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Abstract

Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global
health burden. The control of Leishmania infection relies on an effective T cell-dependent
immune response; however, various factors impede the host’s ability to mount a successful
defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site,
can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating
parasite persistence. This review aims to emphasize the significance of the chemokine system in
T cell responses and to summarize the current knowledge on the dysregulation of chemokines
and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A
comprehensive understanding of the dynamic nature of the chemokine system during Leish-
maniasis is crucial for the development of successful immunotherapeutic approaches.

Introduction

Leishmaniasis is a neglected tropical vector-borne disease caused by the protozoan parasite
Leishmania. According to the World Health Organization (WHO), in 2022, Leishmaniasis
was endemic in approximately 99 countries and territories out of 200 worldwide. It manifests
in five different clinical forms, including visceral leishmaniasis (VL or kala-azar), post-kala-
azar dermal leishmaniasis (PKDL), cutaneous leishmaniasis (CL), mucocutaneous leishman-
iasis (MCL), and diffuse cutaneous leishmaniasis (DCL) (Ref. 1). Among these, VL is the
most severe form, affecting approximately 90% of the global population and is primarily
reported in seven countries: Brazil, India, South Sudan, Sudan, Ethiopia, Kenya, and Somalia
(WHO report, 2018). VL affects the visceral organs of the host and is caused by the
protozoan parasite Leishmania donovani in Asia, Africa, and the Middle East, and Leish-
mania infantum in South America and Europe. If left untreated, VL can be fatal. The disease
is characterized by various symptoms, including splenomegaly (enlarged spleen), hepato-
megaly (enlarged liver), pancytopenia (reduction in blood cell counts), hypergammaglobu-
linemia (elevated levels of gamma globulins in the blood), weight loss, weakness, and
progressive anaemia (Ref. 2).

The chemokines and their receptors play a vital role in guiding immune cells to specific
locations during homeostasis and inflammatory conditions. Chemokines, which are a type of
cytokine, bind to their G-protein coupled receptors (GPCRs), known as chemokine receptors
(CKRs), and initiate signalling through coupled heterotrimeric G-proteins (Ref. 3). This
signalling pathway leads to the activation of integrins, enabling leukocytes to firmly adhere
to endothelial cells and extravasate into the tissue microenvironment (Ref. 4). Chemokine
receptors are designated based on the type of chemokine(s) they bind, such as CXC, CC, XC,
and CX3C, followed by ‘R’ (for a receptor) and a number indicating the order of discovery. The
chemokine system plays a crucial role in immune cell migration and the composition of
immune cells at a specific site depends on various factors, including chemokine expression.
This composition of immune cells also influences the host’s susceptibility to infection. During
inflammation, various types of immune cells, including neutrophils, macrophages, and
lymphocytes, as well as non-immune cells such as endothelial cells, epithelial cells, fibroblasts,
and adipocytes, produce chemokines. This results in the migration of different cell types, such
as macrophages, neutrophils, and T cells, to the specific location of inflammation (Refs. 5, 6).
The secretion of cytokines from these cells in the inflamed zone affects the behaviour of
infiltrating cells and disease progression (Ref. 7). For instance, CXCL8 is secreted by endo-
thelial cells, and wounded epithelial cells recruit neutrophils which can further release some
more CXCL8 and attract even more neutrophils, and other types of leukocytes to the inflamed
zone (Refs. 6, 8, 9). T lymphocytes, a subset of immune cells, have a central role in combating
intracellular infections and coordinating adaptive immune responses. T lymphocytes can
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produce proinflammatory or anti-inflammatory cytokines and
can eliminate unwanted cells (Ref. 10). They express a range of
chemokine receptors on their surface and also produce various
chemokines, including CXCR3, CCR5, CCR4, CCR8, CCL3,
CCL4, CCL5, CXCL8, etc. (Table 1).

However, the chemokine system associated with T cells, par-
ticularly in Leishmaniasis, has received limited attention. Under-
standing the complex interactions between the chemokine system
and T cells is crucial to elucidate the impaired migration and
functioning of immune cells during Leishmania infection. This
understanding can contribute to the identification of potential drug
targets against chemokines and chemokine receptors, facilitating
the development of novel therapeutic strategies.

T-cell associated chemokine system: at the crossroads of
infection or protection

The chemokine profile plays a critical role in the migration of
immune cells during homeostatic and inflammatory conditions
(Ref. 55). Chemokine receptors (CKRs) are expressed on the surface
of immune cells and exhibit differential expression patterns (Ref.
56). The promiscuous nature of the chemokine system allows
multiple chemokines to bind to a single receptor, and conversely,
a single chemokine can interact with multiple receptors (Ref. 57).
This complex interaction between chemokines and receptors influ-
ences the migratory behaviour and functional consequences of
immune cells (Refs. 58, 59). Chemokines belonging to the CC
family, such as RANTES (CCL5), can bind to multiple chemokine

Table 1. CD4+ T cell subsets expressing chemokine receptors and their subsequent ligands

No.
CKRs
types

Chemokine
receptors
(CKRs)

Chemokines
(corresponding
ligands)

T-subsets expressing
CKRs Inflammatory conditions References

1 CCRs CCR1 CCL3, CCL5–9, CCL13–
16, CCL23

Th1, Th2, Th9, Th17,
Trm

rheumatoid arthritis, allergic rhinitis, tumour (11; 12)

2 CCR2 CCL2, CCL7, CCL8,
CCL12, CCL13

Th1, Treg, Th17 tumour, melanoma, pancreatic cancer (13; 14; 15; 16; 17; 18;
19; 20; 21)

3 CCR3 CCL5–8, CCL11,
CCL13, CCL15,
CCL24, CCL26

Th2, Th9, Treg atopic dermatitis, cancer, experimental colitis,
allergic inflammation

(13; 14; 15; 16; 17; 18;
19; 22; 23)

4 CCR4 CCL17, CCL22 Th2, Treg, Th17,
Th22, CD8

melanoma, atopic dermatitis, cancer, allergic
inflammation

(13; 14; 15; 16; 17; 18;
19; 20; 21; 24)

5 CCR5 CCL3–5, CCL11,
CCL14, CCL16

Th1, Th9, Treg, Th17 melanoma, atopic dermatitis, HIV-infection (21; 24; 25)

6 CCR6 CCL20 Th17, Treg, Th9, Tfh,
Th22

melanoma, tumour, pancreatic cancer, lymph-
borne pathogenic response, skin
inflammation

(13; 14; 15; 16; 17; 18;
19; 20; 21; 26; 27; 28;
29)

7 CCR7 CCL19, CCL21 Tcm, Trcm, Treg,
Naïve T cell

melanoma, homeostasis, self-tolerance (21; 30)

8 CCR8 CCL1, CCL18 Th2, Treg, Skin CD4
Trm

allergic inflammation, lung cancer, skin disease (24; 31; 32)

9 CCR9 CCL25 Th17, Th22 viral infection, intestinal inflammation (33; 34)

10 CCR10 CCL27 Th17, Th22 malignant ascites, skin pathophysiology (13; 14; 15; 16; 17; 18;
19; 20; 35; 36; 37; 38)

11 CXCRs CXCR1 CXCL8, CXCL6, CXCL1 CD4, CD8 leukaemia, homeostasis, viral and tumour
inflammation, allergic disease

(39; 40; 41; 42; 43; 44;
45; 46)

12 CXCR2 CXCL1–3, CXCL5–8 CD4, CD8 multiple sclerosis, cancer, experimental
autoimmune encephalomyelitis (EAE)

(39; 42; 43; 47; 48)

13 CXCR3 CXCL9–11 Th1, Treg, Th9, Tfh,
Th17, CD8 Tcm &
Tem

melanoma, atopic dermatitis (13; 14; 15; 16; 17; 18;
19; 20; 21; 43; 49)

14 CXCR4 CXCL12 CD4, CD8 homeostasis, HIV infection, tumour, prostate
cancer, pancreatic cancer

(13; 14; 15; 16; 17; 18;
19; 20)

15 CXCR5 CXCL13 Th17, Tcm, Tem, Tfh,
CD8

humoral responses, rheumatoid arthritis,
autoimmune disease

(50; 51; 52)

16 CXCR6 CXCL16 Th1, Th17, CD8 inflamed human liver, experimental
autoimmune encephalomyelitis (EAE),
Alzheimer’s disease,

(21; 29; 53; 54)

[CCL = chemokine ligand; CXCL = C-X-C motif chemokine ligand; CCR = β-chemokine receptors; CXCR = α-chemokine receptors; Tcm = central memory T cells; Tem = effector memory T cells;
Tfh = follicular helper T cells; Treg = regulatory T cells; Th = helper T cells]
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receptors, including CCR1, CCR3, and CCR5. Similarly, CC che-
mokine receptor 5 (CCR5) can interact with different chemokines
like MIP-1β, MIP-1α, and RANTES (Ref. 60). This promiscuity
allows for versatile chemokine-receptor interactions, expanding the
repertoire of migratory signals that immune cells can respond
to. The expression pattern of chemokine receptors on the cell
surface determines the migratory behaviour of immune cells in
response to specific chemoattractant sources. Instead of directly
migrating to a specific site, cells pass through different zones
expressing different chemokines. This multistep directional migra-
tion is guided by the combinatorial expression of chemokine
receptors on the cell surface (Ref. 61). For example, naïve T cells
require CCR7 to migrate to the T cell zone, expressing CCL19, and
once there, desensitization or downregulation of CCR7 allows
them to migrate to the B-cell zone, guided by CXCR5/CXCL13
axis (Ref. 62).

The expression of chemokine receptors is tightly regulated
during cell development and differentiation (Ref. 63). This regula-
tion allows for the distinction of different forms of CD4+ and CD8+

T cells, such as naïve T cells, effector T cells, and memory T cells,
based on the specific chemokine receptors they express. Each T cell
subset uniquely expresses various chemokine receptors that define
its identity and functional characteristics (Ref. 10). The host
employs various strategies to combat pathogenesis during infec-
tion. The development of resistance in the host largely depends on
the orchestrated response of cells that possess the ability to elim-
inate pathogens. Chemokines play a crucial role in directing select-
ive cell migration towards the site of infection. Depending on the
specific chemokine signals present, the host may mount a protect-
ive response or experience tissue damage (Ref. 64). The chemokine
receptors associated with different subsets of T lymphocytes under
various inflammatory conditions, have been summarized in
Table 1.

Migratory control over naïve and central memory T cells

Naïve T cells (Th0) and central memory T cells (Tcm) express
crucial homing receptors, such as CCR7 and CXCR4, which are
involved in their migration to secondary lymphoid organs (SLOs)
where they can actively participate in immune surveillance and
responses (Refs. 65–67). Naïve T cells are those that have not been
previously exposed to antigens, circulate in the bloodstream and
travel to lymph nodes, where they scan for antigens presented by
antigen-presenting cells (APCs) to initiate an immune response.
CCR7 facilitate rolling over the endothelium of blood vessels during
transmigration. Homeostatic chemokines CCL19 and CCL21,
which are secreted by high endothelial venules (HEV), stimulate
the CCR7 receptor on T cells (Ref. 68). The interaction between
CCR7 and its ligands increases the affinity of the integrin LFA-1
(found on lymphocytes and other leukocytes) for its ligand ICAM-1
(expressed on HEV). This firm attachment to the endothelium
enables T cells to migrate through the HEV and enter the lymph
node (Refs. 69, 70). Experimental studies usingmutantmice lacking
CCR7 (CCR7�/�) have demonstrated impaired immunogenic
responses due to restricted entry of lymphocytes from the blood-
stream to SLOs (Ref. 71). Similarly, Tcm cells also express CCR7
which facilitates its retention in SLO. Another homing receptor,
CXCR4 interact with CXCL12 (SDF-1) and is involved in memory
T cell maintenance, cell growth, cell survival, and the recirculation of
T cells within SLOs. Bone marrow stromal cells express CXCL12
which attracts T cells expressing CXCR4 on its surface (Refs. 72, 73).

Its expression is reduced once T cells are activated (Ref. 74). CXCR4
is a remarkable marker expressed constitutively on both naïve CD4+

and CD8+ T cells, but predominantly on naïve and central memory
CD8+ T cells (Refs. 72, 75, 76).

CCR7 is highly expressed on resting naïve CD4+ T cells
(CD45RA+ CCR7+), however, most activated T cells lack CCR7
on their surface, and if they do, it is expressed at a very low level
(Ref. 77). Tcm cells do not possess effector functions but can
differentiate into effector memory T (Tem) cells upon antigenic
stimulation having lower CCR7 but upregulated some other che-
mokine receptors like CCR5, CXCR3, and CCR4 (Refs. 78, 79). This
transition allows them to migrate to peripheral tissues to provide
robust immune responses rather than to rest within the lymphoid
tissues.

Similarly, CD8+ T cells also express CCR7 on their surface and
migrate towards SLOs, like CD4+ T cells as discussed earlier (Ref.
80). CXCR4 is a remarkable marker expressed constitutively on
both naïve CD4+ and CD8+ T cells, but predominantly on CD8+ T
cells (Ref. 75). It interacts with its ligand, stromal cell-derived factor
1 (SDF-1 or CXCL12), and regulates the migration of CXCR4+ T
cells by facilitating their adhesion to the venules of SLOs. The
presence of CXCR4 has been discovered to provide essential signals
for the survival of thymocytes during their maturation process.
Disrupting the function of CXCR4 has an impact on thymic devel-
opment (Ref. 81). CXCL12/CXCR4 signalling is crucial for TCR-
induced immunological synapse development, early signalling
molecule phosphorylation, and thymic β selection (Ref. 82).
CXCR4 mediates the migration of naïve and central memory
(Tcm) CD8+ T cells to the bone marrow and is critical for the
homeostatic proliferation of CD8+ Tcm cells. It also maintains the
reservoir of memory CD8+ T cells (Ref. 72). Their expression
decreases during differentiation into effector memory cells (CD8+

Tem) as negatively correlated with perforin expression (Ref. 75).

Migratory control over effector memory T cells

As naïve T cells differentiate into effector T cells, they begin to
express additional chemokine receptors (Table 1) that are necessary
for their migration and positioning within target tissues (Refs. 83,
84). Effector memory T cells (Tem) are CCR7low and express other
chemokine receptors that facilitate their circulation in the periph-
eral blood and migration to inflamed tissues, where they can exert
their protective functions against infections (Ref. 85).

Different subsets of CD4+ effector cells, such as Th1 and Th2
cells, express distinct arrays of chemokine receptors. Th1 cells
preferentially express CCR5 and CXCR3, while Th2 cells, on the
other hand, preferentially express CCR3, CCR4 and CCR8 (Refs.
86, 87) which are involved in their migration to inflamed tissues.
CXCR5 is a chemokine receptor that directs themigration of T cells
into B cell follicles. While subsets of both CD4+ and CD8+ T cells
express CXCR5, its high expression is found on T follicular helper
cells (Tfh), a subset of CD4+T cells (Ref. 88). The ligand for CXCR5,
CXCL13 is released from ‘B cell zones’ in secondary lymphoid
organs and guides the migration of Tfh cells towards B cell follicles,
where they assist in affinity maturation (Ref. 89). Deletion of
CXCR5 or CXCL13 in mice leads to altered and impaired micro-
architecture of secondary lymphoid organs (Refs. 90, 91). CXCR5+

centralmemory T cells (Tcm) play a crucial role in the generation of
antibody-mediated secondary immune responses (Ref. 92). The
immunosuppressive CD25+ regulatory T cells (Tregs) were found
to be associated with many C-C chemokine receptors such as
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CCR4, CCR5, CCR6, CCR7&CCR8 butmajorly express CCR4 and
CCR8 (Refs. 93–95). Previously, it was found that CXCR4 expres-
sion decreases with T cell activation, however, subsequent discov-
eries have also shown that its expression increases on CD4+ T cells
in diseased conditions as reported inHIV-infected patients where it
acts as a coreceptor for HIV-entry (Refs. 74, 76, 96) .

Effector CD8+ T cells express chemokine receptors such as
CXCR3, CXCR6, CCR4, CCR6, CCR9 and CCR10, which direct
their migration to specific tissues during inflammatory responses
(Refs. 80, 97). IFN-γ producing CD4+ T cells affect the recruitment
of effector CD8+ T cells by upregulating the production of CXCL9
and CXCL10 (ligands for CXCR3) at the site of infection (Ref. 80).
CXCR3high has been found to be a determination factor of cytotoxic
response, as studied during influenza pathogenesis (Ref. 58). CXCR3
expression is induced on naive CD8+ T cells upon activation and
remains preferentially upregulated on effector CD8+ T cells. CXCR3
is involved in the migration of CD8+ T cells to inflammatory sites.
Antigen-specific CD8+ T cells that lack CXCR3 skewed towards
more memory cells with decreased activation properties and fewer
short-lived effector cells (Refs. 97, 98). CCR9 promotes migration to
the gut, while CCR10 facilitates migration to the skin (Ref. 99),
indicating that the draining lymph node plays a significant role in
determining the migratory properties of activated CD8+ T cells,
guiding them toward specific locations.

In summary, the expression of specific chemokine receptors on
effector memory T cells determines their migratory behaviour and
allows them tomigrate to the appropriate tissues during an immune
response. The differential expression of chemokine receptors on
different subsets of T cells contributes to their specialized functions
and distribution within the body.

Chemokine signalling

Chemokine receptors (CKRs) are a type of G protein-coupled
receptors (GPCRs) that play a crucial role in cell signalling. The
signalling of CKRs involves various molecules, including hetero-
trimeric G proteins, G protein receptor kinases (GRKs), and
β-arrestins. These components work together to initiate and regu-
late signal transduction pathways, leading to a wide range of
biological functions (Ref. 100). When a specific stimulus binds to
a heptahelical chemokine receptor, it activates specific heterotri-
meric G proteins. These G proteins consist of an alpha subunit (Gα)
and a beta-gamma subunit (Gβγ). Different Gα subunits have been
identified on the basis of sequence and functional similarities

(Table 2) – stimulatory subunit (Gαs), inhibitory subunit (Gαi),
Gα12/13, and Gαq (Ref. 107). Initially, the Gα subunit is bound to
GDP (guanosine diphosphate), but upon stimulation, guanine
nucleotide exchange factors (GEFs) stimulate the exchange of
GDP for GTP (guanosine triphosphate) on the Gα subunit. The
binding of GTP to Gα leads to its activation and activated Gα
subunits can then interact with various downstream effectors like
adenylate cyclase (AC), GTPase of rho-family, protein kinase A
(PKA), protein kinase C (PKC) and so forth in order to perform
effector functions, including cell migration (Refs. 101, 102, 108–
110). For example, Gαq can activate an enzyme called phospho-
lipase C (PLC), which is associated with the cell membrane. PLC
cleaves phosphatidylinositol (4,5)-bisphosphate (PIP2) into two-
second messenger molecules: diacylglycerol (DAG) and inositol
triphosphate (IP3). DAG activates protein kinase C (PKC), while
IP3 triggers the release of calcium ions from intracellular stores,
such as the endoplasmic reticulum (Refs. 105, 111, 112). These
events initiate multiple signalling cascades that ultimately lead
to various cellular responses, including actin polarization and
chemotaxis (Figure 1) (Refs. 107, 113).

To regulate the ongoing signalling, there is a regulator of G
protein signalling (RGS) proteins that act as GTPase-activating
proteins (GAPs) for Gα subunits. They facilitate the hydrolysis of
GTP bound to Gα, thereby switching off the ongoing signalling
processes. On the other hand, the Gβγ dimer, which remains bound
together, acts as a signalling molecule itself. It can initiate signalling
pathways independently and also regulate the activity of Gα
subunits. Some of the pathways regulated by Gβγ include the
Akt pathway,MAP kinase pathway, and calcium-dependent path-
way, which can lead to cellular responses like cell migration (Ref.
114). Gβγ subunit mainly negatively regulates Gα subunit when
bound with it. Intracellular GPCR kinases (GRKs) play a role in
the regulation of CKRs. Upon continuous stimulation with che-
mokines, GRKs phosphorylate the CKRs. This phosphorylation
allows for the binding of arrestin proteins, leading to the desen-
sitization or internalization of the CKRs. This process can ultim-
ately result in the degradation of the receptors or their recycling
back to the cell surface. Different chemokines can activate the
same CKR through different GRKs. For example, CCR7 can be
activated by both GRK3 and GRK6 in response to CCL19, while
CCL21-induced CCR7 signalling is mediated only by GRK6 (Ref.
115). A phenomenon known as oligomerization, the formation of
complexes between either the same or different CKRs, has also
been reported. This can lead to altered receptor activity and
crosstalk between signalling pathways, which may affect normal
signalling and result in a variety of cellular responses, including
the regulation of cell migration (Ref. 116). As studied in the case of
CCR7, oligomerization is necessary for effective cell migration. If
oligomerization were to somehow fail, cell movement would be
hampered (Ref. 117).

Role of T cells during Leishmaniasis

The orchestration of T lymphocytes on the targeted site plays a
central role during adaptive immunity. An optimal T cell-dependent
immunoprotective response is essential to combat infection caused
by obligate intracellular Leishmania parasites in the mammalian
host.Different subsets of T cells have been discovered to play various
roles in different clinical forms of Leishmaniasis, highlighting
the importance of understanding the types of T cells that exhibit
protective and destructive responses during infection (Figure 2).

Table 2 G alpha protein subunits and their corresponding signalling pathways

S.No. G alpha subunit Signalling pathway

1. Gαs
(‘s’ stimulatory)

Activate adenylate cyclase and cAMP-
dependent protein kinase A (PKA)
(101; 102)

2. Gαi
(‘i’ inhibitory)

Inhibit adenylate cyclase and protein kinase A
(PKA) (101; 103;104)

3. Gαq/11 Stimulate phospholipase C (PLC-β) to cleave
PIP2 into DAG and IP3 and activate Protein
Kinase C (PKC) and Ca2+ dependent
pathway (105)

4. Gα12/13 Activate Rho-family GTPase and regulate
the actin

cytoskeletal remodeling (106)
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CD4+ T cells

CD4+T cells, amajor group of T cells, provide protection to the host
during leishmaniasis which relies on the expression of various
antiparasitic molecules (e.g. reactive oxygen species, nitric oxide)
in phagocytic cells that get activated on IFN-γ productions (Ref.
118). Various subsets of CD4+ T cells, including Th1, Th2, Th17,
Th22, Th9, Treg and Tfh cells, have been identified based on their
distinct cytokine profiles (Table 3). These subsets are responsible
for different immune responses and can determine resistance or
susceptibility to Leishmania infection, depending on which subset
dominates the infected site. Treg cells possess immunosuppressive
properties during infection. They play a regulatory role in damp-
ening immune responses and can contribute to the persistence of
the parasite (Ref. 129).

In VL, Th1 cells produce pro-inflammatory cytokines such as
IFN-γ and TNF-α, which induce phagocytic activity and control
parasitic growth while Th2 cells produce a higher level of IL-4, IL-5,
IL-13, and IL-10 that leads to susceptibility towards infection (Refs.
130, 131). Another proinflammatory subset of CD4+ T cells, Th17
produces IL-17 and IL-22 that recruit neutrophils and inflamma-
tory cells at the inflammatory site, thus playing a protective role
during VL (Refs. 132, 133). It was observed that the cytokines IL-10,
TGF-β and IL-35 released by these cells hinder the functioning of

IFN-γ, TNF-α and IL-17 during chronic VL as studied on
Leishmania donovani infected mice model (Refs. 134, 135). T
follicular helper (Tfh) cells, an important CD4+ T cell subset that
regulates B lymphocyte activation during humoral immune
responses, produce IL-21 and IL-4 (Ref. 121). It has been found
that IL-21mRNA expressionwas upregulated in CD3+ T cells of VL
patients which is responsible for the expansion of IL-10-producing
cells (Refs. 136, 137). As, IL-21 also assists in antibody production,
their increased level in the serum of chronic VL patients may be
responsible for generating autoantibodies (Refs. 138, 139). Th9
subset secretes IL-9 during infection. CD4+ T cells releasing IL-9
have been found to be upregulated in human VL during the acute
phase and lead to immunopathogenesis (Ref. 140).

In CL caused by Leishmania (V.) braziliensis, patients with
active lesions exhibit a mixed Th1/Th2 response, producing cyto-
kines like TNF-α, IFN-γ, IL-12, IL-4, and IL-1. However, individ-
uals who have been cured of the infection primarily produce IFN-γ
(Th1 response), which is associated with a protective immune
response (Ref. 141). Although IFN-γ and TNF-α provide protection
to the host against leishmaniasis their overproduction may cause
tissue damage (Ref. 142). IL-22, released by Th22 and Th17 cells,
found to provide protection against tissue destruction during CL
(Ref. 143). IL-17 was considered a predictive marker of disease

Figure 1. Chemokine signalling pathway.
Chemokine receptor (CKR) remains in an inactive stage in which chemokine is not associated with it, and G-protein is in an inactive state and bound with GDP. CKR on interaction
with specific chemokine triggers the activation of the bound heterotrimeric G-protein composed of αβγ subunits which leads to an exchange of GDPwith GTP and dissociation of the
heterotrimeric G protein complex into Gα and Gβγ subunits where GTP remains attached to Gα subunit. Depending on the nature of the inducing signal and types of Gα protein,
different signalling pathways get activated. (a) Gαi inhibits the activity of adenylate cyclase enzyme and reduces the cAMP generation; (b) Gαs stimulate the activity of adenylate
cyclase enzyme and stimulates the production of cAMPwhich further activates PKA; (c) Gα12/13 activates rho-family GTPase and regulate the actin cytoskeleton remodelling; (d) Gαq
(or Gβγ) activate PLC-β enzymewhich cleaves PIP2, located in the plasmamembrane, into DAGmolecules and intracellular secondary messenger IP3. DAG further activate PKC and
IP3 binds to its receptor on endoplasmic reticulum (ER) causing Ca2+ release into the cytoplasm; (d) Gβγ can also activate the Akt pathway, MAP kinase pathway, and Ca2+ dependent
pathway. (d) Both the Gα and Gβγ subunits are capable of initiating a downstream signalling cascade that results in a range of cellular activities, including changes in cytoskeleton
dynamics and cell migration that ultimately regulate the physiological and pathological response of the cells.
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progression in L. guyanensis-infected CL patients (Ref. 144). High
production of IL-17 cytokine has been directly associated with
disease severity in CL (Ref. 145). Primarily IL-9 is produced by
the Th9 subset, but Th17 and Treg cells also produce this cytokine
at a low level and are involved in CL pathogenesis (Refs. 120, 128).

During PKDL, there is an increase in the production of
Th1-cell-specific cytokines, namely IFN-γ, TNF-α and IL-12, as
well as IL-17A, IL17F and IL22 specific to Th17 cells show a
protective role during infection. IL-17 may contribute to resistance
by increasing the production of TNF-α, NO, and antimicrobial
peptides (like β-defensin) in conjunction with IL-22 (Ref. 131).
Th2 cells produce a higher level of IL-4, IL-5, IL-13, and IL-10 that
leads to susceptibility towards infection and promote parasite
persistence during PKDL. The progression of VL to PKDL is
associated with the overproduction of Th2-related cytokines in

the skin (Ref. 120). The simultaneous overproduction of IL-10
diminishes the effectiveness of IFN-γ and TNF-α (Ref. 146). It was
also found that the patients with PKDL had lower levels of serum
IFN-γ, IL-10, and IL-6 compared to VL patients and comparable
levels to healthy persons. However, the levels of TNF-α in PKDL
patients were considerably higher than in VL patients or healthy
participants (Ref. 147). Different kinds of PKDL have varying levels
of these cytokines, polymorphic PKDL had greater serum levels of
IFN-γ and IL-10 than macular PKDL, while macular lesions had
lower levels of IFN-γ and TNF-α than nodular PKDL (Ref. 131).

CD8+ T cells

The role of CD8+ T cells in leishmaniasis has received relatively less
attention compared to CD4+ T cells. Nonetheless, studies have

Figure 2. Activation and differentiation of CD4+T and CD8+T cell subsets during leishmaniasis.
Leishmania antigens are presented by APCs or infected macrophages (1,2) to naïve CD4+ T cells through MHC class II molecules, leading to their activation. Depending on the
cytokine environment, naïve CD4+ T cells can differentiate into various T-helper subsets (3). Interleukin-12 (IL-12) facilitates the differentiation of Th1 cells, which produce IFN-γ and
TNF-α, promoting the clearance of intracellular parasites. Th17 cells, on the other hand, produce IL-17 and IL-22, contributing to anti-leishmanial and inflammatory responses (4).
Th2 cell differentiation occurs under the influence of IL-4, leading to the production of IL-10 and IL-4 which can result in parasite persistence by inhibiting macrophage activation.
Similarly, TGF-β promotes the differentiation of T-regs, which produce IL-10 and TGF-β, contributing to immune regulation and further supporting parasite persistence (5). Naïve
CD8+ T cells are activated via MHC class I molecules and can differentiate into CTLs, producing perforin and granzyme B to target infected cells. They also produce IFN-γ and TNF-α,
which support the Th1 response for effective parasite clearance (6).
[CTL- Cytotoxic T lymphocytes, APC- Antigen presenting cell, MHC- Major Histocompatibility complex, Gzm B-Granzyme-B, TGF β- transforming growth factor-β, T-regs - Regulatory
T cells].
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demonstrated that CD8+ T cells, specifically the Tc1 subset, do play
a protective role in protozoan infections, including leishmaniasis.
CD8+ T cells exert their protective effects through various mech-
anisms. They produce inflammatory molecules such as IFN-γ and
TNF-α, which contribute to the activation of macrophages and the
control of intracellular pathogens like Leishmania.

In VL, CD8+ T cells play a role in defending against the devel-
opment of the disease. They secrete IFN-γ, perforin, and granzyme,
which contribute to the control of Leishmania infection (Refs.
148, 149). However, during the progression of human VL, there
is often a depletion of CD8+ T cells possessing anergic phenotype,
which reduces their protective potential against the parasite (Ref.
150). There are two distinct groups of CD8+ T cells have been
identified, one is CD8low which was present during onset and VL
progression, and the other one is CD8high which increases after the
cure of the disease (Ref. 151). Despite the challenges observed in
human VL, studies in mouse models have shown promising results
regarding CD8+ T cell-based vaccines. These vaccines rely on the
chemokine CXCL10, which plays a crucial role in attracting CD8+ T
cells to the sites of infection. By enhancing the recruitment and
activation of CD8+ T cells, CXCL10-based vaccines have demon-
strated effectiveness in reducing the parasitic burden in organs
(Ref. 152).

The production of IFN-γ, TNF-α and cytolytic molecules by
CD8+ T cells play a protective role during CL also (Refs. 153). The
cytolytic genes are highly expressed in lesions and are positively
correlated with the recruitment of granzyme B+ CD8+ T cells (Ref.
154). CD8+ T cells contribute to resistance against L. major infec-
tion by increasing the development of Th1 cells and suppressing the
development of Th2 cells, via the production of IFN-γ (Ref. 155).
Additionally, CD8+ T cells are also responsible for the host immu-
nopathology during CL (Ref.156). A previous report found an
association between granzyme B and disease outcome. It was
observed that inhibiting the granzyme release from CD8+T cells
duringCL reduces disease severity (Ref. 157). CD8+T cell-mediated
pathology has been linked with the induction of inflammasome
NLRP3 formation and release of IL-1β which is confirmed by the
increased level of this cytokine in the lesions of patients infected
with L. braziliensis (Ref. 158). This suggests that CD8+ T cells
possess protective as well as immunopathogenic nature during
Leishmania infection.

The frequency of IL-10-producing CD8+ T cells was consider-
ably elevated in individuals with PKDL caused by L. donovani, but it
decreased after successful treatment (Ref. 159). Increased

expression of exhaustion markers such as programmed death-1
(PD-1), while reduced expression of perforin and granzyme was
also observed at lesional site (Ref. 160). This implies that the
conditions are favourable for the survival of parasites and lead to
the progression of diseases.

γδ T cells

Gamma delta T cells (γδ T cells) account for 2–5% of the overall cell
population in healthy persons and possess a γδ T-cell receptor
(TCR) on their cell surface rather than αβ TCR chains as found
in the case of CD4+ and CD8+ T cells. A previous study demon-
strated that mice infected with L. major subcutaneously exhibited
elevated levels of γδ T cells in the spleen and draining lymph nodes
of both susceptible BALB/c and resistant CBA/J mice. This suggests
that γδ T cells are involved in protective inflammatory responses
associated with the infection by promoting granuloma formation
(Refs. 161–163). In VL patients, elevated γδT cells were observed to
stimulate the proliferation and differentiation of B cells which is
achieved through the secretion of growth factor (BCGF) and differ-
entiation factor (BCDF). This results in abnormalities in humoral
immune responses and hypergammaglobulinemia, suggesting an
immuno-suppressive and pathogenic response (Refs. 164). In
another study of VL patients infected with L. donovani, a substantial
production of IL-10 was found which suggests an immunomodula-
tory function of γδ T cells (Refs. 165). In an experimental model of
C57BL/6 mice infected with L. donovani, it was shown that IL-17,
which is generated by γδ T cells, has an inhibitory effect and restricts
the proliferation of parasites in the liver (Ref. 166).

Natural killer T cells (NKT)

NKT cells are specialized lymphocytes that share surface markers
and functional characteristics with both natural killer cells
(NK) andT cells (Ref. 167). Theymay express CD4 or CD8markers
on their surface and secrete IFN-γ, TNF-α, IL-4, IL-10, and IL-13
and constitute 0.1–0.5% of peripheral blood leukocytes (Refs. 168,
169). IFN-γ-producing CD8+ NKT cells were shown to be protect-
ive in nature, whereas CD4+NKT cells expressing CD25, Foxp3 and
IL-10 were found to be pathogenic during L. donovani infection
(Ref. 170). These CD4+ NKT cells accumulate at the infection site
and it may be due to the expression of CCR5 on its surface during
the infection (Ref. 171). In a previous study on peripheral blood of
VL patients, it was observed that CD8dim CD56+ NKT cells are the
subset which expressmore granzyme B and aremore cytotoxic than
CD8bright CD56+ NKT cells (Ref. 172).

In CL, CD3+ CD56+ CD8+ NKT cells were also found to be
protective in nature and shown to be associated with a cytotoxic
response against L. braziliensis (Refs. 171, 173). In CD1d�/� and
Jα18�/� mice, which lack NKT cells, exhibited a delay in clearing
>10^6 L. major parasites during infections (Ref. 174).

However, despite the presence of the defensive properties of
CD4+ T cells and CD8+ T cells, immune responses are ineffective in
controlling parasitic growth and thus disease progression occurs
during chronic infections. Furthermore, hyporesponsive T cells
expressing several exhaustion markers (eg. PD-1, CTLA-4,
LAG-3, TIM-3) lead to ineffective immune responses and high
parasitic load that depends on infection duration and host immun-
ity (Ref. 175). By understanding the role of chemokines and their
receptors associated with different T cell subsets during leishman-
iasis, we can get valuable information on the key factors driving

Table 3. Cytokine profiles of different CD4+ T cell subsets during Leishmaniasis

S.No.
CD4+ T cell
subsets

Cytokine profiles in Leishmania-
infected patients References

1 Th1 IFN-γ, TNF-α, IL–12 (119)

2 Th2 IL–4, IL–5, IL–13, IL–10 (120)

3 Tfh IL–21, IL–4 (121; 122;
123)

4 Th17 IL–17, IL–22, IL–9 (119; 124;
125)

5 Th22 IL–22 (126)

6 Th9 IL–9 (127)

7 Treg IL–10, TGF-β, IL–35, IL–9 (128; 120)
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disease progression and prognosis, potentially leading to better
clinical management of the disease. Targeting specific chemokines
and their receptors holds the potential for modulating T-cell
responses and enhancing protective immunity against Leishmania
infection.

Hepatic granuloma formation during VL is a function of
T-cell-associated chemokine profile

The formation and maturation of granulomas in response to infec-
tion, including leishmaniasis, are dependent on active cell recruit-
ment (Ref. 176). Granulomas are complex inflammatory structures
that develop around infected cells, such as Kupffer cells in the liver.
It includes a variety of immune cells, including several types of T
cells, particularly CD4+ T cells that produce protective IFN-γ (Ref.
6). Kupffer cells phagocytosed parasites but were unable to elim-
inate them solely and as the formation of mature granuloma
progresses, T cells become a central component of the mature
granuloma and contribute to the leishmanicidal activity of infected
Kupffer cells (Refs. 177–179). These cells work together to provide a
targeted immune response and prevent the parasites from spread-
ing to other tissues. Chemokines play a crucial role in orchestrating
the formation and maturation of granulomas. They regulate the
recruitment and infiltration of various immune cells into the
granuloma, allowing for a more effective immune response
against the infection. Chemokines secreted by activated Kupffer
cells, such as CCL2, CCL3, and CXCL10 (Ref. 180) attract
immune cells like monocytes, T cells, neutrophils, and invariant
natural killer T (iNKT) cells to the site of infection. iNKT cells,
upon activation, are necessary for the sustained expression of
CXCL10, an inflammatory chemokine that binds to CXCR3 and
recruits somemore iNKT cells. This promotes the initiation of the
granuloma formation where iNKT cells are predominantly pre-
sent (Refs. 181, 182). In an in vivo model of VL, CXCL10 was
shown to generate a protective pro-inflammatory environment by
upregulating Th1 cytokines (IL-12, IFN-γ, TNF-α) and down-
regulating anti-inflammatory IL-10 & TGF-β cytokines (Refs.
183, 184), creating an environment favourable for the immune
response against the infection. In the inflammatory environment,
the presence of IFN-γ cytokine can induce the expression of the
inflammatory chemokine CXCL9, CXCL10 and CXCL11 which
attracts some more CXCR3+ T cells to the site of infection (Ref.
185), suggesting a positive feedback loop around these chemo-
kines and IFN-γ. Other chemokines, such as CCL19, CCL27,
CXCL16, CCL9, and CCL25, that selectively attract lymphoid
cells have also been observed to be expressed during an early
infection (Ref. 181). The recruitment of T cells contributes to
the immune defence against parasite L. donovani by promoting
the maturation of granulomas and facilitating the elimination of
infected cells (Ref. 186). The protective inflammatory environ-
ment created due to accumulated T cells (CD4+ T cells, CD8+ T
cells etc.) highlights their importance in the liver immune
response against parasites as observed in an experimental mice
model infected with L. donovani (Refs. 187–189) (Figure 3).

Overall, the interplay between the chemokine system and T cells
is critical for the development and function of hepatic granulomas
in leishmaniasis. Understanding the specific chemokines and
receptors involved in T cell recruitment and function within granu-
loma provides insights into the potential points of intervention that
help in pathogen clearance.

Altered chemokine profiles during Leishmaniasis: protection
vs parasite persistence

Leishmania infection induces the expression of several chemokines
and chemokine receptors that promote the migration of specific
immune cell subsets. The parasites have the ability to modify the
expression of chemokines and chemokine receptors, either upre-
gulating or downregulating them, in order to persist within the host
(Refs. 190, 191). This suggests that the modified chemokine expres-
sion profiles and impaired immune cell migration are related to the
disease and its pathogenesis. In the liver of L. donovani-infected
BALB/c mice, the resolution of infection initially occurs independ-
ently of T cells. This suggests that mechanisms other than T cell-
mediated responses are involved in controlling the infection during
the early stages. However, as the infection progresses, T-cell
dependence becomes crucial for the expression of chemokines
and the recruitment of inflammatory cells (Ref. 192). Immune cells
are likely to migrate from secondary lymphoid organs to sites of
higher chemokine concentration during an immune response.

The alteration in chemokine receptor expression can modulate
themigratory properties of T cells. Activated T cells exhibit a switch
in chemokine receptor expression from constitutive to inflamma-
tory, contributing to the altered migration of these cells. Specific
chemokines such as CCL2 (MCP-1), CCL3 (MIP-1α), and CCL4
(MIP-1β) are known to stimulate the migration of activated CD4+

and CD8+ T lymphocytes to the infected sites where an immune
response is being mounted (Refs. 193, 194). The parasite L. major,
which causes CL, has been demonstrated to influence the mRNA
expression of chemokines such as CCL2 and CXCL8, providing
more evidence that the infection affects chemokine expression (Ref.
195). CCL2 that interacts with CCR2 is found to be upregulated in
early lesions of human CL infection with L. braziliensis when
compared with their healthy controls (Ref. 196). CCL2 is believed
to be a biomarker of cure because it was upregulated in cured VL
patients (Refs. 197). CCL3 and CCL5 (RANTES), which are ligands
for CCR1 and CCR5, selectively attract Th1 cells and are produced
in high levels during a Th1 response (Refs. 198, 199). Elevated levels
of CCL5 have been reported in the L. major-infected mice model
and correlated with parasite control (Ref. 200). Although increased
CCL3 expression is linked to early control of parasitic load and the
establishment of an anti-leishmanial milieu, it also facilitates para-
site survival during the later phases of L. donovani infection (Ref.
178). CCL7 (MCP-3) interact with several receptors (CCR1, CCR2,
CCR3, CCR5 and CCR10) and was found to be upregulated during
L. major infection (Ref. 201) and promote Th2 cell migration (Ref.
202). Chemokine expression profiles have also been used to define
different clinical forms of Leishmaniasis. Elevated levels of chemo-
kines such as CCL2, CXCL9, and CXCL10 have been observed in
the lesions of patients with localized CL while diffused CL patients
have upregulated CCL3 (Ref. 203). Upregulation of these chemo-
kines may indicate an attempt to recruit immune cells and initiate
an effective immune response despite the disease progression.

In human MCL caused by L. braziliensis, there is an increase in
mRNA and serum levels of CXCL10. This upregulation of CXCL10
suggests its involvement in the immunopathogenesis (Ref. 204).
CXCL9 and CXCL10 expression is also upregulated during active
VL which is known to recruit CXCR3+ Th1 cells and may contrib-
ute to tissue damage and disease severity (Refs. 191, 205, 206). The
increased expression of CXCL10 during a long infection period in
L. donovani-infected mice further supports its role in the immune
response against the parasite (Ref. 207). Further, the reduced
presence of CXCR3+ Treg cells in CXCL10�/� L. donovani-infected
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mice suggests that CXCL10 is important for their recruitment. This
altered Treg cell trafficking may contribute to a decrease in the
regulatory mechanisms that control the immune response against
the parasite, ultimately resulting in a lower parasitic load (Ref. 208).
This suggests that CXCL10 is involved in creating a favourable
immune environment for parasite control.

While information on T cell trafficking during Leishmania
infection may be limited, the role of certain chemokine receptors
expressed on T cells has been investigated in the context of
Leishmaniasis. Some important chemokine receptors and their
potential roles in different phenotypes of Leishmaniasis are dis-
cussed below:

1. CXCR3

In L. infantum infected mice, the Cxcr3 gene is found to be
associated with the activated T lymphocytes, including effector
cells and regulatory cells, suggesting their initial migration
towards the affected spleen (Ref. 178). It is a crucial chemokine
receptor involved in the trafficking of activated CD4+ T cells and
CD8+ T cells during infection (Refs. 209, 210). It interacts with its
ligands, CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC),
and promotes integrin activation and immune cell migration

(Refs. 211). CXCR3 is a remarkable marker of Th1 cells and their
lower expression causes less trafficking of Th1 cells to the
inflamed tissues during VL. It leads to less IFN-γ production that
affects the host’s protective response against the parasite (Ref.
212). In an experimental model of VL, a reduced number of
CXCR3+ CD4+ T cells have been observed in the spleen compared
to the liver during the chronic phase of infection, and this impair-
ment is associated with a high parasitic burden in the organ,
suggesting the importance of CXCR3 in host immunity. However,
their upregulated expression on T cells does not prevent from
developing VL as studied in transgenic mice that overexpressed
CXCR3 on all T cells (Ref. 213). A prior study on CXCR3�/�

C57BL/6 mice has shown that CXCR3 plays a crucial role in
resolving disease during L. major infection as it is necessary for
T cell trafficking in the skin, but it is not essential during
L. donovani infection, as mutant mice are still able to recruit T
cells to the affected organs at later stages and exhibit a Th1
response, to effectively clear the infection similar to CXCR3+/+

mice (Ref. 214). This suggests that the CXCR3 is necessary for T
cells trafficking in the skin during L. major infection. Also, a
higher frequency of infiltrating cells was IFN-γ-producing Th1
and Tc1 cells expressing CXCR3, accounting for the resolution of
dermal lesions (Ref. 215).

Figure 3. Formation of Granuloma.
Granulomas are formed as a response to infection, such as around Kupffer cells in the liver, to elicit a targeted immune response to eliminate parasites and prevent dissemination.
Kupffer cells post-infection via phagocytosis (a) get activated and thereafter release chemokines such as CCL2, CCCL3, and CXCL10 that assist in the recruitment of immune cells like
monocytes, T cells, neutrophils, and iNKT cells to the site of infection (b) leading to accumulations of the immune cell around the site of infection (c). iNKT cells are essential for the
expression of CXCL10, an inflammatory chemokine, which recruits iNKT cells and initiates granuloma formation (d). Similarly, altogether recruited cells secrete chemokines that
attract lymphoid cells, contributing to immune defence against Leishmania parasites. Hepatic CD4+ and CD8+ T cells are crucial in the liver immune response against leishmaniasis
by the formation of granuloma around the site of infection (e).
[CCL3: chemokine ligand 3; CCL2: chemokine ligand 2; CXCL10: C-X-C motif chemokine ligand 10; CCR: beta-chemokine receptors; iNKT: invariant natural killer T cells].
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2. CCR1

CCR1 belongs to the beta-chemokine receptor familywhich interacts
with several ligands, including Regulated on Activation Normal T
Expressed and Secreted Protein (RANTES/CCL5), Macrophage
Inflammatory Protein 1 alpha (MIP-1α/CCL3), Monocyte Chemo-
attractant Protein 3 (MCP-3/CCL7), and Myeloid Progenitor
Inhibitory Factor-1 (MPIF-1/CCL23). While CCR1 expression
is preferentially found on CD4+ Th1 cells (Ref. 216) and is
involved in recruiting effector cells to infection sites, the specific
role of CCR1 in the immune response to Leishmaniasis can vary
depending on the context and the specific species of Leishmania
involved. In C57BL/6 mice infected with L. major, it was found
that CCR1 could actually contribute to susceptibility to CL, asso-
ciated with an enhanced production of interleukin-4 (IL-4) and
interleukin-10 (IL-10) which suggests a shift towards a Th2
immune response (Ref. 217). Previous research has revealed the
expression of CCR1 by CD8+ T cells (Ref. 218) in different
diseases but no studies have been conducted to investigate this
expression in the context of Leishmaniasis.

3. CCR2

CCR2 is the main receptor for the chemokine monocyte chemo-
attractant protein 1 (MCP-1), also referred to as CCL2. It also binds
with other chemokines such as CCL7 and CCL12. When CCR2
interacts with its ligands, it initiates signalling pathways that
increase intracellular calcium levels (Ca2+) and lead to the recruit-
ment of memory T cells, monocytes, and dendritic cells to inflamed
tissues (Refs. 219–221). CCR2 has been shown to promote the
differentiation of T cells into Th17 cells, which are characterized
by the production of interleukin-17 (IL-17) and contribute to
inflammatory responses in the colon. While in the absence of
CCR2 signalling as studied on RAG1�/� immunocompromised
mice transferred with CCR2�/� T cells, there is an increase in the
conversion of T cells into FoxP3+ regulatory T cells (Tregs), which
are involved in immune tolerance and suppression of immune
responses (Ref. 222). It suggests that the presence and absence of
CCR2 signalling play an important role in the differentiation of
T cells.

The association between CCR2 and T cells in the context of
Leishmaniasis has not been extensively studied compared to other
chemokine receptors such as CCR1, CCR3, and CXCR3. The
research focus has primarily been on these other receptors and
their involvement in the immune response to Leishmania infection.
However, considering the role of CCR2 in recruiting monocytes
and dendritic cells, it is plausible that CCR2 may also play a role in
modulating T-cell responses during Leishmania infection. The
recruitment and activation of these antigen-presenting cells by
CCR2 may influence the subsequent T-cell responses and the
overall immune response against the parasite. To fully understand
the specific involvement of CCR2 in T cell responses and its impact
on the immune response to Leishmaniasis, further studies are
needed.

4. CCR4

CCR4 is primarily expressed in activated T cells, particularly Th2
cells, antigen-specific skin-homing T cells and Treg cells (Refs. 223,
224). When CCR4 interacts with its ligand, CCL17 (also known as
thymus and activation-regulated chemokine; TARC), it can lead to
an increase in intracellular calcium levels (Ref. 225).While CCR4 is

predominantly expressed in Th2 cells, other cell types, which may
not necessarily be IL-4 producers, can also express CCR4. In human
VL, higher expression of CCR4 on regulatory T cells (Tregs) has
been observed, and this increased expression may contribute to the
accumulation of Tregs in the bone marrow of VL patients. The
accumulation of CCR4-expressing Tregs in the bone marrow may
suppress local effector T cell responses, thereby dampening the
immune response against Leishmania parasites in this compart-
ment (Ref. 129). In late localized CL caused by L. braziliensis and
L. amazonensis, it has been reported that there is an increase in
CCR4 expression on Tregs that facilitate their recruitment and
accumulation in the affected skin tissue. This accumulation of
CCR4-expressing Tregs suggests a potential role for CCR4 in
regulating immune responses and contributing to the immunosup-
pressive environment at the inflammatory sites (Refs. 196, 226).
These cells produce significant amounts of IL-10 and TGF-β, which
regulate the functions of effector T cells and thus the disease
outcome (Ref. 227). CCR4-expressing Th2 cells and Treg cells
promote the development of PKDL (Ref. 119). The trafficking of
CCR4 expressing CD8+ T cells in response to CCL17 and CCL22 in
the dermal lesion has been reported during PKDL (Ref. 160).

5. CCR5

CCR5 is a chemokine receptor that specifically binds to chemokines
such as regulated on activation, normal T cell expressed and
secreted (RANTES), macrophage inflammatory protein 1 alpha
(MIP-1α), and macrophage inflammatory protein 1 beta
(MIP-1β). Its expression on cells is indicative of their activation
state, and it is known to be expressed at higher levels on Th1 cells
(Ref. 228) which can be upregulated by the cytokine interleukin-2
(IL-2) (Ref. 229). In early infection with L. donovani, mice lacking
CCR5 (CCR5�/�; hybrid mice) showed impaired interferon-
gamma (IFN-γ) responses following T cell receptor (TCR) stimu-
lation (Ref. 230). This suggests that CCR5 plays a role in facilitating
IFN-γ production by T cells during the early stages of Leishmania
infection and participates in the host defence mechanism. CCR5
has also been identified as a crucial marker for the migration of
naturally occurring regulatory T cells (Tregs) to infected dermal
skin during chronic cutaneous infection caused by L.major parasite
(Refs. 95, 231). This indicates that CCR5 is involved in the recruit-
ment of Tregs to sites of infection, potentially influencing immune
regulation and the balance between effector and regulatory
responses and promoting parasite persistence.

Furthermore, in other protozoan infections like Chagas disease
caused by Trypanosoma cruzi, CCR5 expression has been found to
be upregulated on CD4+ and CD8+ T cells. This upregulation of
CCR5 is associated with increased trafficking of these T cells to
pathological sites and has been correlated with pathogenic condi-
tions (Ref. 232). Overall, CCR5 plays a role in immune responses by
regulating T cell activation, migration, and cytokine production in
various infectious diseases, including Leishmaniasis and Chagas
disease. Its involvement in these processes highlights its signifi-
cance inmodulating immune cell responses and potentially impact-
ing disease outcomes.

6. CCR6

CCR6 is a chemokine receptor that regulates themigration of T cells
during homeostatic and inflammatory responses (Ref. 233). Inter-
action between CCR6 and ligand CCL20 leads to an increase in
intracellular calcium ion levels, which then triggers intracellular
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signalling and cellular responses (Ref. 234). CCR6 is expressed on
both anti-inflammatory regulatory T cells (Tregs) and pro-
inflammatory Th17 cells during inflammatory diseases, and pro-
motes immune regulation or inflammatory responses, respectively
(Refs. 235–237). It plays a role in the recruitment and migration of
T cells to specific sites of inflammation (Ref. 238). In the context of
L. major infection, studies using CCR6-deficient (CCR6�/�) mice
have shown that CCR6 is involved in the trafficking of Treg cells.
CCR6 deficiency resulted in hampered migration of Treg cells and
an increase in inflammatory responses while having no effect on
Th17 cell migration (Ref. 239). This indicates that CCR6 is import-
ant for the proper trafficking and localization of Treg cells to the site
of infection to prevent disease severity during L. major infection.
However, further research is needed to fully understand the precise
mechanisms by which CCR6 influences T-cell migration and the
implications for the immune response to Leishmania and other
inflammatory conditions.

7. CCR7

CCR7 is a crucial receptor involved in the homing of cells to lymph
nodes and interacts with its ligands, CCL19 and CCL21. CCR7
plays a significant role in regulating the migration and homeostasis
of memory T cells in lymphoid tissues where priming of antigen-
specific T cells occurs (Refs. 240, 241). During VL, an increase in
CCR7 expression has been reported in peripheral blood mono-
nuclear cells (PBMCs). As CCR7 is a marker of naïve and central
memory T cells (Tcm), the upregulated CCR7 may contribute to
their trafficking in lymphoid tissues where naïve cells encounter
antigen-presenting cells (APCs) during the course of the infection
and Tcm cells reside within SLOs and rapidly respond upon
re-exposure to antigen (Ref. 212). Reduced expression of CCR7
on activated dendritic cells (DCs) reduces their migration to the
draining lymph node and is found to promote pathogenesis during
CL and VL (Refs. 242, 243). In cured CL patients, it has been
observed that CCR7� CD4+ effector memory T (Tem) cells are
present in larger numbers. These cells are capable of producing
interferon-gamma (IFN-γ) when stimulated with soluble Leish-
mania antigens (SLA). The presence of CCR7� CD4+ Tem cells
producing IFN-γ suggests a potential role for these cells in the
immune response and resolution of CL (Ref. 244). These studies
highlight the dynamic regulation of CCR7 and its potential impli-
cations in the immune response against Leishmania parasites.

Factors shaping chemokines and chemokine receptors’
expression during Leishmaniasis

The dysregulation of the chemokine system during infection may
result from a complex interplay between the parasite, host immune
cells, and the local microenvironment. Interaction between the host
and the Leishmania parasite can lead to the modulation of the
chemokine system. Leishmania has been reported to secrete mol-
ecules that can degrade chemokines, such as CXCL1, resulting in
the downregulation of their expression (Ref. 245).

However, various factors such as cytokine levels, epigenetic
changes, andmutations contribute to themodulation of chemokine
receptor expression and downstream signalling pathways. These
factors can directly or indirectly influence the behaviour of the
chemokine profile during infection. The possible causes for the
altered chemokines profile during Leishmania infection have been
discussed below:

1. Cytokines

There is a complex interplay between cytokines and the expression
of chemokines and chemokine receptors, which contributes to the
heterogeneity observed in the immune response during Leishman-
iasis. Cytokines such as IFN-γ, IL-10, TGF-β, TNF-α, and IL-17,
among others, play a crucial role in regulating the expression of
chemokines and chemokine receptors on immune cells, ultimately
shaping the cellular landscape at the site of infection (Table 4).
IFN-γ, for example, has been shown to induce the expression of
chemokines such as CXCL9, CXCL10, and CXCL11 (Ref. 260).
Therefore, changes in the expression levels of CXCL9 & CXCL10
observed during Leishmaniasis (Refs. 212, 261) maybe due to the
influence of IFN-γ. Additionally, cytokines like IL-2, IL-4, IL-7, and
IL-15, which utilize the common gamma c (γc) chain receptors, can
induce CXCR4 expression on T cells through the JAK/STAT sig-
nalling pathway (Ref. 262). The role of IL-4 in modulating chemo-
kine expression has also been demonstrated. Blocking IL-4 in
L. major-infected dermal tissue resulted in increased expression
of Th1 cell-recruiting chemokines such as CXCL9, CXCL10,
CXCL11, and CCL5, coinciding with increased IFN-γ production
at the inflamed region (Ref. 263).

Furthermore, TGF-β, which is increased during Leishmania
infection, can inhibit macrophage activation and contribute to
increased susceptibility to the disease (Ref. 264). TGF-β has also
been shown to inhibit CCR3 expression, which is associated with
decreased Th2 cell development. Conversely, IFN-α, a type I inter-
feron, decreases CCR3 and CCR4 expression while increasing
CXCR3 and CCR1 expression, promoting Th1 cell polarization
by upregulating these chemokine receptors (Ref. 185). IL-17, a
proinflammatory cytokine, can induce the production of CXCL
chemokines, which recruit neutrophils and Th1 cells to the site of
infection, thus showing its protective role in patients with VL (Ref.
132). A positive correlation was found between IL-17/CCL3 and
IL-17/CCL4 in patients infected with L. guyanensis (Ref. 144). On
the other hand, IL-10, which is responsible for impairing inflam-
matory immune responses, has been shown to decrease the pro-
duction of chemokines such as CCL5 and CCL2 in L. amazonensis-
infected mice (Ref. 265).

Therefore, the presence of various cytokines in the microenvir-
onment at the site of infection, directly and indirectly, influences
the outcome of the disease by regulating the expression of chemo-
kines and chemokine receptors, ultimately shaping the immune
response and cellular profiles observed in Leishmaniasis.

2. Epigenetics

The expression of chemokines and chemokine receptors can be
modulated by the parasite through various mechanisms, including
the alteration of host gene expression and epigenetic pathways (Ref.
238). Endogenous processes such as DNAmethylation and histone
modification can inhibit the expression of chemokines and chemo-
kine receptors, resulting in decreased infiltration of immune cells
(Refs. 266–268). Leishmania has been shown to produce effector
molecules such as exosomes or microRNA that canmodify the host
immune transcriptome and induce changes in chemokine expres-
sion (Refs. 269, 270) . Additionally, the parasite has been shown to
regulate chemokine expression through the modulation of host
microRNA levels. Several chemokines, including CCL2, CCL5,
and CXCL10 found to be inhibited by the activity of upregulated
miRNA in L. major infected macrophages (Ref. 271). These epi-
genetic mechanisms could contribute to the fluctuations observed
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in the expression levels of the chemokines profile at different stages
of infection. It is likely that Leishmania employs these mechanisms
to evade the host immune system and establish persistence within
the host. However, the role of epigenetic regulation in parasitic
diseases, including Leishmaniasis, is not yet extensively studied.
Similar mechanisms have been observed in certain cancers, such as
pancreatic cancer, where abnormal methylation can lead to lower
expression of CXCR4 (Ref. 272).

Further research into the epigenetic modulation of the chemo-
kine system during Leishmaniasis and other parasitic diseases is
necessary to better understand the mechanisms employed by the
parasite to manipulate the host immune response as an evasion
strategy, or by the host that employs epigenetic mechanisms as a
protective response against parasitic disease.

3. Mutation

The N-terminal region of chemokines is crucial for their biological
activities and interaction with chemokine receptors (Ref. 273),
mutations in this region can disrupt their binding to their respective
receptors, rendering them unable to activate the receptors. For
instance, mutation at a phosphorylation site can reduce receptor
phosphorylation, impair β-arrestin binding, and subsequently
reduce receptor internalization in response to ligand binding
(Ref. 274). Mutation in residues of two CKRs failed to oligomerize
together and cells expressing such receptors do not migrate even in
the presence of their cognate antigens as observed in the case of
CCR7 and CCR5 (Refs. 117, 275).

Mutation at the gene level is also capable of making changes in
chemokines/and chemokine receptors expression, potentially
resulting in their aberrant expression. It has been reported that
Trypanosoma cruzi-infected patients with no cardiac disease
showed lower CCR5 expression than those with cardiac disease
due to a higher frequency of point mutations found in the promoter
region (Ref. 276). As it is known that CCR5 expression is associated
with protective Th1 cells, an increased frequency of mutation in
CCR5/Δ32 alleles has been reported in the lesions of American CL
(ACL) patients which suggests that this mutation may reduce Th1
cells trafficking to the lesions and contribute to the pathogenesis in
ACL patients (Ref. 277).

While mutations have not been extensively studied in the con-
text of Leishmaniasis, they have the potential to play a role in

modulating the immune response. Further research is needed to
elucidate the specific roles of mutations in the context of Leish-
maniasis and their impact on the chemokines profile and immune
response.

Modulation of chemokine machinery: plausible mechanisms

In addition to the factors that have been discussed above, there are
some other mechanisms that influence the expression of chemokine
machinery which include chemokine availability, receptor desensi-
tization, decoy receptors, allosteric effects, post-translational modi-
fication and so forth. However, these aspects have not been
investigated in the context of Leishmaniasis, and they may be
plausible mechanism of aberrant expression observed in the che-
mokine profiles which should be further investigated. The most
significant mechanisms which have not been explored yet are
discussed below:

1. Chemokine availability and desensitization

The process of desensitization is an important mechanism for
regulating chemokine receptors (CKRs). Phosphorylation of CKRs
triggers a series of events that regulate their signalling and traffick-
ing. Upon phosphorylation, CKRs become uncoupled from G
proteins and recruit β-arrestin. β-arrestin binding blocks further
coupling to G proteins and facilitates the internalization of the
receptor via clathrin-coated pits (Ref. 278). This internalization
process is important to prevent chemokine overstimulation and
allows for directional cell migration. Homologous desensitization,
which is chemokine-dependent, involves the internalization and
degradation or redistribution of the receptor. It plays a crucial role
in regulating the chemokine receptor response and maintaining
appropriate chemotactic responses (Ref. 279). Heterologous desen-
sitization, on the other hand, is chemokine-independent and leads
to the uncoupling of G-protein and downregulation of chemokine
receptors. It is usually due to cross-talk between two CKRs, where
signalling of one CKR on chemokine binding impacts another
chemokine-free CKR and modulates their chemotactic response
towards chemoattractant by downregulating them (Ref. 280). It
was shown that CCL2 caused a reduction in the expression of CCR2
on the surface of monocytes over time, due to the desensitization

Table 4. Influence of cytokines on chemokines/and receptors, T cell profiles, and outcome of infection during Leishmaniasis.

S.No. Cytokines

Affect chemokines/and
chemokine receptor
expression Impact on specific T-cell subset Outcome of Leishmania infection References

1 IFN-γ CXCL9, CXCL10, CXCL11
(↑)

more CXCR3+ Th1 cells trafficking resolution of infection (246; 247; 248;
249; 250)

2 IL–2,
IL–7,
IL–15

CXCR4 (↑) express on central memory T cells
(CD4+ T cell subset); induces T cell
chemotaxis

parasite may facilitate HIV infection of
CD4+ T cells during Leishmania-HIV
coinfection

(251; 252; 253)

3 IL–4 CXCR4 (↑);
CXCL9, CXCL10, CXCL11,
CCL2, CCL5, CCR5 (↓)

less trafficking of Th1 cells less IFN-γ production in L. major infected
dermal tissue; shows pathogenic T cell
response

(251; 252; 254;
255)

4 IL–17 C-X-CL types recruit more Th1 cells protective role in VL patients; skin
inflammation in CL

(125; 256; 257)

5 IL–10 CCL5, CCL2 (↓) less Th1 cell migration reduces Th1 cell development and effector
functions; promote parasite persistence and
pathogenesis

(258; 259)
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mechanism (Ref. 281). Another study on human cells revealed the
existence of a desensitization mechanism where CCL22 binding
leads to the internalization of CCR4 and hence reduces surface
expression on Th2 cells (Ref. 282). However, no studies have been
performed in case of leishmaniasis. The reduction in chemokine
receptor expression and the lower number of T cells recruited to the
infected tissue during Leishmaniasis may be attributed to these
desensitization phenomena. The expression of chemokines and
chemokine receptors are interdependent. It has been reported
previously that high chemokine levels lead to lower CKR expression
specific to that chemokine (Ref. 191). Particularly for chemokines
that signal through multiple receptors, the absence of one receptor
can result in high levels of circulating chemokines, which may
reduce the availability of alternate receptors due to ligand-mediated
desensitization (Ref. 283). These processes highlight the dynamic
interplay between chemokines and their receptors, and the regula-
tion of chemokine receptor expression and responsiveness is critical
for appropriate immune cell recruitment and migration during
other inflammatory responses.

2. Chemokine scavenging decoy receptors

The presence of non-signalling or silent chemokine receptors act-
ing as ‘decoys and scavengers’ plays an important role in suppress-
ing host inflammatory responses and immunity. The silent
receptors compete with the signalling chemokine receptors by
binding their ligands with high affinity and thus preventing the
cell from activation (Ref. 284). Functional decoy receptors have
been reported for inflammatory chemokine receptors such as
CCR1, CCR2 and CCR5, in monocytes and dendritic cells and
despite increased expression of these chemokine receptors, they
do not respond to their ligands (Refs. 285, 286). It has been reported
previously that IL-10 may generate chemokine decoy receptors in
monocytes and dendritic cells in an inflammatory environment,
leading to the termination of the early inflammatory phase in the
brain of L. donovani infected mice (Ref. 287). Despite little know-
ledge about decoy receptors in the context of Leishmaniasis and
other parasitic disease, investigating their role will contribute to our
understanding of infection and the progression of the disease.

The higher expression of chemokine receptors observed during
Leishmaniasis may be a host strategy to address the urgent require-
ment for receptor-based signalling and prevent disease progression.
However, the presence of related decoy receptors limits the respon-
siveness of immune cells to these chemokines. Consequently, des-
pite the higher expression of chemokine receptors, migration to the
inflamed zone may be limited. Decoy receptors also act as
“scavengers” for chemokines, reducing their availability through
intracellular degradation. This mechanism helps regulate proin-
flammatory chemokines and chemokine receptors. The presence of
decoy and scavenger receptors highlights the complexity of the
chemokine system and its regulation during infection. Understand-
ing the interplay between signalling and decoy receptors is crucial
for deciphering the immune response dynamics.

Future prospects and concluding remarks

The chemokines and chemokine receptors play a crucial role in
immune cell trafficking and the inflammatory responses associated
with Leishmania infection. Dysregulation of the chemokine system
is observed during Leishmaniasis, and investigating the involve-
ment of chemokines and their receptors in disease symptoms helps

us understand how effective immune responses are orchestrated
and how pathological inflammation develops. The redundancy and
large production of multiple chemokines during infection may
contribute to the effectiveness of the immune response. Alterations
in the expression levels of chemokines and chemokine receptors
can potentially serve as diagnostic markers and immunotherapeu-
tic targets. Blocking chemokines and their receptors, particularly
the CXC- and CC-chemokines, could be an attractive strategy for
immunotherapy, especially during the chronic phase of infection.
While the role of the chemokine system in other immune cells in
Leishmaniasis has been extensively studied, further exploration of
its involvement in T cell trafficking is needed. Additionally, the
understanding of the factors responsible for the altered profile of
chemokines and chemokine receptors in leishmaniasis is still
limited and requires investigation.

Future research should focus on identifying the factors, both
derived from Leishmania and the host, that contribute to the
changes observed in the chemokines and chemokine receptors
expression. The properties of the recruited immune cells will ultim-
ately determine the pathogenic condition of the host, making it
important to elucidate the underlying mechanisms. In the recent
past, targeting chemokines and chemokine signalling pathways
using agonistic or antagonistic monoclonal antibodies has emerged
as an effective and promising therapeutic approach in cancer
patients. This targeted approach, either alone or in combination
with conventional drug therapy has shown promising results in
modulating the immune response and enhancing anti-tumor
immunity. Therefore, targeting the chemokine system as an immu-
notherapeutic approach also holds promise for the treatment of
leishmaniasis. However, further studies, including those specifically
investigating T cell chemokine machinery and its role in PKDL, are
warranted to advance our understanding and develop effective
interventions for this neglected tropical disease.
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