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G × E in psychiatry may explain why environmental risk factors have big impact in some individuals but not in others,
and conversely why relatives that are genetically at risk for disease do not all develop disease. Here we discuss two
novel methods that use an aggregate genome-wide measure of genetic risk to detect G × E and estimate its effect in
the population using data currently available and data we anticipate will be available in the near future. The first
method exploits summary statistics from large-scale genome-wide association studies ignorant of the environmental
conditions and detects G × E in an out-of-sample risk-profiling framework. The second method relies on larger samples
and is based on a mixed linear model framework. It estimates variance explained directly from single nucleotide poly-
morphisms and environmental measures. Both methods have great potential to improve public health interventions
focusing on risk-based screening that is informed by both genetic and environmental risk factors.
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Introduction

The importance of gene-by-environment interaction
(G × E) in psychiatry has intuitive appeal and is often
discussed. However, the dearth of data to investigate
G × E means that empirical evidence is modest. Here
we consider how the era of genome-wide genotyping
opens new approaches for G × E research. G × E in dis-
ease aetiology implies environmental factors control
disease outcome conditional on genetic predisposition,
and conversely, genetic factors control disease out-
come conditional on environmental exposure. It
explains why genetic and environmental factors can
have a big impact in some individuals but not in
others. G × E research aims to identify non-marginal
genetic and environmental effects, that is, effects of a
specific genetic (or environmental) risk factor that
does not act in the population as a whole when aver-
aging over all other variables but only act conditional
on an environmental (or genetic) variable.

Interpretation of G × E research requires careful con-
sideration of the hypotheses tested, first recognising
that presence of statistical interaction depends on –
and may be induced by – the scale of measurement.
In the past 15 years, the majority of G × E researches
have used a molecular genetic approach focusing on
candidate genes and specific environmental risk fac-
tors. Researchers hypothesised environmental factors

controlled disease outcome only if a single genetic
mutation was present (or vice versa, a genetic mutation
to control disease outcome only under certain environ-
mental circumstances). For complex genetic diseases
including psychiatric disorders, the effect of a specific
genetic variant is usually very small effect and hence
the prior probability that a specific genetic variant
interacts with a specific environmental factor is also
very small. Therefore, the majority of published G × E
studies have suffered from lack of replication, low-
power, a publication bias towards positive results and
major methodological concerns (for a critical review
see Duncan & Keller, 2011). Interpretation of candidate
gene G × E research is further complicated by the wide
diversity of methods and reporting standards used,
precluding meta-analytical evaluation of G × E evi-
dence (Modinos et al. 2013). However, lack of power
and replication was not limited to G × E studies but
was also inherent in the decade of candidate gene asso-
ciation studies which were not powered to detect the
small effect sizes that we now know operate in
human diseases. Significant findings were almost
never replicated and candidate genes that were selected
based on their potential involvement in candidate bio-
logical pathways (e.g., neurotransmitter systems) have
generally not shown robust association with psychiatric
disease suggesting that current understanding of the
biological basis of psychiatric disease is lacking.

The era of genome-wide association studies (GWAS)
promised new hope but early studies were also under-
powered (Manolio et al. 2009). More recent statistical
analyses of aggregate single nucleotide polymorphism
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(SNP) effects, however, have shown that genetic vari-
ation in complex psychiatric disorders is polygenic in
nature. Odds ratio of the individual variants generally
range from 1.1 to 1.4; consequently, very large sample
sizes are required to estimate those SNP effects with
high precision. Recent efforts to increase sample sizes
are now starting to pay off; the latest mega-analyses
of GWAS data for schizophrenia has identified >100
genome-wide significant associations (2014), together
explaining 7% of the variation in out of sample predic-
tion. Other psychiatric diseases are expected to follow
if GWAS sample sizes continue to increase.

Comparison of effect sizes of individual genetic risk
variants with environmental risk factors shows that
much larger risk can be attributed to individual envir-
onmental factors. For example, recent meta-analyses of
the association between schizophrenia and urbanicity
and migrant status revealed a pooled odds ratio of
2.39 for urbanicity (Vassos et al. 2012) and odds ratios
of 2.7 and 4.5, for first and second generation migrants
to European countries, respectively (Dealberto, 2010).

Taking these lessons forward to novel G × E research
where we hypothesise that exposure to environmental
risk factor increases the risk of disease only in those
that are genetically susceptible, we will have to redefine
being genetically susceptible in our study design. A single
mutation in a candidate gene is unlikely to have a big
impact in the population, by taking the aggregate effect
of all mutations; however, we can differentiate people
being at high genetic risk for disease. A polygenic archi-
tecture for psychiatric disorders of many weakly con-
tributing variants means that genetic effects interact
on the scale of disease (i.e., affected v. not affected)
but act more additively on a susceptibility to disease
scale (i.e., liability scale) (Zammit et al. 2010). On the dis-
ease scale, environmental variables are expected to
combine interactivelywith genetic variants (combined),
but more unknown is whether the genetic variants and
environmental factors interact on the underlying scale
where genetic effects combine more additively.

Here we describe two methods (see Fig. 1 for a sche-
matic of the methods) that utilise the aggregate effect
of genetic mutations to study potential G × E in a
more powerful and reliable way compared with the
candidate-gene approach.

G × E in a risk-profiling framework

Genomic risk profile scores (GRPS) can be used as
proxy estimate of genetic effects in a G × E study in
which individuals have both genome-wide genotypes
and measures for environmental risk factors. GRPS
are quantitative scores calculated for each individual
and are an estimate of an individuals’ genetic risk for

disease. GRPS were first applied to schizophrenia
GWAS data where they provided evidence for a sub-
stantial polygenic component to the risk of schizophre-
nia involving many loci of very small individual effect
(Purcell et al. 2009).

GRPS are calculated using estimates of genetic effect
sizes derived from an independent GWAS ‘discovery
sample’. It is important that no individuals (or their
close relatives) from the GRPS sample (or ‘target sam-
ple’) are included in the discovery sample. GRPS are
constructed in two steps: firstly, individual effect
sizes of risk alleles (e.g., beta from linear regression,
odds ratio from logistic regression or best linear
unbiased prediction (BLUP) from linear-mixed models
(Yang et al. 2014)) are estimated in the discovery sam-
ple. Secondly, for each individual within the target
sample a GRPS is computed by taking the number of
risk alleles an individual possesses weighted by the
effect size of that allele from the discovery sample,
averaged over the number of loci included in the
GRPS.

The GRPS and the environmental variable of inter-
est can now be included as individual terms as well
as a product term in a risk-profiling framework.
Fitting nested (increasingly more restricted) models
allows testing for significance of the GRPS, the envir-
onmental factor of interest, and their interaction effect.
For a disease trait (binary Y ), the full logistic regres-
sion equation will be:

logit (Y) = b0 + b1G+ b2E+ b2G× E+ 1,

where G is the multi-locus GRPS, E is the environmen-
tal moderator variable and G × E is the interaction term
between G and E. Under this model significant genetic
and environmental effects already imply G × E on the
disease (Y ) scale, but a significant G × E term implies
G × E on the underlying liability to disease. In this
framework, multiple GRPS and multiple environmen-
tal factors can be included in the analyses to allow for
hypothesis-driven identification of G × E effects. For
example, GRPS can be based on SNPs that are selected
based on functional annotation or physical position in
the genome.

In the context of schizophrenia, the latest mega ana-
lysis published by the Psychiatric Genomics
Consortium (PGC) (2014) (their Figure 3) shows that
if individuals in independent target samples are
ranked on GRPS then the odds of disease in the 10th
decile is 7–20-fold (varying between samples) greater
than the odds of disease in the first decile.

A G × E application may consider, for example, neo-
natal vitamin D level (McGrath et al. 2010b) as an
environmental risk factor for schizophrenia that is
hypothesised to interact with the GRPS. In this
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application, the G × E analysis could be extended by
considering multiple GRPS and hence multiple genetic
and G × E terms based on biological function, e.g., one
based on SNPs in calcium ion channel genes (e.g.,
Purcell et al. 2014) and one based on the remaining
SNPs.

Algorithms for the construction of GRPSs have been
implemented in the software PLINK (http://pngu.mgh.
harvard.edu/~purcell/plink/; option – score) (Purcell
et al. 2007). The prediction accuracy of the constructed
GRPS and the G × E effects can be analysed in a statis-
tical software package of choice.

G × E in a mixed linear model framework

The estimation of variance explained by aggregate
SNP effects, sometimes called SNP heritability (see
the Introduction section) is based on a mixed linear
model framework. In this framework, genetic variance
is estimated from genetic similarity among pairs of
individuals who are not related in the classical sense.
The basic idea behind this method is that for a poly-
genic trait, pairs of individuals who show higher gen-
etic similarity also show higher resemblance at the trait
level. Genetic similarity for each pair of individuals

(defined in the model as sharing 0, 1 or 2 alleles at
each locus) is measured from all the SNPs and the
aggregated SNP effects are treated as random variables
in a mixed linear model (Yang et al. 2010, 2011). The
model can be augmented with G × E effects. Similarly
to the SNP effects, the G × E effects are included as ran-
dom effects in the model. In matrix notation, the linear
mixed model including a G × E term can be written as:

y = Xb+ g+ ge+ 1, with var(y) = V

= Ags
2
g +Ages

2
ge + Is2

1,

where y is an n × 1 vector containing the phenotypes
(e.g., 1, affected v. 0, unaffected), g, ge and ε are vec-
tors of length n of the aggregate effects of all the
SNPs from all of the individuals, the genotype–envir-
onment interaction effects from all of the individuals,
and the residual effects, respectively. The variance of
y is the sum of the genetic variance, the interaction
variance and the error variance. For example, when
the environmental condition is binary, Ag is the genetic
relationship matrix (GRM) estimated from all SNPs
and elements in Age =Ag for all pairs of individuals
sharing the same environment and elements in Age = 0
for the pairs of individuals in different environments.

Fig. 1. Summary of genetic risk profiling framework and mixed linear model framework for detecting and estimating G × E.
GRPS, genetic risk profile score; MLM, mixed linear model; G, genetic condition; E, environmental condition; G × E, gene–
environment interaction; Ag, genetic relationship matrix; Age, gene–environment relationship matrix; MLM, framework can also
be applied in a bivariate setting in which the two traits represent the two environments; environmental conditions can be binary,
ordinary and continues.
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The estimate of the aggregate SNP effects (g) reflects
the genetic variation that is captured by common SNPs
and the estimate of the G × E effects (ge) reflects the
proportion of the variance attributable to G × E.
Through application of restricted maximum likelihood
estimation (REML), the proportion of genetic and/or
G × E variance to the total variance can be estimated.
Significance of the parameters can be tested by likeli-
hood ratio tests comparing the likelihood under the
full and reduced models.

When the E variable is binary, G × E can also be
investigated using a bivariate mixed model with the
two traits representing the two environments
(Falconer & Latyszewski, 1952). Under this more gen-
eral framework the SNP-heritabilities are not forced to
be the same under the two conditions, an additional
degree of freedom is however included in the model.
A genetic correlation across the environments that is
significantly less than one implies existence of G × E.
However, when the SNP-heritabilities of the trait in
the two environments differ a genetic correlation
across environments that is equal to one does not
necessary imply absence of G × E; in this scenario it is
however most likely that the G × E term reflects a
scale effect (Lynch & Walsh, 1998). To detect possible
scale effects, data could be transformed prior to ana-
lysis; any variance that can be removed through trans-
formation of the data can be labelled as a scale effect.
Interactions reflecting scale effects can however not
always be removed or even reduced by a transform-
ation of scale (Falconer & Mackay, 1996).

For disease traits, interpretation of the estimates of
the SNP-heritability of the two traits (i.e., heritability
of the disease in the two environments) is problematic,
exacerbated by potentially different lifetime disease
prevalences under the two environmental conditions,
which may be unknown or difficult to estimate. We
advise to use the bivariate approach to test for signifi-
cance of the G × E term, rather than interpreting the
estimates of SNP-heritability in the two environments,
since the correlation is not affected by the ascertain-
ment imposed on the disease in the two environments.
A magnitude of the interaction variance can be esti-
mated in the univariate mixed linear model. Analysis
under both the univariate and bivariate G × E frame-
works is recommended to gain further insight into
the estimated interaction.

Application of the mixed model method requires
data sets in which all individuals are measured for
genome-wide genotypes and the environmental risk
factor. In large data sets the genetic and G × E terms
can be partitioned by fitting multiple GRMs based
on specific notations such as functional pathways,
similar to fitting multiple GRPS × E interaction terms
in the risk profiling framework.

Estimation of genetic variance and G × E variance in
a linear mixed model has been implemented in the
software GCTA (http://www.complextraitgenomics.
com/software/gcta/) (Yang et al. 2011).

Comparison of the two methods

The method of choice, risk-profiling or mixed linear
model, primarily depends on the data available to
researchers. The mixed linear model method requires
large samples measured for both individual level gen-
etic and environmental measures (based on power
considerations (e.g., Dudbridge, 2013; Visscher et al.
2014), we estimate a sample size of at least 5000 indivi-
duals). Because individual studies are generally too
small, researchers are likely to combine data from sev-
eral studies into one study. The gain in sample size,
however, often comes with a loss in coherence of
both genetic and environmental measures. Recently
developed methods in statistical genetics allow har-
monisation of the genetic data, e.g., through imput-
ation of SNP data to a common reference panel.
Harmonisation of environmental measures across
studies, however, needs more thoughtful discussion
in the field, and new data collection efforts should
aim for harmonisation with other studies (e.g.,
PhenX Toolkit; Hamilton & Tabitha, 2014).

In contrast, the risk-profiling method requires indi-
vidual level genetic and environmental measures in
only the target sample with the GRPS constructed
based on GWAS summary statistics from a larger inde-
pendent discovery sample that is (most likely) ignorant
of the environmental conditions. Since the dearth of
data sets informative for both genetic and environmen-
tal measures has been a limiting factor in G × E
research, the risk-profiling framework is likely to be
more widely applied and allows statistical power to
be leveraged from larger samples not measured for
the environment. In the risk-profiling framework,
identification of true interaction effects largely
depends on the prediction accuracy of the genetic
and environmental factors. Prediction accuracy of
GRPS is driven by precision with which the individual
SNP effects are estimated in the ‘discovery sample’ in
which large sample size generates higher precision.
Combined efforts in the psychiatric genetics commu-
nity (PGC) have achieved 34 241 schizophrenia
cases, and 45 604 controls in 2014 (2014) resulting in
high precision of the estimation of individual SNP
effects and consequently large prediction accuracy of
the GRPS. Precision of the environmental measures
largely depends on the measure of interest. By nature,
some environmental variables are measured with
greater precision (e.g., migrant status) than others
(e.g., age of first cannabis use). Large discovery sample
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sizes and well-defined environmental variables in the
target samples will increase precision and prediction
accuracy in the risk-profiling framework.
Interpretation of results must consider the likely repre-
sentation of unmeasured environmental risk factors in
the discovery sample.

In both frameworks, the genetic architecture under-
lying the disease is a determinant in the statistical
power of a study, this factor is however beyond our
control. For example, larger sample sizes are required
when common SNPs explain less variance (i.e., SNP
heritability is low), which can be due to, for example,
common SNPs being not in sufficient linkage disequi-
librium (LD) with the causal variants or total heritabil-
ity being low. In the risk-profiling framework,
prediction efficacy (e.g., the amount of variance that
can be explained by the GRPS) depends on the sample
size of the discovery sample whereas the ability to
detect variance explained that is significantly larger
than zero depends on the size of the target sample.
The same applies to variance explained by G × E.
When sufficient samples are available and the
researcher can apply both methods, the mixed linear
model framework is to be preferred. It estimates the
variance explained directly from individual-level
genotype data, accounting for the correlation structure
between the SNPs.

Multi-locus G × E success

G × E studies that estimate genetic risk from genome-
wide genotypes are in their early days since there are
few data sets of sufficient size informative for both
genetic and environmental factors. Much larger
sample sizes, however, are expected to become avail-
able in the coming years allowing application of
both frameworks to a wide variety of psychiatric
diseases, either with direct measures of genetic risk
and environment or through proxy-measures of both
entities.

Using genetic summary statistics on alcohol pro-
blems in young adults from the Avon Longitudinal
Study of Parents and Children (ALSPAC, n = 4304 indi-
viduals), Salvatore et al. (2014) show an association
between the derived GRPS and alcohol problems in
adolescents in an independent population based
Finnish sample (FinnTwinn12, n = 1162). They also
demonstrated interaction between the GRPS and two
environmental factors: parental knowledge and peer devi-
ance. Genetic factors related to alcohol problems were
more pronounced under conditions of low parental
knowledge and high peer deviance.

When environmental measures are not available in a
case-control sample, association between genetic factors
underlying the disease and the potential environmental

moderator can be studied in samples with healthy indi-
viduals. Power et al. (2014) used GRPS for schizophre-
nia risk (Ripke et al. 2013), to explore the genetic
relationship between schizophrenia and cannabis use
in a population sample in which <1% would be
expected to have lifetime schizophrenia. Cannabis use
is well established to be much higher among schizo-
phrenic patients compared with the general population,
causality and its direction, however, is still under debate
(e.g., Ferdinand et al. 2005; Green et al. 2005; McGrath
et al. 2010a; Kuepper et al. 2011). GRPS for schizophrenia
were associated with cannabis use (ever v. never as well
as quantity of use) in a sample of 2082 healthy indivi-
duals. This result does not exclude the possibility of a
causal relationship but shows that at least part of the
association between schizophrenia and cannabis use
may be due to a shared genetic aetiology.

An approach to study G × E when measures on
environmental risk factors are not directly available
is to use epigenetic markers as proxies for the environ-
ment. Epigenetic markers associated with for example
smoking behaviour (Shenker et al. 2013; Zeilinger et al.
2013) can be included as proxy-environmental mod-
erators in the model both as a main effect and in an
interaction term with genetic risk.

An example of a G × E study in a linear mixed model
framework is a bivariate analysis of schizophrenia in
which the two traits represent two different popula-
tions: European and African descent (de Candia et al.
2013). The genetic correlation derived from SNP simi-
larity within and between populations was estimated
at 0.66 (S.E. = 0.23) and was significantly different
from zero but not from one. The results were not sug-
gestive of G × E interaction and suggested that many
schizophrenia risk alleles are shared across ethnic
groups.

Conclusion

The goal of G × E research now and in the near future is
the identification of novel genetic pathways that do not
have marginal effects and the discovery of environ-
mental risk factors that affect only a subpopulation
of genetically susceptible individuals. Increasing sam-
ple sizes in psychiatric genetics research are starting
to show that genetic risk predictors could have utility
for stratification of individuals into high- and low-risk
groups for developing disease (PGC–SCZ, 2014).
Augmenting these genetic risk predictors with envir-
onmental moderators should increase prediction
accuracy. Diagnostic use of multi-locus genetic risk
predictors is a long-term goal that might come closer
once informed by environmental predictors. Real pro-
gress in G × E research requires concerted effort of col-
lection of informative data sets.
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