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REGRESSION ANALYSIS OF

DEPENDENT ERROR MODELS

C.A. MCGILCHRIST

A method of analysing the general linear regression model is

described, for the case where the obervations are correlated.

For many applications the correlations are structured, with

neighbouring observations being more strongly correlated than

those some distance apart in time or space. Such correlation

structures may often be assumed to belong to some class of

models indexed by a small number of parameters. Estimation

and inference procedures which are able to cope with a wide

range of correlation models, are described and the methods

are applied to problems which occur in biometry.

1. Introduction

Often in biometry it is required to fit a linear regression model

in the presence of error which is correlated over successive observations.

The model may be written

h = ̂  +Et

where Y is the dependent variable, £ is a vector of y regression

Received 11 November 1985. This is the text of an address given
at a symposium which marked the seventy fifth anniversary of the University
of Queensland.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86
$A2.00 + 0.00.

199

https://doi.org/10.1017/S0004972700010066 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010066


200 C.A. McGilchrist

variables and E is a residual or error term distributed with zero mean

and constant variance. The ordering variable t is usually time or

position in space so that neighbouring E terms are often correlated.

Let

K* = C*1'72 V ' Xt = C l̂'̂ 2 **]I' W C*l'*2 V

be accumulated arrays of variables up to t so that in matrix notation

the model becomes

U = **£ + e-t • var U = alh •
In the applications we consider, the variance matrix Z. is modelled

in some way using a parsimonious vector of parameters Q_ . Thus 6̂  ,

a and 6 are the parameters of the model and the object of this paper

is to present a method of inference which applies to a wide variety of

such variance matrices.

2. Likelihood Estimation

If the errors are now assumed to be normally distributed, the

likelihood function based on y^ , denoted by L^_ , may be written as

-2 In Lt = t ln(2T\o*) + ln\lt\ + a^2 (Y^-X^)'I.'1 (y^-X^)

For any given 6 this function may easily be differentiated with respect

to o or 3 to give estimators

where H. = X]Z. X. . while these estimators maximise L+ for a

particular 6̂  , there is no explicit expression for the value of 9̂

which maximises L^_ and such a value must be found by convergence

techniques. To reduce the dimension of such search procedures, it is

~ - 2
clearly better to find that value of jj_ which maximises ^t^^i'aet'—
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which is a function of 9̂  alone. The equations for JL , and 3 ^

then give the appropriate estimates for 3 and a respectively. The

function to maximise is then

-2 In L.(&.,3 ,,6) = t ln{2na2) +
T —"V &~C — &

E.I + t = constant + A. (6)
~C "0 —

where + t

and maximising L,(9) is equivalent to minimising A,(9)
t — t

A problem in carrying out such a convergence procedure is that I,

,-1
may be a large matrix and finding Z/~ and I,| may become difficult.

To overcome such difficulties we adopt recursive procedures. Let

-t at+l,t+l

H**

°t = °

It is then easily shown that

h+? h1 + Q,
-1

-a*

with initial conditions of g. being a null vector, e =a,. and the

determinant of E being unity. Although the recurrence relationship

for the determinant is directly usable, the recurrence for the inverse

must be included into the quadratic form occurring in A.. [Q).. Letting

where «•,=•£, , -X\a. , then it can be shown that
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t-1 *-l
A.(Q) = Z m c. + t In I \T.

t ~ i=0 * 1=0 *

Two updating formulae are

and

and these formulae apply provided the rank of H does not increase in

going from t to t+1 . The rank will increase by one if some variable

whose coefficient has not been estimable becomes estimable for the first

time at t+1 . The updating formulae are then given in McGilchrist,

Sandland and Hennessy [6]. Using such methods, g. may be taken to be

a vector of zeros, while HQ is a matrix of zeros.

The choice of search procedure for the minimum of A,(Q) over 6_

space, depends on how easily the derivatives of .4,(0) may be found.
u —

Usually there is a trade-off between extra complexity of programming,

with associated increased storage of variables, and speed of convergence.

It is, nevertheless, possible to write a program for estimating all

parameters which calls on a subroutine to evaluate a and g_ for the

particular variance matrix involved. The method hinges on whether or

not such a subroutine can be efficiently written. The remaining part

of this paper examines various problems occurring in biometry, outlines

the structure of the variance matrix involved and gives methods for

evaluating o and q_ .

An added bonus of this method is that, provided an appropriate

model is being fitted, the W. are distributed as independent N(0,o~i)

and are termed recursive residuals. They may be used in model diagnostics

to test for residual correlation, constancy of variance and so on. Also

very useful are the recursive estimates of &_ give by S. . These

estimates may be graphed to check on constancy of regression over time.

Such procedures are described in Brown et al.[I].
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3. Stationary Error Models

If the covariance structure is that of a stationary, zero mean,

Gaussian process then £, is Toeplitz of the form
V

V l °t-2 ••• °0

For such a structure it is easy to show that

ct [ 1 - ( p ? + l
) 2 ]

pt+l = C at +l-
( r e v

Here (r, is the partial autocorrelation coefficient of lag t , which is

the correlation between E and E , given the intervening values of

E ; and rev is an operator which reverses the components of a vector.

Thus

rev o't = [o1, a2 aj .

The vector g. may be shown to have the property that gifj. is the

minimum variance, unbiassed, linear predictor of E,., , while a Q is

the variance of that linear predictor. The above is known as Levinson's

algorithm and a survey of its rediscoveries and uses is given in Morettin

LSI.

We then have a simple set of recurrences which apply to any

stationary covariance structure. It should be noticed that the covariance

terms a. enter the computation only through the partial correlation

p̂ _ ; hence a subprogram to generate c and g_ may be written for any

stationary model with only â . , or equivalently pP , being changed in

going from one model to another.
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3.1 ARMA MODELS For each autoregressive, moving average model of

the type

W*-l + - " + o p Y t - p = Ut+eiUt-l+---+6qUt-q

the autocovariances may be generated by the Yule-Walker equations and it

is often convenient to represent the error correlations by this class of

models.

In biometry the above procedures have been used to model the

growth of a single organism. The relative growth rate may change with

time or respond to the supply of nutrients so that a regression model with

time dependent errors will apply. Such methods are illustrated in Sandland

and McGilchrist [101 and McGilchrist et al [7]. The same methods may be

used in the study of population growth or annual deaths from specific

causes such as motor vehicle accidents.

3.2 FRACTIONAL GAUSSIAN FROCESSES Such processes were introduced

by Mandelbrot and van Ness C4] and have covariance function

at = 1 , t=0,

(i/2)[(t+i)2e+(.t-i)2e-2t2e:, o<e<i, t>o.

The covariance functions, which have a long tail, were introduced by

Mandelbrot to describe the long term dependence in share market movements

and similar properties in the run-off of the Nile River at Aswan. The

covariance model is one method of explaining the celebrated Hurst law in

hydrology.

3.3 VARIANCE COMPONENT MODELS Sometimes it may be convenient

to think of the error term in the regression as being composed of more

than one component, each with its own lagged correlation structure. For

example, in an environmental study the distribution of the pollution

variable Q follows the model

P(Q>q\R) = exp -[ (l+q)/6e6i?]Y , q>0 ,

where R is an environmental risk variable which is made up of climatic
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factors and soil factors which affect the chance of a high pollution level

being recorded. Some of these factors which depend on variation of

temperature, wind, etcetera contribute a correlation which rapidly decreases

to zero as time lag increases. However, other factors such as general

wetness of the area, vary slowly and contribute a relatively long term

dependence pattern. Such correlations may be conveniently modelled as the

sum of two component error models. Once the environmental risk is

modelled, there is no difficulty in using the above theory to fit the

model since the covariance structure is still stationary.

4. Random Block Structures

In the random block structure the error component is composed of

a random block effect plus the residual error term. If I. . is the
13

.th observation in block i , then the observation vector may be ordered

Yll' y i2'"-' J21' y 2 2 ' " - / y 3 1 " "

The model is Y. . = x\ .̂  + B. + E.• and various types of correlation

structure may be considered appropriate for the B and E terms.

4.1 INDEPENDENT BLOCKS, INDEPENDENT ERRORS If £.. are

2 2
distributed as independent N(0,a ) and B. as independent N(O,Ba )

then the variance matrix is of the type a Z with
e

Z = i+erL1 o

o j+eii1

where each diagonal block of I+61V is of dimension equal to the size

of the block and 1̂  is an appropriate vector of ones. The structure is

no longer Toeplitz but suitable recurrences may be easily found to be:

(i) If t •*• t + 1 remains within a block
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(ii) If t •* t + 1 goes to a new block

= 1 + 6 .

There is no difficulty in analysing experiments with blocks containing

different numbers of observations. Examples occur in experiments on

litters of mice using different size litters as blocks; and observations

on people where the person effect is the block effect.

4.2 DEPENDENT BLOCKS, INDEPENDENT ERRORS Sometimes a more

appropriate model for blocks is that of an accumulated error process,

B, = u , B- ,=B-+y. , £=1,2...

where the U. are independent 2V(O,6cr ) . In this case the variance

matrix i s of the type

h = &Vt ' Vt =

33

where i- -i- is a matrix of i's with rows, columns equal in size to blocks

3 J k respectively. For such a variance structure

where 6, is 1 if t •* t + 1 goes to a new block but is otherwise

Such models are very similar to the Kalman filter models as discussed

in Duncan and Horn [2] and may often be quite reasonable descriptions of

block effects in agricultural field trials where blocks have been chosen

perpendicularly to the fertility gradient and the fertility change up the

gradient behaves like an integrated error process. Indeed, the success
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of the Papadakis style analysis advocated by Wilkinson et al [11] depends

on such integrated error processes applying.

4.3 STRUCTURED BLOCKS AND DEPENDENT ERRORS It is possible to

carry on the study to blocks which have a nested or crossed structure

and errors with a Toeplitz variance structure. An example of such a

structure is discussed in Sallas and Harville [9]. Each such structure

has a different set of a , g_ recurrence relations.

5. Field Experiments

In field experiments observations are often made at points of a

regularly spaced grid and

Y.. = observation at (i,j) , i=l,2,...,J; 3=1,2,...,J

obeys the linear regression model Y. . = x\ S+E. . with
%3 —vg- %0

CovIE. ., E. . ) = av 13' ^+r,<7+s' rs

The symmetry of the two dimensional stationary covariance structure may

be exploited to obtain recurrence relations for 0 and <£, T in

terms of a and g_ . Such recurrences are given in McGilchrist and

Knudsen [5] or Gleeson and McGilchrist [3].

It has been noted that the residual component E. . of the model

13

often does not appear to be stationary. One method of handling this

problem is to treat E. . as an integrated error process and taking row
13

and column differences produces a stationary residual term. The regression

model still applies but the differenced variable now becomes the dependent

variable and a similarly treated x. . term becomes the vector of
regression variables. For many agricultural field experiments, such a

method is appropriate and is at the heart of the Papadakis style analyses.

The factor which is differenced out is, almost certainly, a slowly varying

fertility component.
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If the experiment covers a larger geographical scale, the slowly

varying component may be more appropriately modelled by a separate

variance component with a faster varying component representing the more

local variation.
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