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In his Topics in Number Theory, vol. 2, chapter 2 (Reading, Mass.,
1956) W. J. LeVeque proved an important generalisation of Roth's theorem
(K. F. Roth, Mathematika 2, 1955, 1—20).

Let f be a fixed algebraic number, a a positive constant, and K an alge-
braic number field of degree n. For KBK denote by *(1), • • •, K(B) the conju-
gates of K relative to K, by H(K) the smallest positive integer such that the
polynomial

g(x) = H(K) n (*-«<») = box
n+b1z''-1+ •••+ba

has rational integral coefficients, and by q(ic) the quantity

q(K)=max(\bo\,\bl\.~-.\bn\).

LeVeque's theorem states that the inequality

(I) |K-f | ^ q{K)-°

can only then have infinitely many distinct solutions K in K when a 5j 2.
When K is the rational field, this exactly is Roth's theorem.

In the present paper I generalise LeVeque's theorem and, for 1 ^ N ^ n,
study the simultaneous approximation of N given algebraic numbers fx, • • •,
£x by the conjugates K(1), • • •, KIN) of those elements « of K that satisfy the
inequality

(II) h(K) g £"?(*)'.

Here r is a constant in the interval 0 ̂  r ^ 1, and c" is an arbitrary positive
constant. In the case N = 1 the result is that both (I) and (II) can only
then hold for infinitely many distinct K in K when a 5S 1+T .

Of particular interest is the special case when r = 0 and c" = 1.
The problem then becomes that of approximating fx, • • •, fa by the conju-
gates #c(1), • • •, <c(iv' of an algebraic integer in i£. Naturally this problem is
only then non-trivial when K is neither the rational field nor an imaginary
quadratic field; for, with the exception of these special fields, the integers
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[2] On the approximation of algebraic numbers by algebraic integers 409

of K lie dense on the real axis or in the whole complex plane. By considering
the approximation by integers, one arrives at results on non-homogeneous
Diophantine approximations for algebraic numbers. Such problems do
not seem to have been studied before.

Theorems 1 and 2 contain the main results of this paper, and the paper
ends with a few simple applications.

More general theorems can be proved, and I have, without proof,
stated several possible generalisations in the Appendix C of my book
Lectures on Diophantine Approximations, I (University of Notre Dame
Press, Notre Dame, Indiana, 1961). Regrettably, the text of this appendix
is disfigured by several bad misprints.

1. Throughout this paper K denotes a fixed algebraic number field,
say of the (finite) degree n over the rational field R. The n fields Ka), • • •,
Kw conjugate to K are considered as embedded in the complex field. Thus,
if K is any element of K, its n conjugates K(1), • • •, »c(B) relative to K are real
or complex numbers.

There exists to every « in K a smallest positive integer

h = A(K) ^ 1
such that

h{x-K™) • • • {X-KW), = g(x) = 60a;"+&1a;B-1H 1-6. say,

is a polynomial with rational integral coefficients. We put

q = ? (« )= max (|6,|, fa], • • •. |6J)

and call q the height of K relative to K. Then

because b0 = h. According as to whether K generates K, or a subfield of K,
g(x) is irreducible over R, or it is at least the second power of such an irre-
ducible polynomial.

Denote by

n fixed algebraic numbers that need not lie in K and may be chosen com-
pletely arbitrarily. Further put

so that
0 ^ A ^ 1 for all K in K.

Then A vanishes for at most finitely many elements of K, and it is exactly
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410 K. Mahler [3]

then less than 1 when at least one of the inequalities

\KM-S,\ < 1 (/ = 1, 2, • • -, n)

is satisfied.
2. Let

2 7 = { K ( 1 ) , , C ( 2 ) , K ( 3 ) , - - - }

be an infinite sequence of distinct elements K(1) of K. For shortness put

and denote by K{1)(1), • • •, KW(1) the conjugates of K(1). Then

(1) 1 ^ h(l) ^ q{l) {I = 1, 2, 3, • • •)

and

(2) lim q(l) = oo;
J->oo

the latter formula holds because at most finitely many elements of K have
heights less than any given number.

It is also clear that the products

hil)K{l) (I = 1, 2, 3, • • •)

are integers in K. In fact, the following stronger result holds.
(3) If j l t • • •, jn are indices such that

1 ^ h < jz < •' • < JN ^ n,

then, for each I, the product

is an algebraic integer.
For a proof of this classical theorem see, e.g. W. J. LeVeque, Topics

in Number Theory, vol. 2, p. 64.
Finally, for all /,

(4)
i

For a proof see, e.g. my note Mathematika 7 (1960), pp. 98—100.
3. The sequence £ is said to be admissible if

O < J ( J ) < 1 for all/.

Let X be such an admissible sequence. It is obvious that then also

l foralH.

https://doi.org/10.1017/S1446788700039033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039033


[4] On the approximation of algebraic numbers by algebraic integers 411

Therefore, for each I, there exist 2M non-negative numbers

such that, simultaneously,

h{l)\
Here

n n

(5) 3M*(*) ~ 1. 2 Bt(l) g l for all I,
1=1 j-i

where the inequality follows from (4).
Denote now by r\ an arbitrarily small positive constant, and by w a

constant satisfying
o) > nrf1.

Further, for each pair /, /, let

A*If), B*{1)

be the 2M integers defined by the inequalities

Af(l) ^ (oAf{l) < Af{l) + 1, Bf(l) — 1 ^ (oBt(l) < B*(l).

Then these integers are likewise non-negative, and by (5)

2 Af (I) ̂  o>< 2 A* (l)+n, 2 B ? W < w + « .
i-i i-i j-i

Hence, for all / and /, these integers are bounded and so have at most finitely
many possibilities.

Since £ is an infinite sequence, it contains then an infinite subsequence
£' for the elements of which the 2M integers

A*(l)=A* and B*(l) = B* (j = 1, 2, • • -,n)

assume fixed values independent of I. On putting

otf = co-Mf and 0, = co^Bf (j = 1, 2, • • •,»)

these constants are again non-negative, and it is obvious that

and
«f S Af{l), p, ^ B,(l) for K(l)eZ' and all /.

Hence the following result has been obtained.
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LEMMA 1: Let Z be an admissible sequence, and let rj be an arbitrarily small
positive constant. There exist an infinite subsequence Z' of Z and a set of 2n
non-negative constants at.*, • • •, at.*, ft.'' *, ft, satisfying

with the property that

«>(O-fi|)^<d(^ \
I ( / = 1 , 2 , • • • , » )

for all elements K{1) of Z'.
4. If or is a positive constant, the sequence 2Tis said to have the property

P(a) if a further positive constant c' exists such that

A(l) ^c'q{l)-' for all /.

Thus, if a' is any constant satisfying

0 < a' < a,

then all but finitely many elements of E have the weaker property that

because q(l) tends to infinity with /.
Next, if T is a constant in the interval

Z is said to have the property @(T) if a further positive constant c" exists
such that

h(l) ^ c"q(iy for all /.

For any constant r' satisfying
T ' > T

this implies then again that all but finitely many elements of £ have the
weaker property

We note that, by (1), Z always trivially has the property @(1) with c" = 1.
More exactly, put

T0 = hm mf ° )/ ;
„ „ log ;(0

again, by (1),
0 ^ r0 £ 1.
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From the definition of the lower limit there exists now an infinite subsequence
of E with the property Q(x) when x > r0, but no such subsequence can
exist when T < T0. Furthermore, if TX and T8 are constants such that

there is an infinite subsequence E" of E with the property

q{iy* ̂  h(l) ^ q(iy> for K(1) e E".

Here we may choose

xx = 0 .if T0 = 0, ra = 1 if T0 = 1,

and we may in addition assume that ra—xx is less than a prescribed positive
constant.

5. Let E be a sequence with the property P(a), and let s > 0 be an
arbitrarily small positive constant. As we found, if

0 < a' < a,

all but finitely many elements of E have the property

(6) A(l)£qQ)-'.

By (2), this implies in particular that

lim A(l) = 0,
J-»oo

hence that E becomes admissible if at most finitely many elements are
omitted.

Without loss of generality, let already E itself be admissible and have
the property (6). We apply Lemma 1 to E and, in the notation of this lemma,
find that

m i n (1 , k » > ( Z M , | ) ^A(l)"' ^ q{l)-^'</ (j=l,2,-- -, n ) .

For shortness put

«i = « ! * ' , • • -,aB = aJ a'.

Then «1# • • •, aB are non-negative, and by the lemma,

2
i-X

Here the difference
a~{l-t))a' = {o-o')+t)o' < (or-

can be made less than s by choosing both a—a' and rj sufficiently small,
say with r\ < e. Hence the following result is obtained.
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LEMMA 2: Let £ be a sequence with the property P{a) where a > 0, and
let e> 0 be arbitrarily small. There exist an infinite subsequence Zx of 2 and
a set of 2w non-negative constants <xlt • • •, «.„, /J1( • • •, /?„ satisfying

a-s <J,x,<o, 2 Pi <

that

/, , ,«mi\ ^ I, , ,1 iU)\'' 0' = 1» 2, • • -, n)
max(l, I«"'(*)I) ^ |(«+1) —7j

for all elements K(1) of £t.
6. In what follows, we shall be concerned with polynomials in several

variables, of the form
rl rm

A i . . . **• \ > - • • *V /2 v*i • -r*««

We use then the abbreviated notation

_ ffi+-+'mA(x1, ••-.Xj

where h, • • •, jm denote arbitrary non-negative integers.
Two results on such polynomials are required. The first result is a special

case of a lemma due to LeVeque which generalises Roth's Lemma.

LEMMA 3: Let m, rlt • • •, rm, qlt • • •, qm be positive integers, and let t
be a positive number, such that

0<t< (2™+2»»)-1, rm > lOt-1, — < t for j = 2, 3, ••-.m,

log ft > 2m{2m+l)t-1, rt log q, ^ rt log ft for j = 2, 3, • • •, m.

Let further
f* r " i t

6e a polynomial with rational integral coefficients satisfying

£ei finally «!,•••, Kmbem elements of K of the heights qt, • • •, ̂ m, respectively.
Then m non-negative suffixes Ji," ', Jm exist such that

4rx...J.(«I. • • • . ' 0*0 , . 2 7 ^
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[8] On the approximation of algebraic numbers by algebraic integers 415

For the proof see W. J. LeVeque, Topics in Number Theory, vol. 2, pp.
124—142. (Choose for K the rational field and put N = 1.)

The second result needed is an existence theorem.

LEMMA 4: Let

F(x) = Fox'+F1x'-i+ • • • +Ff, where / ^ 1, Fo # 0,

be a polynomial with rational integral coefficients which has no multiple zeros.
Put

c = 80max{\F0\,\F1\,---,\Ff\).

Let r1,-'',rmbe arbitrary positive integers, and let s be a positive number not
less than 4/(2m)i. Then there exists a polynomial

A (xu • • -, xm) = § • • • Z ««,...«.*£ • • • «Jr 5^ o

with the following properties.

(A) Its coefficients are rational integers such that

K.. . . J ^ C'+-+ '« for all ilt • • -, im,

and they vanish unless

i-i ĵ

(B) At ...s {x, • •', x) is divisible by F(x) whenever

X 7 ̂  *(«»-»)•

(C) The derivatives of the polynomial have the major ants

For a proof see my Lectures on Diophantine Approximations, I, pp. 98—105.
(The assumption made in this proof that Ff does not vanish is used nowhere
and may be discarded.)

7. The main result of this paper is as follows.

THEOREM 1: Let 27 be an infinite sequence of distinct elements K(1) of K
with the two properties P(a) and Q(r) where

a > 0, 0 ^ T ^ 1.
Then

a S 1 + T .

As may be expected, the proof of this theorem is somewhat involved,
although in its basic ideas it is quite simple. It is indirect: It will be assumed
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416 K. Mahler [9]

that the assertion of the theorem is false, thus that

(7) <r > 1 + T ,

and from this assumption a contradiction will be deduced.
We first replace (7) by a stronger assumption.
Since E has the property P(a), for every positive constant a' less than a

it trivially has also the property P(a'). Therefore, if r = 0, we may without
loss of generality assume that

or = l+20c = l+T+20e where O ^ e ^ ^ .

Next let 0 < T ̂  1. By the discussion in § 4, there exist now an infinite
subsequence E" of E and a pair of constants xx, r3 with arbitrarily small
difference ta—xx satisfying

0 ^ rt < t2 2s T ̂  1, hence 1 + T ^
such that

q(iy* for all *(/) eE".

Here we can identify T2 with r and then, without loss of generality, replace
E by E". After a small change of notation we therefore find that, if Theorem
1 is false, the following assumption may be made.

HYPOTHESIS. There exist three constants e, a, r, a fourth constant c" for
x = 0, and an infinite sequence E with the -property P(a), such that either

T = 0 , 0 < £ ^ J _ , <j= l+20e= 1 + T + 2 0 « , c" ̂  1,
and

1 ^ h{l) ^ c" for all I;

or

0 < T ^ 1 , 0 < e ̂  min(^, T), <r=l+T+20s,
and

q(l)r-e ^ h(l) ^ q(iy for all I.

This hypothesis will finally lead to a contradiction.
8. By Lemma 2, there exist an infinite subsequence Et of E and a set of

2M non-negative constants alf • • •, aB, ft, • • •, fin satisfying

(8) a-e<2«, <°,

such that

for all elements K(1) of Ex. To this subsequence Ex we shall apply Lemmas 3
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and 4. It is, however, necessary first to fix the parameters that occur in
these lemmas.

For F(x) in Lemma 4 we take the primitive polynomial

F(x) = Fox
f+F1x

f~1+ • • • +Ff, where Fo > 0,

with rational integral coefficients and of lowest degree / 2g 1, for which

(10) Ffo) = • • • = F(tn) = 0.

Such a polynomial exists because the numbers £i,'•',$„ are algebraic.
While F(x) may possibly be reducible over R, it certainly cannot have any
multiple zeros.

This choice of F(x) fixes the two numbers / and c. Next we put

r32/2l
(11) m = \ ~ \ + 1, * = em,

so that
32/2

m > and therefore s 2g 4/(2m)*,
e2

as is required in Lemma 4.

For the further parameter t we choose any constant such that

(12) 0 < t < min(e, (2m+2m)~1), lO"1*1'2" ^ em.

We now select m distinct elements of Hx,

«&) = * i , ' - ' . «{lm) = "m s ay.

and for shortness write

9(k) = ? i . - - - . q(L) = ?m and /»(/,) = * ! , - • • , A(U = ftm.

Since 2^ is an infinite sequence of distinct elements, the numbers Klt • • •, Km

can be chosen so as to satisfy the inequalities

(13) log$i

2
log q, ^ - log ?,_! (/ = 2, 3, • • •, m).

t
Here T is to denote a sufficiently large positive constant that will be fixed
later in terms of /, c and e, as well as of c" if r = 0.

The inequalities (9) now take the simpler form,

max(l , |fciJ>|) ^ ( M + I ) ^ J,= 1,2, •,m)'
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418 K. Mahler [11]

In addition, by the Hypothesis,

We finally choose m positive integers rx, • • •, rm so as to satisfy the
inequalities

. ^ 1 0 ^gqm

and

(18) f ^ f J 5 l i l > r i (Z= 2, 3, •••,»»).
log?.

Then, in particular,

Since < trivially is less than 1, it follows from (13) and (14) that

(19) 2 < qx < q2 < • • • < qn.

Hence, for all I

The formula

implies then that

y . . "I _ _ y

1+e

because

10 '

Hence, by (18),

(20) f ,_x log ft_x ^ rx log ft > ( r , - l)log ft > ^ - i - log ft > - ' log ft

(* = 2, 3,
Therefore

(21) q[i ̂  yp < yJi<1+£» (Z = 1,2,

and by (14),

1r,_, >-r, (1=2,3,
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so that in particular

(22) rx > rs > • • • > rm > 2, f i+Vl \-rm < mrx.

9. The formulae in the last section show that F(x), m, s, rl, • • •, rm

satisfy the conditions of Lemma 4. There hence exists a polynomial

A (*If • • -, xm) = | • • • I at iw& • • • *J- ̂  0
<l-0 im-0

with the properties (A), (B), and (C), of Lemma 4. In particular, for all
suffixes *i, •"•,*«,,

I<V.<J - g gj
provided that

By (13) this condition is satisfied if we demand from now on that

(23) T > cm/'.

Now m, t, K1,---,Km,r1,'--,rm have also the properties required in
Lemma 3. It follows then from this lemma and from the formulae (13)
for t that there exist m non-negative suffixes Jlt- • •, Jm such that

(24) Aj Jm(Klt---,Km)^0, i^- '^m.

For shortness put

Since the polynomial Aj j (xlt • • •, xm) has rational coefficients, y is
a number in the algebraic number field K, and its conjugates with respect
to K have the values

Vtn = ^ - J . W . •••> «!?) 0' = 1. 2. • • -,n).

As the norm of y, the product of all these conjugates,

P — yd)y(2) . . . yit)f

is a rational number. By (24), y and so also all its conjugates y(/) are distinct
from zero, leading to the important inequality

(25) r # 0.

The next aim will be to establish lower and upper estimates for \F\.
10. A lower estimate for |P| can be obtained by determining an upper

bound for the denominator of this rational number. This is done by con-
sidering the product
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420 K. Mahler [13]

n = *? . . . Aj-r = K> •••*:- n ^ - ^ i " . • • •. «!?)•

On substituting the explicit expressions as polynomials for the factors

II becomes a sum of finitely many terms of the form

G=«*?•••*&• n ft*?"'1.
1 - 1 J - l

Here g is a product of certain n coefficients of Aj ... j {xx, • ••, xm) and so is
a rational integer, and the exponents in are integers such that

0 <, i4l <, r,

By the property (3) in § 2, the m factors

of G are algebraic integers. It follows that G is likewise an algebraic integer.
As the sum of the terms G, the rational number IT is then also an algebraic
integer and hence a rational integer. By (25), it is distinct from zero, and so
its absolute value is at least 1. It follows that

in ^ (hv • • • &;-)-1.

We finally apply the formulae (16) and (21), so finding that
/ c"-tr1+-"+rM) > c"-mrl jf T _ Q

(26) m ^ I T _mr {1+e)r

11. To find an upper bound for \F\ we first determine such bounds for
each of the numbers \ya)\.

Denote by S the set of all suffixes j = 1, 2, • • •, n for which

and by S' the set of such suffixes for which

a, = 0.

By the Hypothesis and by the first formula (8), S contains at least one ele-
ment; on the other hand, S' may or may not be the null set.

We begin by establishing a rather weak upper bound for |y(*'| which
is valid for all j , whether in S or in S'.

From the definition, y(J) has the explicit value
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Here, by the assertion (A) of Lemma 4 and by (22),

IV--J ^ c^ - 4 * - < cmr> for all ix,
and

m it
^ in = 0 unless 2 <

Denote by / the set* of all systems of m integers it, • • •, im where

52 ix ^ rx, • • -, Jm ^ im ^rm, |

It is evident that the term

of y{i) can only then be distinct from zero when (»!,••• , im) lies in I.
It follows that

|y«>| SS C*Cf*

where C* and C** denote the expressions

c'=,„,.?.,„ ""'••'•iC:)-"0
and

Cf* = max {max(l, \K^)\)}il~Jl • • • {max(l, \K^\)Y"~J''.

The sum C* has not more than

terms, and these terms are not greater than

cr,+•••+!•„ . 2'i . . . 2r« < (2c)""\

Hence
C* < 2mr' • (2c)mri = (4c)""\

Next, by the second line of (15), Cf* does not exceed

max

max .Ax/ \hj
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Here, by (16) and (21),

(ilYziaZG0** if r =
\hj W['(1-T+e) ^ ^ ^ H l - r + e ) if T > 0

Therefore, by (22), for T = 0,

\Cf*\ < {n+l)mT^i max

and similarly, for r > 0,

|Cf*| <
Here, by (11),

s = em.

Therefore, on combining these estimates for C* and C**, finally

(fll <r \ {to)^{» + VrJ'&*S>**t'' if r = 0,
7 I < I ^ l l ) « ( J if T > 0.

12. A much better upper bound for |y">| can be obtained when j lies
in S because we may then apply the inequalities

(28) |*<»-f,| :g £-«> (j e S',l= 1 , 2 , • • • , m ) ,

which are imph'ed by the first line of (15).
We use the identity

which follows on applying Taylor's formula to A j ...j (%,•••, a;m). Sub-
stitute the following values for the variables,

~ „(») . . . ~ J,i) ~ t
* 1 — «1 , » *tn — Km , X — $j.

Then we find that

and here the last factors on the right-hand side may be replaced by (28).
Since each algebraic number g, is a zero of F(x), by the assertion (B)

of Lemma 4,
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^ • • • ^ ' • • • • ^ ) = ° if 2 ̂  *(*»-*)•

Next, by the assertion (C) of the lemma,

It is further again obvious that

and that y{n is a sum of not more than

fo+1) • • • ( r . + l) ^ 2'i • • • 2r» < 2mri

terms.
Denote by / the set of all systems of m integers j x , - " , jm where

L £ h < rlt • • -,Jm =2 jm ̂  rm, | 1j > fas).
i-i'i

From what has been said, only those terms of yU) can be distinct from zero
that correspond to systems (jt, • • •, /m) in / . Hence, on putting

C, = max |KW)_{,|'i-'i • • • |Ktf>_^|*.-v.t

we find that

|y(»| < 2-ri . {C(l + |f,|)}""i • 2 ^ • C, = {^(l + lftlW'C,.

By (28) and by the definition of / ,

Cf^{ min j j - ' i • • • ?Jr/«)-a',

since all exponents j\—J\, • ", jm—Jm are non-negative. Further, by (21),

Here

and

since s = em, and therefore
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2 M )
i-i ri

Ci has then the upper bound

C, < ?-Wi(»-s«)«/.

Therefore, finally,

(29) |y<»| < {4c(l + |!/|)}mr^imri(1-3£)a' if / e S.

13. In the equation

(30) \r\ = n lyU)l • I I lrM)l
jeS jeS'

the factors \yli)\ will now be replaced by the upper bounds (29) when j eS
and by the upper bounds (27) when / e S'.

The set S has not more than n elements, and by Lemma 2

2 , 2
ieS 1=1

Hence

(31) I

where cx denotes the constant

Next, also the set S' has not more than n elements, and again by Lemma 2

Therefore

IW TT M«l ^ / (4cr'Hn+ir'>q**<>W if r = 0.
1 ' 11 iy |< | ^ p ^ ^ H j H W B - * ) if T>0.

Put
ca=(4c)»(»+l)2c1.

By combining the formulae (30), (31), and (32), we arrive at the upper
bounds

, cmrlg-imT1a-aen<'-e)+imr1a+e)' jf T = 0 ,

' ) I "I < y cmr,--imr,(l-Se)(<r-€H-Jmr,(l+€)«(l-r+£) Jf T > Q.
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14. The lower and upper estimates (26) and (33) for \P\ imply that

c " - m r , < • cmr1--Jijjr1(l--3e)(<r-E)-l4mr1(l+6)!> jf T __ Q

and
_-mrj(l+s)T <- cmrl_-i«ir1(l-3e)((r-e)+imr1(l+£)>(l-''-|-e) jf -j- > 0.

After a slight simplification these inequalities take the form

(34) j?M < C(r),

with the abbreviations

p n = | i ( l - 3 S ) ( a - e ) - | ( l+£ ) 3 if T = 0,
W \^l_3e)(ff-e)-(l+e)T-|(l+e)

3(l-T+£) if T > 0 ,

and

j if T > 0.

Now, by the Hypothesis,

(7 = 1-f

Hence, for T = 0,

£(0) = i ( i -
g

— 2" ^ 1 3 ~ T O ~ T O T ) > £>

and for r > 0,

= |{(12e-63e2-4e3-c«)-T(2e-3e2-e3)}

) - 1 ( 2 - 0 ) } > e.

Thus the relation (34) certainly does not hold if

and this will be the case if we impose on the parameter T in (13) in addition
to (23) the further condition that

(35) T ^ C(T)1/E.

Thus, if we define T by the formula
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T = max(cm", C(T)1/£),

then the Hypothesis leads to a contradiction. This concludes the proof of
Theorem 1.

14. By specialising Theorem 1, we obtain a number of results that have
some interest in themselves.

As the simplest case, consider an infinite sequence

E = («(1), «(2), K(3), • • •}

of distinct elements of K with the property

l^d)^)-^! ^ q(l)-r for all I,

where a is some positive constant. Since evidently

lim | ««>(/)-£!! = 0,
I-»OO

all except at most finitely many elements of S satisfy the inequality

TJmin(l, |K«>(J)-f,|) SS |K(1>-£II £?(/)-*•

Hence, by Theorem 1,

because S always has the property (?(1). Thus LeVeque's generalisation of
Roth's theorem is a special case of Theorem 1.

More generally, assume that the. elements of Z satisfy the inequalities

|K<»(J)-<?,| £ q{l)-"' for all I, and 1 ^ / ^ N,

where 1 ^ N ^ «, and

are N positive constants. Then again for all but at most finitely many
elements of 27,

rimin(i, k(»(<)-f,l) £ n k«"W-f,l ^ y W - ' ^ - ^ ' .
J-l i - l

Hence, by Theorem 1,

«iH how ^ 2.
This result remains true if one or more of the constants <xlt • • •, ay are equal
to zero.

https://doi.org/10.1017/S1446788700039033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039033


[20] On the approximation of algebraic numbers by algebraic integers 427

15. It has its advantages to change the notation by expressing the
elements of 2 in terms of a field basis.

Let oilt • • •, mn be a field basis of K which need not be an integral basis.
The letters c,, c2, c3, • • • will be used to denote positive constants that are
independent of the suffixes j and /. In particular, cx is to denote the smallest
positive integer such that the n products

are algebraic integers. As usual, eojj." is the j'-th conjugate of wk.
We shall again be concerned with an infinite sequence

Z = (K(1), K(2), K(3), • • •}

of distinct elements of K. In terms of the basis, these numbers can now be
written as

9(1)

where %(/), • • •, a;B(/), y(l) ^ 0 are » + l rational integers which we assume
to be relatively prime. The conjugates of K(1) similarly have the form

For shortness, put

= mzx(\Xl(l)\. ••-, K W I ) . Y(l) = W)\

so that X{1) is a non-negative integer, and Y(l) is a positive integer. Since
the elements of £ are all distinct, the larger one of these two integers tends
to infinity with I.

From now on assume that

(38) Wll)(l)\ ^ ca for j = 1, 2, • • •,N and for all I,

and

(39) \Ku>{l)\^c3 for all I.

Here N again is an integer such that 1 ^ N ^ n. From the equation

it follows then that
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(40) M / K > + • • • +xn(l)a>W\ £ c2Y(l) for / = 1, 2, • • •,iV and for all /,

and

l*iW<)+ • • • +*n(lWn]\ ^ c3Y(l) for all /.

On the other hand, it is obvious that

(41) l<*i(/)«>i"H \-*,(lW«\ ^ ctX(l) for aU / and all I,

and hence it follows that

(42) Y(l) ^ c&X(l) for all I.

Thus, in particular, the assumptions (38) and (39) have the consequence
that X(l) tends to infinity when K(1) runs over the elements of 2".

We form now the polynomial in x,

3 = 1

= I I {ciy(l) • x-(x1(l)c1co?+ • • • +xnV)c1a><?)}

= b*xn+b*xn~1+ • • • + 6 * say, where b* = cn
lV{l)n.

The coefficients of g*(x) are symmetric functions in the conjugates of K(1)
and so are rational numbers. Further the linear polynomials in x,

(43) clV{l)-x-(xl(l)cia>M+---+x%{l)cim<») ( / = 1,2, • • • , « ) ,

have integral algebraic coefficients. Therefore the coefficients b* of g* (x)
are algebraic integers and so are rational integers.

Denote by d(l) the greatest common divisor of these coefficients
tf.bf, •••,*? and put

~ g*(*) = box"+b1x«-1+ • • • +bn,

so that

Hence, by d(J) ̂  1, in the former notation

*(/) = |50| ̂  |ft*|, qif) = max(|60|, \b,\, ••-, \bn\) g max(|6*|, |i*|, • •

By the formulae (40) and (41), the coefficients of the linear factors
(43) of g*(x) are of the order O(X(l)) for all values of /, and of the possibly
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lower order O(Y(l)) when j = 1, 2, • • •, N. On forming the product of these
factors, we obtain then the estimates,

(44) h(l)^c6Y(l)n, q{l) ^c7X{l)n~NY{l)N for all I.

16. The sequence £ will now be specialised so as to simplify the final
result. Denote by Xlt • • •, fa non-negative constants, by Clt • • •, CN,
and C positive constants, and by pi a constant in the interval

Assume from now on that E has the following properties.

(45) 1 g Y(l) g CX{iy for all I,

(46) |K<J)(J)-£,I ^ C,X(l)-xi for j = 1, 2, • • •, N and for all I,

(47) fx ^ 0 , Ax > 0.

Since X(l) 2: 1 from (45), the former assumption (38) follows from
(46). Next, by (45), X(l) tends to infinity with I because the larger one
of the two integers X(l), Y(l) has this property. It follows from the case
j = 1 of (46) and from (47) that

lira *<»(*) = ^ 0 .
l-»oo

The former assumption (39) therefore is satisfied for all sufficiently large /,
say for I 2g l0.

Since then both (38) and (39) hold when l^l0, we may apply the
estimates (44). By (45), they imply that

(48) h{l) £ c8X(Z)nA, q(l) g c9X(/)"-(1-'I)iV, for / ^ l0.

As we know, q(l) tends to infinity with I. The quantity

n-{l-/x)N, = v say,

is therefore a positive number; i.e. the special case when

N — n and /* = 1
is excluded.

Put

w = hm mf
l0gX(/)

The second formula (48) shows that
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(49) 0 ^ (o ^ v.

It becomes now necessary to distinguish two cases.
Case 1: w > 0. Denote by s > 0 an arbitrarily small constant which is

less than co. From the definition of a>, there exists an infinite subsequence
Zx of E consisting only of elements K{1) with I ^l0, such that

(50) Xy,)"-* ^ q{l) ̂  X(l)u+e if K{1) eZ1,.

By the first formula (48),

*(/) ^ C,JP)""<-«> if , (

Hence, in the notation of § 4, 2^ has the property Q{x) where

T =

because it certainly has the property ()(1), so that r need not be chosen
greater than 1.

By (46) and (50), the elements of Ex have the property

(/ = 1, 2, • • •,N)

and hence also the property

fimin (1, |«<»(Z)-f,|) ^ n WU){l)-h\ ^ cj,}^)-*^-*

Thus, in the notation of § 4, 2"j has also the property P(o) where,

_ to-f-e

On applying Theorem 1, it follows that

^ 1+min

or

( o>+e \
• nit, o>+e| •

m—E }

This inequality has been proved for arbitrarily small e. On allowing c
to tend to zero, it implies that

2s eo-f min(»,a, w).
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Here, by (49), m cannot be larger than v, and hence we find tha t

(51) AjH +XN ^ v+min(«/<, v).

Case 2: w = 0. Denote again by e > 0 an arbitrarily small constant.
There exists now an infinite subsequence 272 of Z such that

if K(l)e

Hence, by (46), the elements of £2 satisfy the inequalities

|K<>->(/)-f,| ^ Ciq(l)-*'le <3 = 1. 2, • • •,

and so also the inequality

f[min(l, |K<»(J)-f,|) S l l k«>(i)-f,| <c
i-i )-i

Therefore 2"2 has the property P(a) where

£

By LeVeque's theorem, <; does not exceed 2, and hence

Here e is arbitrarily small and may be allowed to tend to zero, proving that
all N constants Xu'",Xs are equal to zero. As this is contrary to the second
formula (47), we obtain a contradiction, and it follows that the Case 2
cannot arise.

We have then the following result.

THEOREM 2: Let K be an algebraic number field of degree n, with the
field basis col," •, eon, and let

be an infinite sequence of distinct elements of K. Write in terms of this basis

H !-*,,(*)«„

where x^l), • • -, xn[l), y{l) # 0 are rational integers that are relatively prime;
further put

= max(MJ)|, • •., |*.(/)|),
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, £ # any N algebraic numbers where 1 Ss 2V f£ »,
, CN, C, and /x a set of 22V+2 constants such

0, • • •, CN > 0, C> 0, 0 ^ /* ^

Denote
and by
that

Also a.

by

>o,
ssut

K

K
ne

y t

that

h,

the

•' •, £zv '

c1,---,

constant

is positive, i.e. exclude the case when both N = n and fi = 1.
If the elements of Z satisfy the inequalities

and

then

^ v+min(?v*, v).

17. Several special cases of Theorem 2 are worth mentioning. We
first deal with the case N = 1 of a single inequality and in this case omit the
suffix 1 of the conjugate. On first choosing /j, = 1, the theorem may be put
in the following form.

(A) / / a)x, • • •, <on is a field basis of the algebraic number field K, if f ^ 0
is an arbitrary algebraic number, and if s is any positive constant, there are
at most finitely many distinct sets of n-\-\ rational integers xt, • • •, zn, y ^ 0
such that

+*„»„

When n = 1, this is exactly Roth's theorem. On the other hand, this result
can be further generalised when n^2, and it takes then the following form.

(B) If wl, • • •, u>n is a field basis of the algebraic number field K, if $ ^ 0
is an arbitrary algebraic number, and if s is any positive constant, there are
at most finitely many distinct sets of In rational integers xt, •••,xn,y1,---,yn

such that at least one of the integers yx, • • •, yn is distinct from zero and that

hi' ••> W . ly i l . • • • ' \yn\).

For on putting

\-yn«>n

Z = maxflicxl, • • •, \xn\, \yx\, ••-, \yn\),
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a calculation similar to that in § 15 shows that K has the height O(Zn). The
assertion (B) is therefore an immediate consequence of LeVeque's theorem.

It is clear that the restriction f =£ 0 in (A) is essential and may not be
omitted. The same restriction in (B) may, however, be disregarded.

Very similar results hold when N is greater than 1, when Theorem 2
gives the condition

k-\ \-hr ^ 2«.

18. Let again N = 1, but assume now that fi = 0, so that the denomi-
nator y(l) is bounded, say is equal to 1. Theorem 2 may now be expressed
as follows.

(C) If co1, • • •, (on is a field basis of the algebraic number field K, if | # 0
is an arbitrary algebraic number, and if s is any positive constant, there are
at most finitely many distinct sets of n rational integers xx, • • •, xn not all zero
such that

As is easily seen, this result remains valid for f = 0, even with e = 0.
Two simple applications of (C) have some interest in themselves. Assume

that n ^ 2, and denote by & an arbitrary generating element of K.
The n powers &n~1, #"-2, •••,&, lot & form then a field basis of K, and it is
clear that & ^ 0. We identify { in (C) with —xo&

n where x0 ^= 0 is an arbi-
trary rational integer. With a slight change of notation, we then find the
following corollary.

(D) Let & be an algebraic number of exact degree n ^ 2; let e be a positive
constant; and let x0 ^ 0 be a fixed rational integer. There exist at most finitely
many sets of n rational integers x1,---,xn not all zero such that

0 < |ab0»+*10-i+ • • • +xn_x&+xn\ g

Next let « = 2; let if be a real quadratic field, and let a be any
generating element of K. Hence a is a real quadratic irrationality. Instead
of f we write now /?. The result (C) implies then the following statement.

(E) / / a is any real quadratic irrationality; if /J is an arbitrary real
algebraic number; and if e is any positive constant; then there exist at most
finitely many pairs of rational integers x ^ 0, y such that

\x*-y-p\ ^ I*!-'1-**.

This result may be compared with the well-known theorem by CebySev
which states:

If a is any real irrational number; if jl is an arbitrary real number; and if
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c > 0 is a certain positive constant; then there exist infinitely many pairs of
integers z =£ 0, y such that

-y- /3| ^ el*!

We see that (E) is nearly best-possible. The restriction that oc should be of
the second degree is due to the method of proof, and it would have great
interest to decide whether (E) remains true when a is at least of the third
degree.

The result (C) can be generalised to systems of more than one inequality.
It will suffice to give here one such consequence of Theorem 2.

(F) Let a>lt • • •, a>n be a field basis of K; let Si ^ 0, £2, • • •, SN where
1 -^ N ^ n—1 be N arbitrary algebraic numbers, and let s be an arbitrary
positive constant. There exist at most finitely many systems of n rational
integers xx, • • •, xn not all zero such that

. . . +xtPW-Si\ =g {maxflsj, • • •, \xn\)}'^^-^

Also here the restriction that fx =£ 0 can easily be removed.

Institute of Advanced Studies,
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