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1. Introduction. The class of groups in which every proper subgroup is nilpo-
tent has been considered in several papers. Finite groups with all proper subgroups
nilpotent were considered by O. Yu. Schmidt in [16], where he showed that such
groups are always soluble. Subsequent papers on the subject include [14] and [17].
Such groups are, of course, locally nilpotent or finitely generated. In either case the
structure of groups with all proper subgroups nilpotent can be very complicated, as
is seen from the Heineken-Mohamed examples. (See, for example, [6], [4], [13].)

In [17], H. Smith also considered the class of locally nilpotent groups in which
each group satisfied a certain finiteness condition on its non-nilpotent subgroups.
We continue this theme in the current paper. A group G is said to satisfy max-(non-
nil), the maximum condition on non-nilpotent subgroups, if every non-empty set of
non-nilpotent subgroups has a maximal element, or equivalently, if every ascending
chain of non-nilpotent subgroups terminates in finitely many steps. The class of
groups with the maximum condition on non-abelian subgroups was considered in
[12], where a complete structure theorem was given. In [17], Smith proved that a
torsionfree locally nilpotent group with max-(non-nil) is necessarily nilpotent; (in
fact Smith’s result had apparently weaker hypotheses than max-(non-nil)). In this
paper we consider further the class of groups with max-(non-nil). It is easy to con-
struct locally nilpotent groups with max-(non-nil) in which not every proper sub-
group is nilpotent; for example the direct product of a Heineken-Mohamed type
group with a finite nilpotent group will do. (Indeed, it is not difficult to show that an
infinite locally finite, non-nilpotent group with max-(non-nil) is a direct product of
finitely many Sylow p-subgroups, exactly one of which is infinite and also a locally
nilpotent non-nilpotent group). As further motivation for our work we note that
Smith also proved in [17] that if p is a prime then a locally nilpotent p-group G with
max-(non-nil) is nilpotent provided G/G% is infinite; here G5 denotes the finite resi-
dual of G. In our work the finite residual again plays an important role.

We cannot obtain a detailed description of locally nilpotent groups with max-
(non-nil), because of examples such as those of Heineken-Mohamed type. Our
results divide naturally into two cases. In Section 2 we give a number of preliminary
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results on groups with max-(non-nil). In Section 3 we show that if G is a non-nil-
potent, locally nilpotent group with max-(non-nil) and if 7 is the torsion subgroup
of G then G5 < T. Our main result in Section 3 (Theorem A) partially generalizes
Theorem 2.2 of [17]. We consider the case in which G/G? is not finitely generated
and G is non-nilpotent. We prove, among other things, that in this case 7/G? is
finite and G/T is a nilpotent minimax group.

In Section 4 we consider the much harder case, in which G/G? is finitely gener-
ated. In this case G® need not be nilpotent. We show that G% is F-perfect if G is non-
nilpotent; in the case of locally nilpotent p-groups this is an immediate corollary of
Theorem 2.3 of [17]. In Theorem B we indicate that if G is non-nilpotent, but G is
nilpotent, and if G/G? is finitely generated then the structure of G is very restricted,
as consequently is that of G. In Theorem C we consider the case in which G% is non-
nilpotent. In this case G is a p-group, for some prime p, and every proper subgroup
of G¥ is nilpotent.

Our notation, when not explained, is that in standard use. We should like to
thank Professor A. O. Asar for sending us a preprint of his paper [1] and also the
referee for his numerous suggestions which improved this paper.

2. Preliminaries. In this section we collect some easy preliminary results toge-
ther that we use throughout the paper. The first two of these are quite straightfor-
ward and so we omit their proof. As usual we let max denote the maximum
condition on subgroups.

LEMMA 2.1. Let G be a group satisfying max-(non-nil).
(1) If H is a subgroup of G, then H satisfies max-(non-nil).
(i) If H is a normal subgroup of G, then G/ H satisfies max-(non-nil).

The next result uses the well-known fact that a soluble group with the maximum
condition on subgroups is polycyclic.

LeMMA 2.2. Let G be a group satisfying max-(non-nil), and suppose H is a non-
nilpotent subgroup of G. Then Ng(H)/H satisfies max. In particular, if Ng(H) is
locally (soluble-by-finite), then Ng(H)/H is polycyclic-by-finite.

LeEmMA 2.3. Let G be a group satisfying max-(non-nil). Suppose that H, A, B are
subgroups of G such that A<B, A and B are H-invariant, and HN B < A. If AH is
non-nilpotent, then B/ A satisfies the maximal condition on H-invariant subgroups.

Proof. Suppose that Bj/A < B,/A ... is an ascending chain of H-invariant sub-
groups of B/A. Then there is an integer k such that B,H = B, H, for all n > k. Since
HN B < A we have B, = By, by the Dedekind law. O

It is clear that any strictly ascending infinite chain of subgroups in a group with
max-(non-nil) has the property that every subgroup in the chain is nilpotent. We
record this in our next lemma.

LEMMA 2.4. Let G be a group satisfying max-(non-nil) and suppose that

G <Gy <...<G, <...is a strictly ascending chain of subgroups. Then G, is nil-
potent, for each n € N.
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There are some natural, simple consequences of these easy results that will be
very useful in what follows. First we have the following result.

COROLLARY 2.5. Let G be a group satisfying max-(non-nil). Suppose that H, K
are subgroups of G such that K<H. If H/ K= A/K x B/K and A/K, B/K do not
satisfy max, then H is nilpotent.

Proof. Since H/B = A/K we see that H/B does not satisfy max. By Lemma 2.2
the subgroup B is nilpotent. Similarly the subgroup A is nilpotent. By Fitting’s
Theorem H = AB is also nilpotent. O

COROLLARY 2.6. Let G be a group satisfying max-(non-nil). Suppose that H, K
are subgroups of G such that K<H. If H/ K = PRAX/K is a direct product of infinitely
many non-trivial groups, then H is nilpotent.

Proof. Since A is infinite it contains infinite subsets A, A, such that A} U A, =
A, AiNAy=0. Now put 4/K = ,\D/{ A, /K, B/K = PK A, /K. Clearly, both 4/K
€A €A2

and B/K do not satisfy max and we can apply Corollary 2.5. O

LEMMA 2.7. Let G be a group satisfying max-(non-nil). Suppose that H, K, S are
subgroups of G such that K< H. Suppose also that
(i) H/K= PRA)‘/K’ where A, # K for every A € A and the set A is infinite;
€

(i) A, is S-invariant for every A € A;
(iii)) HNS < K.

Then the subgroup HS is nilpotent.

Proof. Write H/K = U/K x V/K, where each of U/K and V/K is a direct pro-
duct modulo K of infinitely many A4,’s. There is an infinite strictly ascending chain
from US to HS and so US is nilpotent, as is V'S. Thus there is an integer k such that
[U,rS] < S and [V, S] < S. It is easy to see that, by induction, [H,; S] < KS and,
since KS is nilpotent, it follows that S is subnormal in HS. Since H, S are nilpotent it
follows that HS is also nilpotent, as required. O

3. The case in which G/G? is not finitely generated. In this section we consider the
case of a locally nilpotent group G such that G/G? is not finitely generated. We shall
require some terminology which is well known, but which we briefly explain. Let G
be an abelian group of finite (special) rank, and let H be a finitely generated sub-
group of G such that G/H is periodic. Let Sp(G), the Spectrum of G, denote the set
of primes p such that a Sylow p-subgroup of G/H is infinite.

If L is another finitely generated subgroup of G such that G/L is periodic, then
both factors H/(HN L) and L/(H N L) are finite. It follows that the set Sp(G) is
independent of the choice of finitely generated subgroup H.

Now let G be a nilpotent group of finite rank and let

1=Gy<G1<...<G, =G

be a central series of G. We let
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Sp(G) = Sp(G1) U Sp(G2/G) U ... USp(G,/Gp1).

Clearly the set Sp(G) is independent of the choice of central series.
With these preliminaries out of the way we can prove a crucial lemma.

LEMMA 3.1. Let G be a locally nilpotent group satisfying max-(non-nil) and let T
be the torsion subgroup of G. If G is non-nilpotent, then G/ T is either finitely generated
or nilpotent minimax with Sp(G/T) = {p}, for some prime p. Moreover, in the latter
case, G contains a normal nilpotent subgroup U such that G/U is a Priifer p-group.

Proof. We may assume that G/T is non-trivial. By Theorem 2.2 of [17] G/T is
nilpotent. In particular, G # G'. Let H = G/G’. Let P be the torsion subgroup of H
and let K = H/P. Note that if H/H" is infinite, for some natural number n, then
H/H" is a bounded abelian group and hence is a direct sum of infinitely many non-
trivial cyclic groups. Also the same is true of G/G'G". It follows from Corollary 2.6
that G is then nilpotent, a contradiction. Thus H/H" is finite for each n.

Suppose first that K has infinite rank. Let M be a maximal linearly independent
subset of K and let M = (M). Then M = ErINi, where N; =2 Z. Clearly K/M is

periodic and / is infinite. Let J be a countably infinite subset of / and let {p; | j € J}

be an infinite set of primes. Let L = 131er X DrJ N?”. Then K/L is periodic and
i€ je

w(K/L) is infinite. Thus K/L = Dr XP/L where for infinitely many primes p we have
X, # L. By Corollary 2.6 it follows that G is nilpotent in this case, which is a con-
tradlctlon Consequently H/P has finite rank.

Suppose next that P is trivial. Let {&;, ..., &} be a maximal independent subset
of H,and let R = (hy, ..., h,). Then H/R is a periodic group. If H/R is finite, then H
is finitely generated. If H/R is infinite then, by Corollary 2.5, H/R = H|/R x Hy/R
where H;/R is a Priifer p-subgroup, for some prime p, and H,/R is finite. It follows
that A is minimax and Sp(H) = {p}. Moreover in this case H/H> =2 Cp~. Let U be a
preimage of H; in G. By Lemma 2.4, U is nilpotent.

Suppose that P # 1. If K = H/P is not finitely generated let {a; + P, ..., a, + P}
be a maximal linearly independent subset of K. If M = (ay,...,a,) then PN M is
finite so that if 7(P) is infinite then 7(H/M) is also infinite and we deduce that G is
nilpotent, using Corollary 2.6. Consequently 7(P) is finite.

Let P = Dr S where S, is a Sylow g-subgroup of P. Since S, is a pure sub-

group of H and H /H" is finite for each natural number n, it follows that S,/S7 is
also finite, by [9, Lemma 6], and Lemma 7 of [9] then shows that S, = X, x Yq,
where X, is finite and Y/, is a divisible subgroup. Since H = Y, x W, for some sub-
group W,, H/W, = Y, and Corollary 2.6 yields that Y, is either trivial or a Priifer ¢-
subgroup, for every g € n(P). If we assume that Y, # 1 for some ¢ then, since H/P is
of finite rank but not finitely generated, H has a factor group which is the direct
product of two Priifer subgroups. Corollary 2.6 again shows that in this case G is
nilpotent. This contradiction proves that Y, =1 for all ¢ € m(P) and hence P is
finite. Then H has finite rank and as above we can show H is minimax and that G
contains a nilpotent subgroup U such that G/U = Cp.

If H/P is finitely generated, then H = P x Q, for some finitely generated tor-
sionfree abelian group Q and Corollary 2.6 implies that 7(P) is finite. Similar argu-
ments to those above show that either P = E x F, where E is a Priifer p-subgroup
for some prime p and F'is finite, or P is finite. Hence either H is finitely generated or
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H has finite rank. As above H is minimax and we can construct a normal nilpotent
subgroup U of G such that G/U = C,~. Hence in every case either G/TG’ is finitely
generated or G/TG’ is minimax with Sp(G/TG’) = {p}. By [15, Corollary to Theorem
2.260] it follows that either G/T is finitely generated or G/T is minimax with

Sp(G/T) = {p}. O

The following corollary is immediate from Lemma 3.1 and the fact that a tor-
sionfree nilpotent minimax group is residually finite [15, Theorem 9.38].

COROLLARY 3.2. Let G be a locally nilpotent group satisfying max-(non-nil) and
suppose that GO is the finite residual of G. If G is non-nilpotent, then G% is periodic.

Next we prove that the torsion subgroup of our group G/G% is quite restricted.
First we prove the following result.

LEMMA 3.3. Let G be a locally nilpotent group satisfying max-(non-nil). Suppose
that G% is the finite residual of G. Let p be a prime and P a Sylow p-subgroup of G. If
G is non-nilpotent, then P/(P N G%) is finite.

Proof. Let H= G%, and suppose that 1 % x € P\ H. Then there is a normal
subgroup G, of finite index such that x¢ G,. We have G/G, = U,/G, x V,/Gx,
where U,/G, is a Sylow p-subgroup of G/G,, V,/G, is a Sylow p’-subgroup of
G/G,. Since x is a p-element, x¢ V', and G/V, is a finite p-group. Thus we can
assume that G/G, is a p-group. Let

= {S|S is a normal subgroup of G such that G/S is a finite p-group}

and
M= ﬂ{S:Se S).

The argument above shows that MNP = HNP. Set D =G/M. By Corollary 2.6
D/D'D? is finite, so that Lemma 2 of [7] implies that the torsion subgroup of D is
finite. In particular, PM/M = P/(P N M) is finite. O

We require a technical result that will be needed in our proof that the torsion
subgroup of G/G?% is finite. This in turn requires several small lemmas, which are
probably well known, but we include them here.

LeEmMA 3.4. Let G be a nilpotent group. Suppose that A is a normal infinite o-
subgroup of G, for some set of primes o, such that G/ A is finitely generated. Then there
is a normal subgroup M of G such that G/M is an infinite o-group, and if A < Z(G),
then we can choose M to be finitely generated.

Proof. Suppose first that 4 < Z(G). There exists M < G, with M finitely gener-
ated, such that G = M A. Clearly M <G and, since M is finitely generated, 4 N M is
finite. Hence G/ M is of the desired type in this case. Suppose that G is nilpotent of
class c. If A is not necessarily central then, since G/y.(G) is not finitely generated,
Ay.(G)/y.(G) is an infinite o-subgroup with G/Ay.(G) finitely generated and so,
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inductively, we may assume that G/y.(G) contains a normal subgroup M/y.(G) such
that G/M is an infinite o-group. This completes the proof. O

LEMMA 3.5. Let G be a nilpotent group and suppose that H is a normal abelian
subgroup of G such that G/H is a w-group, for some set of primes w. If K < H, then
[K, G] is a -group.

Proof. Let [K,; G] = [K, G, ..., G]. We prove that, for each i > 1, [K,; G]/[K,i+1 G]

is a -group; then since G is nilplotent we have [K,. G] = 1, for some ¢, and the claim
follows.

Let x € [K,;_1 G], g € G. Then there exists a 7-number 7 such that g” € H and so
[x, g"] = 1, since H is abelian and normal in G. Using commutator calculus we see that

1 =[x, g"] =[x, g]" mod[K,;11 G]
so that the claim follows. O

LeEmMMA 3.6. Let G be a nilpotent group and suppose that M < N<G. Suppose that
for some set of primes w, G/N is an infinite w-group and N/M is an infinite 7t’-group.
Then G has a normal subgroup K such that G/K is periodic and the direct product of an
infinite mt- and an infinite '-group.

Proof. Consider M® = M[M, G] and apply Lemma 3.5 to the group G/N'. We
have that

[M,GIN'/N = [MN'/N', G/N]

is a -group. However [M, GIMN' /M N’ is an image of this and so is also a z-group.
Thus M®N'/MN' is a mw-group. However N/M is a 7’-group, so that N/MN' is also
7’ and, since M°N'/MN < N/MN', we have M® < M®N' = MN'. Since G is nilpo-
tent and N/M is infinite, it follows that N/MN’ is infinite and hence so is N/M©.
Thus G/MY has the required properties. O

LeEmMA 3.7. Suppose that G is a nilpotent group with torsion subgroup T satisfying
(1) T is an infinite m-group, for some set of primes 7;

(1) G/T has finite rank;

(i) G has a series 1 <T=Zy<X\1<Z<Xp, <Z)<...<X.<Z.=4G,
where {Z;/ T} is the upper central series of G/ T, X;y1/Z; is finitely generated and Z;/ X;
is either trivial or an infinite periodic group, and at least one of these factors contains
an infinite w'-subgroup.

Then G has a periodic factor group G/H such that the Sylow w and Sylow w'-
subgroups of G/H are infinite.

Proof. Note that by changing the X; accordingly, we may always suppose that
the Sylow - (respectively ') subgroup of Z;/X; is trivial or infinite. We let

1 <T=2Zy<X\1<Z1<X2<Z,<...<X.<Z.=G, (1)

be a series as in the statement of the lemma.
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We use induction on the total number of infinite periodic factors in G/T in the
above series. By assumption at least one of the factors is infinite. If there is only one,
say Zi/ Xy, then G/Zj is finitely generated and the result follows if Z;/ X} has both
an infinite 7- and infinite 7’-subgroup, using Lemma 3.4 applied to G/X. Thus we
may assume that Z;/X is an infinite 7'-group. Then, according to Lemma 3.4
applied to appropriate images of G/X, there is a finitely generated normal subgroup
M/ X} such that G/M is an infinite 7'-group. Then M/ T is finitely generated and,
again by Lemma 3.4, M contains a normal subgroup L such that M/L is an infinite
m-group. Then, by Lemma 3.6, the result holds for G.

Consequently in the series (1) we may assume that at least two of the factors
Z;/X; are infinite. Let k be largest such that Z; /Xy is infinite. Then G/Zj, is finitely
generated. If Z;/ X} has both an infinite 7- and an infinite 7’-factor, then we apply
Lemma 3.4 to G/ X, and deduce the result.

If Z;./ X is an infinite 7-group then, by hypothesis, there exists / < k such that
Z;/X; has an infinite n’-factor. If Z;/X; = A/X; x B/X;, where A/X; is an infinite 7’'-
group, then we apply the induction hypothesis to the group G/B, (interchanging the
roles of the sets of 7 and 7’) and hence obtain the result for G. If Z; /X is an infinite
7’-group and for some / we have Z;/X; has an infinite 7-factor, then the same argu-
ment proves the result again. Thus we may assume that all infinite factors Z;/X; are
m'-groups. But then applying Lemma 3.4 to G/ X, gives us a finitely generated nor-
mal subgroup M/X; such that G/M is an infinite 7’-group. Then applying the
induction hypothesis to M yields that M has a factor group M/L which is the direct
product of an infinite 7z-group R/L with an infinite 7’-group S/L. We have S<M <G
with M/S an infinite 7-group and G/M an infinite 7’-group. Now apply Lemma 3.6.
The result follows. O

With this digression out of the way we now have the following result.

ProPoSITION 3.8. Let G be a locally nilpotent group satisfying max-(non-nil). Let
T be the torsion subgroup of G and G® the finite residual of G. If G is non-nilpotent and
G/T is not finitely generated, then T/G® is finite. In particular, G/GS is a nilpotent
minimax group with finite torsion subgroup.

Proof. By Corollary 3.2, G5 < T. Suppose, to the contrary, that T/G? is infinite.
Let ¢ be a prime. Then if S, is a Sylow g-subgroup of G it follows that SqG% /G is
finite, by Lemma 3.3, and hence = =n(7/G%) is infinite. By Lemma 3.1,
Sp(G/T) = {p}, for some prime p. For every prime g € = with g # p choose a max-
imal G-invariant subgroup M, < S, such that S, N G3 < M,. Set

M= (Dr M,) x (]?¢qu) x Sp.
q¢m

PFqET

The factors S,/ M, for g # p are G-chief factors and are therefore central; (see, for
example, [15, Corollary 1 to Theorem 5.27]). It follows that T/M < Z(G/M) and so
G/M is nilpotent. Now we can apply Lemma 3.7 to the group G/M and deduce that
G contains a normal subgroup H such that G/H is periodic and the Sylow p-sub-
group and Sylow p’-subgroup of G/H are infinite. Corollary 2.5 then shows that G is
nilpotent, a contradiction which proves that 7/G? is finite. O

Next, we obtain more information concerning G°.
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PROPOSITION 3.9. Let G be a locally nilpotent group satisfying max-(non-nil). Let
T be the torsion subgroup of G and G¥ the finite residual of G. Suppose that G is non-
nilpotent and G/ T is not finitely generated. Then G® is a p-group, where p = Sp(G/T).

Proof. By Lemma 3.1, G contains a nilpotent, normal subgroup U > T such that
G/U is a Priifer p-group, for some prime p. By Proposition 3.8, G/G% is nilpotent
and minimax. If H is a G-invariant subgroup of G5 such that G%/H is finite, then
G/H is residually finite; (see, for example, [15, Theorem 9.38]). This contradiction
shows that G% contains no proper G-invariant subgroups of finite index. Suppose
that G% is not a p-group. Then the observation above implies that the Sylow p'-
subgroup of G¥ is infinite. It follows that the Sylow p’-subgroup of T'is infinite. Let
T = P x Q, where P (respectively Q) is a Sylow p-subgroup (respectively Sylow p’-
subgroup) of 7. We first suppose that P = 1. Since U is nilpotent and normal in G, T
has a finite U-central series

I1=Ty<Th =..2T,=T,

the terms of which are normal in G.
Let x € G, and let VV = (U, x). Since G/V is a Priifer p-group, V is nilpotent, by
Lemma 2.4. Let

1=Y0§Y1§~--§Ym=T1

be the upper V-central series of 7). Suppose that Y, # Y. If y € Y»\ Y|, then
[Ty, Ul =1 implies 1 #[y,x] € Yy, so y* =yy;, for some element y, € Y;. Let
k = |xUl, q = |y1l, so that (k, ¢) = 1. We have y = x ¥yx* = py¥; thus ¥ = 1. Since
yi’ =1 it follows that y; = 1. This means that Y; = T and hence, by induction,
{T;|0 <i<n} is also a V-central series. Since x is an arbitrary element of G,
{T;|0 < i < n} is therefore a G-central series. Since G/ T is nilpotent it follows that G
is also nilpotent. In the general case, when P # 1, the argument above shows that
G/P is nilpotent. By Lemma 3.7 applied to G/P, we sce that there exists a normal
subgroup S > P such that G/S is periodic and the Sylow p-subgroup and Sylow p'-
subgroup of G/S are infinite. This is a contradiction, since Corollary 2.5 then implies
that G is nilpotent. Hence G? is a p-group, as required. ]

We have now obtained rather a lot of information concerning a locally nilpotent
group G with max-(non-nil) in the case in which G/G? is not finitely generated. We
summarize our results as Theorem A.

THEOREM A. Let G be a locally nilpotent group satisfying max-(non-nil). Let T be
the torsion subgroup of G, and let G5 be the finite residual of G. If G is non-nilpotent
and G/G? is not finitely generated then the following hold.

() G5<T,

(2) T/G? is finite;

(3) G/T is a nilpotent minimax group,

4) Sp(G/T) = {p}, for some prime p;

(5) G% is a p-subgroup;

(6) G contains a normal nilpotent subgroup U such that G/U is a Priifer p-group;

(7) if S is a non-nilpotent subgroup of G, then G = SU.
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Proof. First note that (1) follows from Corollary 3.2. Next we note that if G/G%
is not finitely generated then G/T is not finitely generdted either. For, suppose that
G/ T is finitely generated. Then T/G% = Dr (P,\ /G%) is the direct product of its non-
trivial Sylow p,-subgroups P, /G%. The groups P, /G? are finite, by Lemma 3.3, and,
by assumption, A is infinite. Each of the groups P, is characteristic in G. By
assumption, G contains a finitely generated subgroup H such that G = HT. Since
H N T is finite it follows that if p;, > |H N T] then for such A € A, P, H is nilpotent;
otherwise the chain P1H < P{P,H < ... would be an infinite ascending chain of
subgroups all but finitely many of which are non-nilpotent, a contradiction. We
write T/G% = U/G% x V/G5, where each of U/G5 and V/G% is a direct product
modulo G% of infinitely many of the P, and, since AN T is finite, we see that
G = HT is nilpotent, as in the proof of Lemma 2.7. This contradiction shows that
G/T is not finitely generated.

Now Lemma 3.1 implies (3), (4) and (6). Proposition 3.8 implies (2) and Pro-
position 3.9 implies (5). To prove (7) let S be a non-nilpotent subgroup of G. Then
SU is a normal non-nilpotent subgroup of G so that G/SU is finitely generated, by
Lemma 2.2, and divisible. Hence G = SU. O

4. The case in which G/G? is finitely generated. In this section we require a
knowledge of modules over principal ideal domains. First we gather together some
of the relevant notions.

Let J be a principal ideal domain, and let Spec(J) denote the set of all its max-
imal ideals. For every ideal P € SpecJ we choose an element xp such that P = xpJ
and we let o(J) be the set of such elements. Then every element y # 0 has a pre-
sentation y = u(x;)" ... (x,)", where u € U(J), the set of units of J, x; € o(J), [; € N,
1 < i < n. This presentation is unique.

Now let 4 be a J-module. Then the set 7,(A) = {a € A|Ann j(a) # 0} is a sub-
module of 4. We call 7;(4) the J-torsion submodule of A. If a € t;(A), then
Ann 4(a) =yJ and y= u(x))" .. (x,)", as above. Put m(a)={xi,...,x,} and
m(A) = Uaez,(A) n(a). Let x € o(J). An element a € A4 is called an x-element if ax” =0
for some n € N. The set 4, of all x-elements of 4 is a submodule. Moreover,

()= P 4.

xen(A)

The submodule A, is called the x-component of A. The module A4 is called J-periodic
if 4 = t;(A); the module A4 is called J-torsionfree if t;(A) =

In our first result we consider a natural example of a locally nilpotent group that
does not satisfy max-(non-nil).

LEMMA 4.1. Let G = A x(g), where A = DrN(an) is an elementary abelian p-sub-
ne

group, for some prime p, and g is an element of infinite order such that
af = ay, d. | = ay1ay, for each n € N.

Then G does not satisfy max-(non-nil).

Proof. We think of 4 as an F,(g)-module. Then 4 is an F,(g)-periodic module;
indeed, 4 coincides with its (g — 1)-component. Clearly, 4 =[A4, g], and so 4 is a
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(g — 1)-divisible module. Let y = g”. Then A is (y — 1)-divisible also. Hence there are
elements by =ay, by, ..., by, ... such that bj(y —1)=0,b,0.1(y — 1) = b,, (n € N).
Let B = (by|ln € N). Then B is an F,(y)-submodule of 4 and the subgroup (B, y) is
hypercentral, but non-nilpotent. However,

A=B®Bg®...®» B!,

and, in particular, 4/B does not satisfy max-(y). The result follows from Lemma
2.3. ]

Clearly if G is locally nilpotent and satisfies max-(non-nil), then G involves no
group of the type indicated in Lemma 4.1. Now suppose that 4 is a normal ele-
mentary abelian p-subgroup of G and suppose that g € G has infinite order. The
submodule B of the F,(g)-module A4 is called a basic submodule (more precisely
(g — 1)-basic) if B satisfies the following conditions:

(1) Bis a direct sum of cyclic submodules;

(i) Beg—1)"=BnNnA(g—1)", forallneN;

(iii) A/Bis (g — 1)-divisible.

As in Abelian Group Theory (see, for example, [3, Chapter 6]) one can prove
that 4 contains a basic submodule B.

LEMMA 4.2. Let G be a group satisfying max-(non-nil) and suppose that A is an
elementary abelian normal p-subgroup of G, for some prime p. Suppose that g is an
element of infinite order and that the F,(g)-module A coincides with its (g — 1)-com-
ponent. Then there is an integer n such that [A,g,...,g] = 1.

——

n

Proof. We suppose the contrary. Suppose first that there exists a natural number
n such that g" € Cg(A4). We claim that (A4, g) is nilpotent in this case. Factoring by g”
we only need to show that (A4, g)/(g") is nilpotent. However if @ € 4, then a has only
finitely many conjugates in (4, g) and so (@) is finite. We may then construct an
infinite strictly ascending chain of finite subgroups N, (g)/(g") N2(g)/{g") T ... with
a € N; < A. By Lemma 2.4, each N;{g)/(g") is nilpotent; if » is relatively prime to p
this implies [N;, (g)] < (g") for each i and hence [A4, g, g] = 1, since « is an arbitrary
element of 4. We may therefore assume #n is a power of p but, in this case, (4, g) is
nilpotent, by [15, Lemma 6.34]. Thus, if {(g) N C5(A) # 1, the result follows.

Hence we may suppose that (g) N Cs(A) =1. Let B be a (g — 1)-basic sub-
module of 4. Clearly A is infinite. Suppose that B % A. Then A/B contains a non-
trivial submodule C = (¢,|n € N) such that ¢ (g —1)=0, (g —1) =, neN.
However Lemma 4.1 shows that in this case 4 does not satisfy max-(non-nil). It
follows that 4 = B and so

A:@Ak,

reA

where 4, = a,F,(g) is a cyclic submodule, for each A € A. Let s, € N be such that
Ann g gy (a,) = (g — 1) F,(g). Our assumption shows that the set {s;|A € A} is infi-
nite. Hence there are subsets Ay, A, such that Ay N A, =@, Ay UA,; = A and both
sets {s,|A € A1} and {s;,|A € A,} are infinite. Put
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E,-:@Ak,for = 1,2

rEA;

Then for i =1, 2, (E;, g) is non-nilpotent. In particular, Lemma 2.3 implies that
A/E\ =2 E, satisfies max-(g), which gives a contradiction since |A;| is infinite. Hence
there is an integer n such that 4;(g — 1)" = 0, for every A € A. Hence A(g —1)" =0
and the result follows. [

LemMa 4.3. Let G be a locally nilpotent group satifying max-(non-nil) and sup-
pose that A is a normal elementary abelian p-subgroup, for some prime p. If G/Cg(A)
is finitely generated, then there is an integer n such that [A,,G] = 1.

Proof. If A4 is finite the result is clear. We suppose that A is infinite. Let 7/Cg(A)
be the (finite) torsion subgroup of G/Cg(A4) and let G/ T have the ascending central
series

T=Zy<7Z1<...<Z,=G

such that Z;,/Z; = (gi1Z;) is an infinite cyclic group, for 0 <i <m — 1. Since
T/Cg(A) is finite, A has a finite upper T-central series

l=4p<A41<...54, =4

(see, for example, [15, Lemma 6.34]) and, in particular, [4,,, 7] = 1. Thus we may
suppose that G # T. Since T is normal in G the subgroups 4; are G-invariant. Let
aA; € Aiy1/A; and B/A; = (aA;)". Since (a, g1) is nilpotent, B/A; is finite. Thus it
has a finite (g;)-central series and it follows that 4;,,/4; coincides with its (g; — 1)-
component. By Lemma 4.2 there is an integer n,; such that [A;1,,,, 81] < 4;, for
1 <i < mny. Let ny be the sum of the ny ;. Then [4,,, Z;] = 1. Similar arguments imply
that there is an integer n such that [4,, G] = 1. O

As an immediate corollary we have the following result.

COROLLARY 4.4. Let G be a locally nilpotent group satisfying max-(non-nil) and
suppose that A is a normal elementary abelian p-subgroup, for some prime p. Suppose
that G/ A is finitely generated. Then G is nilpotent.

We can put this information to work to obtain some further information con-
cerning the finite residual.

LEMMA 4.5. Let G be a locally nilpotent group satisfying max-(non-nil). Let GY
be the finite residual of G and suppose that G/G% is finitely generated. If G is non-
nilpotent, then G5 is §-perfect.

Proof. Let R = G% and suppose that R contains a proper subgroup of finite
index. Then there is a prime p such that R contains a subgroup H of index p. Put
U = core gH; then R/U is an elementary abelian p-group. By Corollary 4.4, G/U is
nilpotent. By Proposition 2 of [5], G contains a normal subgroup V' > U such that
V/U is torsionfree and G/V is a bounded p-group. Thus ¥'N R = U. If G/V is finite,
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then R/U = R/(VN R) = RV/V is also finite, so that G/U is finitely generated and
hence residually finite. This contradicts the fact that R = G5. Hence G/V is infinite.
Since G/V is nilpotent, (G/V)/(G/V) is infinite by [15, Corollary to Theorem 2.26].
It follows from Corollary 2.6 that G is nilpotent. This contradiction shows that R is
&-perfect. O

Our next few results show that periodic normal abelian subgroups of our group
G are quite restricted, at least when an element of infinite order does not act nilpo-
tently.

LEMMA 4.6. Let G be a locally nilpotent group satisfying max-(non-nil). Let A be
a normal abelian p-subgroup, for some prime p, and suppose that g € G is an element of
infinite order. Suppose that A = [A, g]. Then C 4(g) is not divisible.

Proof. For every element a € A the subgroup («a, g) is nilpotent. It follows that
C4(g) # 1 and it is easy to see that (A4, g) is hypercentral. Thus 4 has upper (g)-
central series

1=C<C=2..C=Cep1 =...C, =4,

where C; = C4(g) and Cyy1/Cy = Cyyc,(g) for o < y. Since (a, g) is nilpotent there
is an integer n such that a € C,. Hence 4 = |J,,. C, and 4 = C,,. Assume that C;
is divisible. Since 4 = [4, g], [C+1, g] = C,,, for each n € N, and the map

¢ a—a, gl,a e Cyyi,

from C,, onto C, is an epimorphism with kernel C,. Thus if C, is divisible, then so
is Cy41 and it follows by induction on n that C, is divisible, for all » € N. Now
C, # A, for any n € N, since 4 = [4, g]. We have C, = C; x Dy, for some divisible
subgroup D;. Since [C,, g] = C; we have [Dy, g] = Cy. Let ¢; € 2;(Cy). Then there is
an element ¢, € Dy such that ¢; = [¢2, g]. Suppose that |c2| > p. Then ¢ # 1 and
1=¢] =[c2, gl =15, gl so that 1# 5 e Cy(g) = C,. But ¢ € D;. This contra-
diction shows that |c;| = p. Inductively we can construct a set of elements {c,|n € N}
such that (c,|n € N) = @, n(cn)s lenl = p, [c1, gl = 1 and [¢,41, ] = ¢,, forallm e N.
Lemma 4.1 now gives a contradiction. Hence C; = Cy4(g) is not divisible. OJ

COROLLARY 4.7. Let G be a locally nilpotent group satisfying max-(non-nil). Let
A be a normal abelian p-subgroup, for some prime p, and suppose that g € G is an
element of infinite order. Assume that A = [A, g]. Then C4(g) contains no non-trivial
divisible subgroups.

Proof. We may as well suppose that G = (4, g). Suppose, by way of contradiction,
that D is a non-trivial divisible subgroup of C4(g). Then there exists a subgroup E
such that C4(g) = D x E. Clearly, E is (g)-invariant. Let U be a maximal (g)-invar-
iant subgroup of A such that E<U and DNU=1. Let C/U = Cy4,u(g). Since
DU/ U is divisible there is a subgroup F of C such that C/U = DU/U x F/U. Then
C = DF and [F, g] < U < F so that Fis {g)-invariant. However DNF<DNU =1
and so the maximal choice of U yields F = U. Hence C/U = DU/U is a divisible
group. We thus obtain a contradiction on applying Lemma 4.6 to (4/U, gU). []
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COROLLARY 4.8. Let G be a locally nilpotent group satisfying max-(non-nil). Let
A be a normal abelian p-subgroup, for some prime p, and suppose that g € G is an
element of infinite order. Assume that A =[A, g|. Then C4(g) is a bounded subgroup.

Proof. Suppose, on the contrary, that C = C4(g) is not bounded. Let B be a
basic subgroup of C. If B # C, then C/B is a divisible group. Thus C,(g) contains
a divisible subgroup, which is impossible by Corollary 4.7. Thus B = C. Since C is
not bounded, C contains a subgroup F = ’2%} (en) such that |e,| = p", for n € N. Let

U = ((en)(es+1)"|n € N). Now E/U is a Priifer p-group. Hence C4,u(g) contains a
divisible subgroup. This contradiction shows that C4(g) is bounded. ]

COROLLARY 4.9. Let G be a locally nilpotent group satisfying max-(non-nil). Let
A be a normal abelian p-subgroup, for some prime p, and suppose that g € G is an
element of infinite order. Assume that A = [A, gl. If B is a (g)-invariant subgroup of A
such that (B, g) is nilpotent, then B is bounded.

Proof. Clearly (A4, g) is hypercentral. Let
1=Co<Cy=<...<(C,=...C,=4

be the upper (g)-central series of 4. Since [C,y1,g] = C, and C,/C; = C,, it fol-
lows from Corollary 4.8 and induction on #n that C, is bounded, for every n € N. Let

l=By<B <...<B,=8B

be the upper (g)-central series of B. Clearly B; < C; for all i € N and in particular,
B = B,, < C,,. Hence B is bounded. O

LemMA 4.10. Let G be a locally nilpotent group satisfying max-(non-nil). Let A
be a normal abelian p-subgroup, for some prime p, and suppose that g € G is an ele-
ment of infinite order. If A = [A, g], then A is a Cernikov subgroup.

Proof. Let C; = C4(g). By Corollary 4.8, C; is bounded and so C; = ADrA(cx),
€

for some index set A. Choose an index Ay and let a = ¢,,. Then C; = (a) x B; where
By = Dr,,(c.), and the subgroup B; is (g)-invariant. Let M be a (g)-invariant
subgroup of 4, maximal subject to By < M and M N (a) = 1. Put Co/M = C4/m(g).
If X/M is a non-trivial subgroup of C,/M, then [C>, g] < M implies [X,g] <M < X
and so X is (g)-invariant. It follows from the choice of M that every non-trivial
subgroup of C,/M has non-trivial intersection with (aM). Hence C,/M is finite,
since C,/M is bounded, by Corollary 4.8. In particular, C,/M is an Artinian Z(g)-
module. Since A/M has its upper (g)-central series of length w, Lemma 1 of [18]
implies that 4/M is an Artinian Z(g)-module. If g" € Cg/n(A/M) for some natural
number 7, then the subgroup (4/M, gM) is a locally nilpotent group satisfying min-n
and hence is Cernikov. Suppose then that (gM) N Co/m(A/M) =1 and that A/M is
not Cernikov. Then, by [11, Theorem 1], 4 contains (g)-invariant subgroups U, V
satisfying the following conditions: M <V <U,V/M is a Cernikov group,
U/V =Dren(u, V) is an clementary abelian p-group and [V, g] =1,
[tys1V, gl = u, V, for all n € N. This contradicts Lemma 4.1.
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Hence A/M is a Cernikov group, in any case. Since 4/M =[4/M,g], A/M is
infinite and therefore A/M does not satisfy the maximal condition for (g)-invariant
subgroups. By Lemma 2.3, it follows that (M, g) is a nilpotent subgroup. By Cor-
ollary 4.9, M is bounded. Using a corollary to Lemma 1 of [8], we can write
A =D x E, where D is a divisible Cernikov subgroup and FE is a bounded subgroup.
Clearly, D is {g)-invariant. Since 4/D is bounded it has a finite series of (g)-invariant
subgroups with elementary abelian p-factors. Lemma 4.2 then implies that
(A/D, gD) is nilpotent. Hence [A/D, g] # A/D, which is a contradiction unless
A = D. Thus 4 is a Cernikov group. O

LEMMA 4.11. Let G be a locally nilpotent group satisfying max-(non-nil). Let A
be a normal abelian p-subgroup of G, for some prime p, and suppose that g € G is an
element of infinite order. Let Ay = A and A, = [A4,, gl, for all n € N. Then there is
an integer m such that A, = Ay

Proof. Suppose, on the contrary, that 4, # 4, for all n € N. Suppose first that
Ay =(\yen 4n = 1. For each a € A4, (a) ) is finite, since (a, g) is nilpotent.

Let 1 #dy € A,D, = (dl)(g>. Since D; is finite, from ﬂneN A, =1, we see that
there is an integer k; such that Dy N A, = 1. Since (D), g) = (di, g) is nilpotent there
is an integer m; such that [Dy, g, ..., gl =[Di,m, gl = 1. If there is an integer r such

——
my
that [A4y,,-g] = 1, then Ay 4+, = 1. Hence there is an element d> € Ak, and an integer
my > my such that [da,,,, g] = 1 and [d2,,—1 g] # 1.

Set Dy = (db)!® so that D, is again finite. Clearly D, < A4y, and, in particular,
Dy N Dy = 1. The subgroup D) D; is finite and so there exists an integer k, such that
DDy N Ai, = 1. In this way we constuct an infinite family of finite (g)-invariant
subgroups {D,|n € N} and integers {m,|n € N} such that

(Dnln € N) = DII‘VD’“ and [Divm,- g] =1 but [Di’m,vfl g] 7é 1’
ne

and

m o <nmp<...<my<....

The subgroup (g, D,|n € N) is clearly non-nilpotent, a contradiction to Lemma 2.7.
Finally, if 4, # 1 we apply the argument above to 4/A4,, and obtain the result in
general. ]

COROLLARY 4.12. Let G be a locally nilpotent group satisfying max-(non-nil). Let
A be a normal abelian p-subgroup of G, for some prime p, and suppose that g € G is
an element of infinite order. Then either (A, g) is nilpotent or A contains a divisible
Cernikov subgroup D such that D = [D, g] and A/D is finite.

Proof. Let Ag = A, and A,y = [A4,, gl = [4,,41 €], for all n € N. By Lemma 4.11
there is an integer m such that 4,,,; = 4,,. If A,, = 1, then (4, g) is nilpotent. Sup-
pose that D = A4,, # 1. Then D = [D, g], and by Lemma 4.10, D is a Cernikov group.
Clearly D is divisible and (D, g) is non-nilpotent. By Lemma 2.3, A/D satisfies
max-(g) and, since (4, g) is hypercentral, it follows that 4/D is finite. O
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COROLLARY 4.13. Let G be a locally nilpotent group satisfying max-(non-nil). Let
A be a normal abelian periodic subgroup of G and suppose that g € G is an element of
infinite order. Then either (A, g) is nilpotent or A contains a divisible Cernikov sub-
group D such that D = [D, g] and A/D is finite.

Proof. If the set w(A) is infinite, then (A4, g) is nilpotent, by Lemma 2.7. Suppose
that m(A) is finite, let p € m(A) and let 4, be a Sylow p-subgroup of 4. If (4,, g) is
nilpotent, for every p € m(A4), then (4, g} is also nilpotent. Suppose that (A4,, g) is
non-nilpotent for some prime p. Then Corollary 4.12 yields that 4, contains a divi-
sible Cernikov subgroup D such that D = [D, g]. In particular (D g) 1s non-nilpo-
tent. By Lemma 2.3, 4/D satisfies max-(g). Hence 4/D is finite since (4, g) is
hypercentral. ]

Let G be a group and A4 a divisible normal subgroup of G. We say that A4 is
divisibly irreducible in G if A contains no proper G-invariant divisible subgroups.

LEMMA 4.14. Let G be a group and A a normal abelian subgroup of G satisfying

the following conditions.
(1) G/Cg(A) is nilpotent,

(ii) A4 N Z(G) contains a subgroup B such that A/B is a divisible Cernikov group;

(ii1) A/B is divisibly irreducible in G;

(iv) A/B=[A/B,q].

Then A contains a G-invariant divisible Cernikov subgroup D such that
D =[D, G], D is divisibly irreducible in G, A = BD and BN D is finite.

Proof. Let Cg(A) # zCg(A) € Z(G/Cg(A)). Then the mapping ¢ : ai—>|a, z],
(a € A), is a ZG-endomorphism of A. Thus K = ker¢ and D = Im ¢ are G-invariant
subgroups of A4 and, since B < Z(G), we have B < K. It follows that either K/B is
finite or K = A, since 4/B is divisibly irreducible in G. However, by choice of z,
K # A. Hence K/B is finite. It follows that D is a divisible Cernikov subgroup, D is
divisibly irreducible and either D = [D, G] or [D, G] = 1. In the latter case D = [4, z]
is central in G and so [4, z, G] = 1. By definition of z we also have [z, G, A] = 1 and
hence [G, 4,z] = 1. However (ii) and (iv) imply 1 # D =[4,z] = [[G, A)B, z] =
[G, 4,z]. This contradiction implies D =[D,G]. Thus DN B is finite and
DB/B = D/(DN B) is an infinite G-invariant divisible subgroup of A/B, so that
BD = A. O

LEMMA 4.15. Let G be a locally nilpotent group satisfying max-(non-nil). Let G5
be the finite residual of G. Suppose that G/G% is finitely generated and G° is not
Cernikov. If GY is nilpotent, then G is nilpotent.

Proof. Suppose, on the contrary, that G is non-nilpotent. By Lemma 4.5,
R = G% is §-perfect. Since R is periodic, by Corollary 3.2, and nilpotent, then R is a
divisible abelian subgroup. (See, for example, [15, Corollary 2 of Theorem 9.23].)
Let T/R be the torsion subgroup of G/R. Then G/T is a finitely generated torsion-
free nilpotent group and so G/T has a central series

T=C0§C1§§Cm=G
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such that Ci;/C; = (g;+1C;), for 0 <i<m — 1. Let P be a Priifer p-subgroup of R,
and let U = P”. Since T/R is finite, U is a divisible Cernikov group. Since R is not
Cernikov, R = U x V for some non-trivial subgroup V. By Theorem 2.7 of [2], there
exists a 7-invariant subgroup W such that R = UW and UN W is bounded. Since
T/R is finite there is a finite subgroup F such that 7= FR. Since the factor groups
R/U and R/W are both divisible, they do not satisfy max-F. By Lemma 2.3, UF and
WF are both nilpotent and so there is an integer k such that [U,, T] = [W,, T] = 1.
Since R = UW, we see that [R,; T] =1 and hence T is nilpotent. Thus we may
assume that 7'# G. Since R is divisible, R < Z(T) by [15, Lemma 3.29.1]) and
(R, g1) is nilpotent.
Let

I=Ry<R <...<R,=R

be the upper (g|)-central series of R. By Corollary 4.13, there is an integer /, such
that [R,;, g2] = 1. It follows that [R,;;, C;] = 1. Using similar arguments and a sim-
ple induction we see that the group G is nilpotent, a contradiction, which proves the
result. O

THEOREM B. Let G be a locally nilpotent group satisfying max-(non-nil). Let G5
be the finite residual of G and suppose that G/GS is finitely generated. If G is non-
nilpotent and G® is nilpotent, then G® is a divisible Cernikov group. Moreover, G5 is
divisibly irreducible and [G®, G] = G3.

Proof. Let R = G5. By Lemma 4.15, R is Cernikov and hence, by Lemma 4.5,
divisible Cernikov. Let A be a minimal G-invariant divisible subgroup of R and set
Ay = [A4, G]. Since [4, G] is a divisible G-invariant subgroup of 4 we have 4, = A4 or
A, is trivial. Since R is a Cernikov group it has a finite series of G-invariant sub-
groups

1=Ry< R <...<R,=R,

every factor of which is divisibly irreducible. In particular, either [R;;1, G] < R; or
[Ri+1/Ri, G] = Rit1/R;, for each i, with 0 <i <t — 1. Since G is non-nilpotent there
exists an integer / such that [R;./R;, G] = Ryy1/R;. Let [ be the least integer with this
property. Suppose that /> 0. By Lemma 4.14, R, /R, contains a G-invariant
divisible Cernikov subgroup Q;/R,_; such that R, /R, = (R;/Ri_1)(Qi/R_1),
Q1/R;_1 1s divisibly irreducible and [Q;/R;—1, G] = Q;/R;—;. Using similar arguments
we see that R contains a G-invariant divisibly irreducible subgroup D such that
[D, G] = D. Since G/R is finitely generated, G = RF for some finitely generated
subgroup F. Then (D, F) is non-nilpotent, and Lemma 2.3 implies that R/D satisfies
max-F. Since R/D is divisible and periodic, R/D is finite. Hence R = D and the
result follows. O

THEOREM C. Let G be a locally nilpotent group satisfying max-(non-nil). Let G%
be the finite residual of G and suppose that G/G% is finitely generated. Let G be non-
nilpotent and non-minimax.

(i) GV is periodic.

(i) G¥ is J-perfect.
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(iii) G% is non-nilpotent and every proper subgroup of G% is nilpotent. Further-
more G3 is nilpotent-by-Cernikov and G is soluble.

In particular, G5 is a p-group, for some prime p, having an ascending series of G-
invariant subgroups

l=Adg <A <...<A, <...such that UAn:G%
neN

and such that every subgroup A, is nilpotent.

Proof. Corollary 3.2 implies (i) and Lemma 4.5 implies (ii). By Theorem B, G¥ is
not nilpotent. If A is a non-nilpotent normal subgroup of G, then G/H satisfies max
by Lemma 2.2. In particular G/H is residually finite and so G5 < H. Thus the
proper G-invariant subgroups of G% are nilpotent and hence G% is a p-group, for
some prime p, by Corollary 2.6 and Lemma 3.3. Thus G? is a locally nilpotent -
perfect p-group and if H; is a non-nilpotent subgroup of G%, for some natural
number i, then |GY : H,| is infinite. Since a maximal subgroup of a locally nilpotent
group is normal and of finite index, H; is not maximal in G5 and so there is a proper
subgroup Hj,; of G% properly containing H;. Since H,,; is not nilpotent either, this
argument can be repeated and, in this way, we construct an infinite ascending chain
of non-nilpotent subgroups of G%, contrary to the condition max-(non-nil). Hence
every proper subgroup of G% is nilpotent. A recent result of Asar [1] now shows that
GY is nilpotent-by-éernikov and the result follows. O
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