382∗ 0.146
M4 0.037 0.067 0.088 0.148 0.286 0.334 0.543∗ 0.597∗ 0.263

Panel B: Short rate

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.106 0.085 0.054 0.111 0.183 0.247 0.230 0.184 0.150
M2 0.106 0.085 0.054 0.111 0.183 0.247 0.230 0.184 0.150
M3 0.106 0.085 0.054 0.111 0.183 0.247 0.230 0.184 0.150
M4 0.106 0.031 0.026 0.021 0.038 0.057 0.043 0.086 0.051

Panel C: Dividend yield

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.003 0.005 0.010 0.028 0.057 0.003 0.048 0.059 0.027
M2 0.003 0.005 0.010 0.028 0.057 0.003 0.048 0.059 0.027
M3 0.003 0.005 0.010 0.028 0.057 0.003 0.048 0.059 0.027
M4 0.028 0.009 0.012 0.024 0.026 0.050 0.065 0.068 0.035

Panel D: Cumulative stock index returns

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

M1 0.005 0.009 0.008 0.050 0.077 0.123 0.109 0.111 0.062
M2 0.005 0.009 0.008 0.050 0.077 0.123 0.109 0.111 0.062
M3 0.010 0.009 0.026 0.035 0.069 0.098 0.091 0.079 0.052
M4 0.031 0.020 0.030 0.010 0.030 0.028 0.017 0.013 0.022

and the stock index return models work better: across all horizons, we have
an average coverage error of 5.1% for the short rate and 2.2% for the stock
index returns when considering M4. These numbers are higher when consid-
ering other models: for the short rate, the coverage error is 15.0% when using
M1, M2 and M3. It is 6.2% and 5.2% for the cumulative stock index returns
when employing both Wilkie-like frameworks and the Ahlgrim, D’Arcy, and
Gorvett-like framework, respectively.

The coverage errors are comparable when considering the dividend yield
dynamics (Panel C of Table 6): the average is close to zero for all four models.
This contrasts with the cumulative inflation rate: the coverage errors are higher
forM4, with an average of 26.3%. It is 14.6% forM1,M2 andM3.

Panels E–G of Table 6 report the errors for the yield curve series over dif-
ferent horizons. Unlike the other models, the new ESG has very good coverage

https://doi.org/10.1017/asb.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.21


ON COMPLEX ECONOMIC SCENARIO GENERATORS 807

TABLE 6

CONTINUED.

Panel E: M1

Horizon

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Tenor 1-year 0.046 0.031 0.003 0.054 0.160 0.198 0.209 0.161 0.108
2-year 0.041 0.035 0.043 0.054 0.128 0.127 0.213 0.166 0.101
3-year 0.135∗ 0.071 0.065 0.047 0.109 0.119 0.187 0.152 0.111
5-year 0.167 0.104 0.069 0.054 0.069 0.094 0.135 0.083 0.097
7-year 0.261∗ 0.184∗ 0.113 0.062 0.057 0.078 0.070 0.042 0.108
10-year 0.333∗ 0.249∗ 0.146 0.062 0.034 0.049 0.013 0.001 0.111
30-year 0.250∗ 0.184∗ 0.135∗ 0.010 0.057 0.088∗ 0.100 0.050 0.109

Panel F: M2 and M3

Horizon

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Tenor 1-year 0.013 0.031 0.001 0.054 0.160 0.198 0.213 0.157 0.103
2-year 0.178∗ 0.078 0.054 0.058 0.124 0.131 0.204 0.161 0.124
3-year 0.257∗ 0.195∗ 0.146∗ 0.099 0.101 0.119 0.183 0.143 0.155
5-year 0.247∗ 0.162∗ 0.113 0.069 0.042 0.082 0.043 0.028 0.098
7-year 0.257∗ 0.129∗ 0.084 0.005 0.017 0.030 0.057 0.017 0.075
10-year 0.257∗ 0.085 0.014 0.040 0.065 0.100 0.100 0.082∗ 0.093
30-year 0.037 0.042 0.060 0.092∗ 0.100 0.100 0.100 0.100 0.079

Panel G: M4

Horizon

1-month 3-month 6-month 1-year 2-year 3-year 4-year 5-year Average

Tenor 1-year 0.031 0.056 0.045 0.029 0.026 0.032 0.070 0.100 0.049
2-year 0.017 0.038 0.038 0.029 0.014 0.005 0.078∗ 0.100 0.040
3-year 0.010 0.042 0.038 0.044 0.041 0.055 0.096∗ 0.100 0.053
5-year 0.010 0.060 0.049 0.074∗ 0.084 0.092∗ 0.100 0.100 0.071
7-year 0.003 0.056 0.071∗ 0.092∗ 0.100 0.100 0.100 0.100 0.078
10-year 0.001 0.053 0.082∗ 0.096∗ 0.100 0.100 0.100 0.100 0.079
30-year 0.039 0.085∗ 0.093∗ 0.100 0.100 0.100 0.100 0.100 0.090

This table reports coverage errors for each model, horizon, and economic series considered;
that is, cumulative inflation rate, short rate, dividend yield, cumulative stock index returns,
1-, 2-, 3-, 5-, 7, 10- and 30-year interest rates. Coverage errors are computed by taking the
absolute value of the difference between the amount of time the realized values is within
the 90% confidence interval for each series and horizon and 0.9. They are computed for
1-, 3- and 6-month, and 1-, 2-, 3-, 4- and 5-year horizons. An asterisk indicates a coverage
error that is statistically different from zero at a significance level of 5%. The significance is
assessed with robust Newey–West t-statistics as given in Equation (39) of Engle et al. (2017).
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over short horizons and for longer tenor. Its coverage gets closer to 100% for
longer horizons and tenors, which is too high.

The other models—M1,M2 andM3—lead to higher coverage errors, gen-
erally speaking. The Wilkie-like framework has coverage errors that are well
above zero in all cases. For the extended Wilkie-like and the Ahlgrim, D’Arcy,
and Gorvett-like frameworks, on the other hand, it depends on the tenor: the
coverage error is decent for short and long tenors but tends to be higher for
midterm tenors.

7. CONCLUDING REMARKS

The contributions of this study are threefold. First, we introduced a new
state-of-the-art ESG for the actuarial profession. The latter nests versions of
well-known actuarial models. Second, we proposed an MCMC-based estima-
tion methodology for this class of models; it relied on the adaptive Metropolis
algorithm and Green’s (1995) reversible jump MCMC method. Third, we
investigated the framework empirically using US data.

This article also focused on model risk and the tradeoff between model par-
simony and complexity. In the context of ESGs, model risk could be significant
because the data generating process is complex and unknown.We looked at the
in-sample fit of various models and concluded that the most complex ESG per-
formed better. From an out-of-sample perspective, however, it is less clear-cut:
although models for interest rates and stock index returns benefited from more
sophisticated dynamics, simple inflation and dividend yield models performed
better or similar to complex models.

As the saying goes, it is difficult to make predictions, especially about the
future. Perhaps a better way to construct ESGs is by combining them to cre-
ate ensemble models. This strategy has been used extensively in data-heavy
domains such as weather forecasting (e.g., Gneiting and Raftery, 2005).16 A
range of methodology already exists to combine models; it goes from sim-
ple unweighted averages to more sophisticated methods such as principal
component-based methods, trimmed means, performance-based weighting,
optimal least squared estimates, and Bayesian shrinkage (Graefe et al., 2015).

Preliminary (unweighted average) results obtained by simply combining
the four different frameworks investigated in this study are presented in the
Supplementary Material. Overall, this strategy provides a good compromise; it
allows for correcting overly or insufficiently conservative estimates. Moreover,
if one model is off at times, the other models compensate and bring the
ensemble to decent levels. This ultimately reduces model risk, as the effect
of inaccurate models is averaged out by considering other, possibly better
models.

Combining models is therefore a promising approach. Hopefully, this first
brief attempt will not be the last. Specifically, considering better weights
(e.g., based on the Akaike information criterion or the Bayesian information
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criterion) is an interesting generalization of our initial results. Another way to
construct ensemble models is by including more complex models, potentially
from different families of ESGs. We leave these exciting questions for future
research.
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NOTES

1. The proposed ESG can be extended in different directions by adding more variables such
as the gross domestic product, the unemployment rate and foreign exchange rates.

2. Ifmt is in both upward and downward regimes at time t based on Equation (2.1), we assume
that it is in the status quo regime.

3. Note that if we let r be very small, we recover a model that allows for negative rates, as in
Ahlgrim et al. (2005). On the other hand, if r is very large, then we recover a function that behaves
like a logarithmic transformation—similar to that of Wilkie (1986). In this study, we use cr = 0
and r= 0.005.

4. Using Chokesly’s decomposition, it is easy to rewrite this model so that the short rate
model depends explicitly on the inflation innovation, as in Wilkie (1986); the two approaches
are therefore similar.

5. Similar to the short rate, we rely on cf = 0 and f = 0.005.
6. While the usual factors derived from forward rates have a natural economic interpretation,

our factors are the slope and curvature of transformed forward rates and may not have the same
interpretation.

7. The factor model is reminiscent of the vector autoregressive (VAR) model commonly used
in econometrics to model the interaction between economic variables. One of their main advan-
tages is that they do not require a detailed theory to estimate the relationship between economic
variables (Sims, 1980). They were used by Campbell and Viceira (2002) in the investment context
and Chan (2002) in the ESG context.

8. Note that σ 2
y could be generalized to a regime-dependent variance level, similar to Ahlgrim

et al. (2005). Preliminary evidence shows that the GARCH model is sufficient to capture the
heteroscedasticity.

9. We consider the short rate and the slope, whereas Ahlgrim, D’Arcy, and Gorvett model the
short and long rates. Indeed, the slope is defined as a longer rate minus a shorter rate, so these
two modelling choices are equivalent to some extent.

10. Most economies have a similar rate; for example, the Reserve Bank of Australia’s cash
rate target for Australia, the Bank of Canada’s target overnight rate for Canada, the Bank of
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England’s bank rate for England and the European Central Bank’s key interest rate for the
Eurozone.

11. Since 2009, the Fed gives a target range (lower and upper limits) instead of a target rate.
12. We rely on Monte Carlo simulation to obtain a sample of 100,000 paths of YYY over the

next 30 years (i.e., τ = 360).
13. In this section, we consider the M-closed view, where the true data generating process is

assumed to be one of the models; that is, M1, M2, M3, M4 (see Chapter 6 of Bernardo and
Smith, 2001).

14. We also encourage end users to test conservatism in their specific situations. Accordingly,
the code used to build and estimate these models is available on the author’s personal website.

15. The Newey–West t-statistics are computed as in Equation (39) of Engle et al. (2017). More
details can be found in Section 6 of their paper.

16. This rationale is consistent with the M-open view, where the true data generating process
is not assumed to be one of the models because this would be too difficult or we do not have
the expertise (see Chapter 6 of Bernardo and Smith, 2001). Under this paradigm, π (Mk)= 0,
meaning that we cannot find posterior probabilities as we did in Section 5. The so-called weights,
therefore, become variables that need to be optimized.

REFERENCES

AHLGRIM, K.C., D’ARCY, S.P. and GORVETT, R.W. (2005) Modeling financial scenarios: A
framework for the actuarial profession. Proceedings of the Casualty Actuarial Society, vol. 92,
pp. 177–238. Arlington, VA, USA: Casualty Actuarial Society.

AKAIKE, H. (1974) A new look at the statistical model identification. IEEE Transactions on
Automatic C, 19(6), 716–723.

BÉGIN, J.-F. (2016) Deflation risk and implications for life insurers. Risks, 4(4), 46.
BÉGIN, J.-F. (2019) Economic scenario generator and parameter uncertainty: A Bayesian

approach. ASTIN Bulletin, 49(2), 335–372.
BÉGIN, J.-F. (2020) Levelling the playing field: A VIX-linked structure for funded pension

schemes. Insurance: Mathematics and Economics, 94, 58–78.
BÉGIN, J.-F. and BOUDREAULT, M. (forthcoming) Do jumps matter in the long term? A tale of

two horizons. North American Actuarial Journal.
BERNARDO, J.M. and SMITH, A.F. (2001) Bayesian Theory. New York, NY, USA: Wiley.
BLACK, F. (1976). Studies of stock price volatility changes. Proceedings of the 1976 Meeting of

the American Statistical Association, Business and Economic Statistics Section, pp. 177–181.
Washington, DC, USA: American Statistical Association.

BLACK, F. and SCHOLES, M. (1973) The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3), 637–654.

BOLLERSLEV, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3), 307–327.

BRIGO, D. and MERCURIO, F. (2007) Interest Rate Models—Theory and Practice: With Smile,
Inflation and Credit. Berlin, Germany: Springer.

CAIRNS, A.J. (2000) A discussion of parameter and model uncertainty in insurance. Insurance:
Mathematics and Economics, 27(3), 313–330.

CAMPBELL, J.Y., LO, A.W. and MACKINLAY, A.C. (1997) The Econometrics of Financial
Markets. Princeton, NJ, USA: Princeton University Press.

CAMPBELL, J.Y. and VICEIRA, L.M. (2002) Strategic Asset Allocation: Portfolio Choice for
Long-Term Investors. New York, NY, USA: Oxford University Press.

CANADIAN INSTITUTE OF ACTUARIES (2002) Report of the task force on segregated fund
investment guarantees. Technical report, Canadian Institute of Actuaries.

CHAN, T. (1998) Some applications of Lévy processes to stochastic investment models for
actuarial use. ASTIN Bulletin, 28(1), 77–93.

CHAN, W.-S. (2002) Stochastic investment modelling: A multiple time-series approach. British
Actuarial Journal, 8(3), 545–591.

https://doi.org/10.1017/asb.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.21


ON COMPLEX ECONOMIC SCENARIO GENERATORS 811

CHAN, W.-S., WONG, A.C. and TONG, H. (2004) Some nonlinear threshold autoregressive time
series models for actuarial use. North American Actuarial Journal, 8(4), 37–61.

COLLINS, P.J., LAM, H. and STAMPFLI, J. (2015) How risky is your retirement income risk
model? Financial Services Review, 24(3), 193–216.

COX, J., INGERSOLL, J. and ROSS, S. (1985) A theory of the term structure of interest rates.
Econometrica, 53(2), 385–408.

CUI, Z., FENG, R. and MACKAY, A. (2017) Variable annuities with VIX-linked fee structure
under a Heston-type stochastic volatility model. North American Actuarial Journal, 21(3),
458–483.

DUFFIE, D., PAN, J. and SINGLETON, K. (2000) Transform analysis and asset pricing for affine
jump-diffusions. Econometrica, 68(6), 1343–1376.

ENGLE, R., ROUSSELLET, G. and SIRIWARDANE, E. (2017) Scenario generation for long run
interest rate risk assessment. Journal of Econometrics, 201(2), 333–347.

ENGLE, R.F. and NG, V.K. (1993) Measuring and testing the impact of news on volatility.
Journal of Finance 48(5), 1749–1778.

GEOGHEGAN, T., CLARKSON, R., FELDMAN, K., GREEN, S., KITTS, A., LAVECKY, J., ROSS,
F., SMITH, W. and TOUTOUNCHI, A. (1992) Report on the Wilkie stochastic investment
model. Journal of the Institute of Actuaries, 119(2), 173–228.

GNEITING, T. and RAFTERY, A.E. (2005) Weather forecasting with ensemble methods.
Science, 310(5746), 248–249.

GRAEFE, A., KÜCHENHOFF, H., STIERLE, V. and RIEDL, B. (2015) Limitations of ensem-
ble Bayesian model averaging for forecasting social science problems. International Journal of
Forecasting, 31(3), 943–951.

GREEN, P.J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82(4), 711–732.

HAARIO, H., SAKSMAN, E. and TAMMINEN, J. (2001) An adaptive Metropolis algorithm.
Bernoulli, 7(2), 223–242.

HAMILTON, J.D. (1989) A new approach to the economic analysis of nonstationary time series
and the business cycle. Econometrica, 57(2), 357–384.

HARDY, M.R. (2001) A regime-switching model of long-term stock returns. North American
Actuarial Journal, 5(2), 41–53.

HARTMAN, B.M., RICHARDSON, R. and BATEMAN, R. (2017) Parameter uncertainty.
Technical report, Casualty Actuarial Society, Canadian Institute of Actuaries, and Society
of Actuaries Report.

HESTON, S. (1993) A closed-form solution for options with stochastic volatility with applications
to bond and currency options. Review of Financial Studies, 6(2), 327.

HIBBERT, J., MOWBRAY, P. and TURNBULL, C. (2001) A stochastic asset model and calibration
for long-term financial planning. Technical report, Barrie & Hibbert Limited.

HOETING, J.A., MADIGAN, D., RAFTERY, A.E. and VOLINSKY, C.T. (1999) Bayesian model
averaging: A tutorial. Statistical Science, 14(4), 382–401.

HUBER, P. (1997) A review of Wilkie’s stochastic asset model. British Actuarial Journal, 3(1),
181–210.

IOANNIDIS, C. and KONTONIKAS, A. (2008) The impact of monetary policy on stock prices.
Journal of Policy Modeling, 30(1), 33–53.

KILIAN, L. and MANGANELLI, S. (2007) Quantifying the risk of deflation. Journal of Money,
Credit and Banking, 39(2–3), 561–590.

LEWANDOWSKI, D., KUROWICKA, D. and JOE, H. (2009) Generating random correlation
matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9),
1989–2001.

LITTERMAN, R. and SCHEINKMAN, J. (1991) Common factors affecting bond returns. Journal
of Fixed Income, 1(1), 54–61.

MISHKIN, F.S. (1992) Is the Fisher effect for real?: A reexamination of the relationship between
inflation and interest rates. Journal of Monetary Economics, 30(2), 195–215.

PEDERSEN, H., CAMPBELL, M.P., CHRISTIANSEN, S.L., COX, S.H., FINN, D., GRIFFIN, K.,
HOOKER, N., LIGHTWOOD, M., SONLIN, S.M. and SUCHAR, C. (2016) Economic scenario
generators—A practical guide. Technical report, Society of Actuaries.

https://doi.org/10.1017/asb.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.21


812 J.-F. BÉGIN

RENDLEMAN, R.J. and BARTTER, B.J. (1980) The pricing of options on debt securities. Journal
of Financial and Quantitative Analysis, 15(1), 11–24.

RENNE, J.-P. (2017) A model of the Euro-area yield curve with discrete policy rates. Studies in
Nonlinear Dynamics & Econometrics, 21(1), 99–116.
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