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INSULATING CIRCULAR RUGS

G. J. WEIR1

(Received 11 August 1982; revised 18 August 1982)

Abstract

A thin, partially insulating circular rug is placed on a uniform half space up through
which a steady heat flow passes. The corresponding dual integral equations are solved
using Tranter's method, finite Legendre transforms and Mellin-Barnes contour integrals.
An untabulated Bessel (or Stieltjes) transform similar to the discontinuous Weber-
Schafheitlin integral is evaluated, and a simple expression derived for the rug's surface
temperature.

1. Introduction

The aim of this paper is to derive the perturbation to temperature due to a thin,
circular, partially insulating rug lying on a uniformly conducting floor. This
problem originated from building research, but it may also relate to some
problems associated with terrestrial heat flow. The mixed boundary conditions
lead to dual integral equations which are solved by Tranter's method, complex
variable theory and finite Legendre transforms.

In Section 2 we present the simplifying assumptions and associated equations;
in Section 3 we evaluate a Bessel (or Stieltjes) transform and derive a simple
expression for surface temperature values, while in Section 4 we summarise our
results and present some numerical examples.
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2. The dual integral equations

A small, thin, circular, partially insulating rug of radius Ro lies on a thick
uniformly conducting floor up through which a uniform heat flux Q originates at
depth. We are primarily interested in the surface temperature rise under the rug if
radiation boundary conditions are applied at the upper surface.

steady-state conduction,

v2r = o, z<o,
uniform upper temperature,

T=T0, Z>0,

steady lower heat influx,

-KT,Z = Q, Z-»-oo,

radiation boundary conditions,

KT,z=-h0(T-T0), Z = 0,0<R<R0,

KT,z=-hl(T~T0), Z = 0,R>Ro,
where T is temperature, K thermal conductivity and h0, /i, are respectively the
linear heat transfer coefficients for the rug and floor. These equations are
non-dimensionalised through the definitions

T = -QZ/K +T0 + Q/hx + QR0(l - ho/h{)x/K, (l)

(Z,R) = R0(z,r), (2)

a = h0RQ/K, (3)

P = h,R0/K, (4)

to give

V2x = 0, z < 0 , (5)

X ( 2 = 0, z - - c o , (6)

X,z = - « X + 1 . z = 0 , 0 < r < l , (7)

X,, = -PX, z = 0,r>\, (8)

where we have ignored the trivial cases ho = ht or Ro = 0.
Since the problem is described by the two non-dimensional parameters a, {$

there are three length scales: Ro, K/h0 and K/hv We have assumed that the
vertical length scale is much greater than these three lengths. The two limiting
cases occur when Ro is either much less (a, P « 1) or much greater (a, /? » 1)
than the radiative length scales K/h0 or K/hv
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x(r,z)=fOe"J0(rp)Jl(p)dp/p
Jo

When a, /? « 1 then x is approximately independent of a and /}, and Bessel
transforms yield for the leading term

Jo

and so from Oberhettinger [2],

X ( r ,0 ) = ( 2 A ) E ( r ) , 0 < r < l ,

x(r,0) = (2rA)(E(r" ') - (1 - I - 2 ) K ( I - ' ) ) , r > 1,

X(0, z) = 1 + z / / l + z 2 , z < 0 , (9)

where E and K are the complete elliptic integrals.
The author has been unable to proceed simply when a, /? » 1, although the

boundary conditions (equations (7) and (8)) then suggest that x(0> r < 1) — a"1,
and x(0. r > 1 )^0 . This will be confirmed below.

To proceed we shall follow Tranter [3] and represent x by the Bessel transform

(i), (10)
o

whence equations (7) and (8) give the dual integral equations

r { p + a ) f ( P ) J 0 ( r p ) d p / { p + H ) = \ , 0 < r < l , (11)
•'o

and

r r>\. (12)

When a = )8, equations (10)—(12) are satisfied by f(p) = Jx{p), and Tranter's
method suggests setting

/(/>) = 2 amJ2m+l(p), (13)
m = 0

which automatically satisfies equation (12) and so we have to solve

P)=l. (14)

Finally, the finite Legendre transforms

^ O - 2r2) dr = \f_Pn{x)P0{x) dx = \snQ, (15)

and

frJ0(rp)PH(\ - 2r2) dr = p-lJ2a+1(p), (16)
•'o
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where Pn are Legendre functions of order n and 8n0 is the Kronecker delta
function, together with the discontinuous Weber-Schafheitlin integral

n , ( 1 7 )
o

then reduce equation (14) to the algebraic system

aan + (2 + 4«)(/J - a) f amJmn(0) = (1 + 2/i)j8«llj0, (18)
m = 0

where

3. Evaluation of Jmn{P)

The Stieltjes transform Jmn(P) in equation (19) is an obvious generalisation of
the Bessel transform in equation (17), and can be evaluated by using the
Mellin-Barnes contour integral representation (Watson [4], Wooding [5]) for the
product of Bessel functions with the same argument. We find

r°° rc+.oo T(-s)T(2m + In + 2s + 3)(p/2)2m+2n+2s+2 ds dp

Jo A-ioo T(2w + s + 2)r(2/i + s + 2)r(2w + In + s + 3)(p +

(20)

and requiring that

-m — n — | < Re(s) < -m — n — 1

guarantees that the integral with respect to p is absolutely convergent, as well as
that the poles of T(-s) lie to the right of the contour while the poles of
T(2m + 2n + 2s + 3) lie to the left. The order of integration in equation (20) can
then be reversed and, since -1 < Re(2m + 2w + 2.s + 2 ) < 0 ,

rp
2m+2n+2s+2dp/(p

Jo

and so

+ 2n + 2s + 3)

2/ Jc-ioo T(s + \)T(2m + s + 2)T(2n + s + 2)T(2m + 2n + s + 3)

_ A_
sin 2 ITS sin ITS
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For / = 0 ,1 , . . . , sin ITS contributes poles at s = -m — n — 1 + /; sin 2ms con-
tributes poles at J = -m — n — 1 — 1/2; T(s + 1) contributes m + n zeros at
s — -m — n — 1,.. . ,-1; and when m ¥= n either T(2m + s + 2) or T(2n + 5 + 2)
contributes | m — n | zeros at s = -m — n — 1,..., -2 — 2 min{w, n). Thus there
are single poles for s = ~m — n — \ + /, double poles for s = / and 1 +
2min{w, ri) single poles for s = -1 — 2min{m, n},...,-\. The contour in equa-
tion (21) is deformed to the right to surround the appropriate poles in a clockwise
manner, and since the contribution on a large semi-circle to the right tends to
zero,

D, (22)

where 5 denotes (contributions from) single poles, ZD the 1 + 2 min{w, n} single
poles and D double poles.

We find

22 £0 T(l + m + n + 5/2)T(l + m - n + 3/2)

r(/ - m + n + 3/2)r(/ - m - n + 1/2) ' V '

y r(2/ + 2m - 2n + l)r(2* / + 1)(y8/2)

f 1) ' K '2 ) r ( / + 2 w - 2 n +

5(-1)'+V(/), (25)
/=o

2« + 2/+ 3) - i/<(/+ 1)

+ / + 2) - »K2/J + / + 2) - i|/(2m + 2/j + / + 3),

(26)
2 m + 2"+ 2 / + 2_ T(2m + In + 2/ + 3)(y3/2)

v ' r ( /+ i ) r (2w + / + 2)r(2« + / + 2)r(2w + 2« + / + 3)' v J

where \p is the logarithmic derivative of the gamma function and in equation (24)
we have assumed for notational convenience that m> n. Equations (22)-(27)
reduce to equation (17) when /? = 0, and equation (19) has been numerically
integrated in a number of instances to check equations (22)-(27). Consequently,
the coefficients an in equation (18) can now be found.

From equations (10) and (13),

X= 1 amXm= 1 aJ'*J2m+t(p)J0(rp)e'"dp/(p + 'p). (28)
m=0 m=0 °
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For z < 0, xm can be evaluated by expanding the product of Bessel functions in a
power series in (p/2) (Watson [4], page 148(2)) to give (Gradshteyn and Ryzhik
[1], page 312,5) xm

 a s a n infinite series of exponential integrals—essentially an
asymptotic expansion in z. The author has not done this, however, and considered
only surface values of x-

To this end, define the coefficients bmn through the equation
/•OO

->, ( r ri\ = I J ( n\ T ( rr>\ J™ / ( r> J- H\

0 < r < 1, (29)
n = 0

and taking the finite Legendre transform of equation (29) gives

PKn = K,n ~ (4« + 2)Jmn(fi), (30)
where equations (16), (17), (19) and the orthogonality of Legendre functions on
[-1,1] have been used. Finally, from equations (28), (29), (30) and (18) we obtain
the simple result

\ + (p-a)x(r,0)= 2 amPm(l-2r2), 0 < r < l . (31)

4. Discussion

For values of a, /} of order unity or less, the expressions in Section 3 are
appropriate, but when a, /? was much greater than unity we used equation (19) for
numerical calculations.

From equation (31), the rug's surface temperature follows directly from the
coefficients am which are calculated from equation (18) and (19). In Table 1 we
set /? = 2a, and it can be seen that the coefficients am are

TABLE 1

Coefficients am when /8 = 2a

p
m

0

1

2

3

4

5

0.01

1.004

8.5 X 10~"

-1.2 X 10'"

4.1 X 10'5

-1.9 X 10'5

1.0 X 10"5

0.1

1.047

8.3 X I0"3

-1.2 X 10"3

4.1 X 10"4

-1.9 X 10""

1.0 X 10""

1

1.236

6.6 X lO-2

-1.3 X 10"2

4.5 X 10"3

-2.1 X 10"3

1.1 X 10-3

10

1.691

1.8 X 10-'

-8.1 X 10"2

3.9 X lO-2

-2.0 X 10'2

1.2 X lO-2

100

1.936

8.6 X 10"2

-8.4 X lO-2

7.1 X lO-2

-6 X lO-2

5 X lO-2
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rapidly decreasing functions of m. Also, from Table 1, when a, fi are much
smaller than unity then to first order am — 8m0 and when a, $ are much greater
than unity then to first order am ^ (fi/a)8m0; both of which agree with equation
(31) and the discussion on limiting cases in Section 2.

Finally, if the rug has thermal conductivity KR and a small non-zero thickness
AZ then an approximation to the temperature follows by replacing equation (1)
by

T= -QZ/K+ TQ + Q/hx + QR0(l - ho/ht + h0Az/KR)x/K,

and retaining all other numbered equations unchanged.
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