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SUMMARY 

Two polynomials 6(G, n) and <f>(G, n) connected with the colourings of a graph G 
or of associated maps are discussed. A result believed to be new is proved for the 
lesser-known polynomial <f>(G, n). Attention is called to some unsolved problems con
cerning <t>(G, n) which are natural generalizations of the Four Colour Problem from 
planar graphs to general graphs. A polynomial x(G, x, y) in two variables x and y, 
which can be regarded as generalizing both 0(G, n) and <f>(G, n) is studied. For a con
nected graph x(G, x, y) is defined in terms of the ' 'spanning" trees of G (which include 
every vertex) and in terms of a fixed enumeration of the edges. The invariance of 
x(G, x, y) under a change of this enumeration is apparently a new result about spanning 
trees. I t is observed that the theory of spanning trees now links the theory of graph-
colourings to that of electrical networks. 

1. Introduction. A graph G consists of a set V(G) of elements called 
vertices together with a set E(G) of elements called edges, the two sets having 
no common element. With each edge there are associated either one or two 
vertices called its ends. 

An edge of G is a loop or link according as the number of its ends is 1 or 2. 
For convenience we sometimes say that a link has two distinct ends and a loop 
two equal ends. 

We restrict ourselves to finite graphs, that is graphs for which V{G) and 
E{G) are both finite. 

If V(G) = 0 we must have E{G) = 0 also. 
A graph H is a subgraph of G if V(H) C F(G), E{H) C E(G) and each edge 

of H has the same ends in H as in G. The subgraph H of G is a spanning sub
graph of G if V(H) — V(G). The subgraph of G for which V(H) is a given 
subset W of V(G) and E(H) is the set of all edges of G having no end outside 
W, will be denoted by G[W). 

A sequence (ao, Ai, ai, A2, a2, . . . , Anj an), in which the terms are alternately 
vertices at and edges A j oî G is a path from aQ to an in G if it satisfies the following 
conditions. 

(i) If 1 < i < n the ends of A t are a*_i and at. 
(ii) If 1 < i < n then at-i = at if and only if A t is a loop. 
It is not required that the terms of the sequence shall be all distinct. If they 

are distinct the path is simple. If the sequence has more than one term and its 
terms are distinct except that a0 = an then the path is circular. 

If x and y are elements of V(G) we say x and y are connected in G if there is a 
path from x to y in G. The relation of connection in G is clearly an equivalence 
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relation. Hence if V(G) is non-null it can be partitioned into disjoint non-null 
subsets Vu • • • , Vk such that two vertices of G are connected in G if and only 
if they belong to the same set Vt. The subgraphs G[Vi] of G are the components 
of G. Together they include all the edges and vertices of G, and no two of them 
have an edge or vertex in common. We denote the number of components of 
G by po(G). The graph G is connected if po(G) = 0 or 1. The first case arises 
only when V(G) = 0 and E(G) = 0. Clearly each component of a graph is 
connected. 

A connected graph in which there is no circular path is a tree. 
We write a0(G) and cti(G) for the numbers of elements of V(G) and E(G) 

respectively. 
Let Qn be a finite set of n > 0 elements. Let / b e a mapping of V{G) into 

Qn. We call / an n-colouring of G if each edge of G has two ends x and y such that 
f(x) 9e f{y). We denote the number of n-colourings of G, defined in terms of 
Qm by P(G, n). If V(G) = 0 we take this number to be 1. We observe that 
P(G, n) = 0 if G has a loop. 

P(G, n) is not altered by replacing Qn by another set of n elements. We find 
it convenient to take Qn as the ring of residue classes mod n. 

The function P{G, n) was studied by Hassler Whitney (6; 7). He showed 
that when G is loopless, P(G, n) is a polynomial in n of degree ao(G). For planar 
graphs G the polynomial has been studied in great detail by Birkhoff and 
Lewis (1), who associated it with the dual map of G. Following them we call 
P(G, n) the chromatic polynomial of G. 

The following explicit formula for P(G, n) is due to Hassler Whitney. 

(1) P(G,n) = £ ( - l ) a i ( 5 V o ( a > . 
s 

The summation is over all spanning subgraphs 5 of G. We shall find another 
explicit formula in terms of the spanning trees of G valid when G is connected. 
A spanning tree is a spanning subgraph which is a tree. 

At this stage it is convenient to apply some of the concepts of elementary 
combinatorial topology. We orient G by distinguishing one end of each edge A 
as the positive end p{A) and one as the negative end a (A). The positive and 
negative ends coincide if A is a loop but not if A is a link. If a £ V(G) and A 
Ç E (G) we write 77 (A, a) = 0 if A is a loop or if a is not an end of A. Otherwise 
we write rj(A, a) = 1 or — 1 according as a is the positive or the negative 
end of A. A mapping/of V(G) or E(G) into Qn is a 0-chain or 1-chain respectively 
on G over Qn. 

If V(G) is null we consider that there is just one 0-chain on G over Qn. Similarly 
if E(G) is null there is just one 1-chain on G over Qn. 

If A is a 0-chain on G over Qn its coboundary ôh is the 1-chain on G over Qn 

satisfying 
(2) (oh) (A) = T,v(A,a)h(a) 

a 

for each A Ç E(G). This may be rewritten as 
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(2a) (8h)(A) = h(p(A)) - h(q(A)). 

If g is a 1-chain on G over Qn its boundary dg is the 0-chain on G over Qw 

satisfying 

(3) (dg)(a)= Zv(A,a)g(A) 
A 

for each a 6 F(G). We call g a 1-cycle on G over Qn if dg = 0, that is (dg) (a) = 0 
for each a. 

2. Colour-coboundaries and colour-cycles. A colour-coboundar y or colour-
cycle on G over Qw is a 1-chain g on G over Qn which is a coboundar y or a 
1-cycle respectively and which satisfies g (A) ^ 0 for each A £ E(G). 

We denote the numbers of colour-coboundaries and colour-cycles on G over 
Qn by 0(G, ft) and $(G, ft) respectively. These numbers are independent of the 
orientation of G, by (2a) and (3). We consider that 0(G, n) = #(G, n) = 1 if 
G has no edge. 

The colour-coboundaries on G over Qn are the coboundaries of the ft-colourings 
of G, by (2a). Another consequence of (2a) is that bh\ = 5^2 for 0-chains hi 
and /̂ 2 on G over <2n if and only if hi(a) — h2(a) is constant in each component 
of G. Accordingly 
(4) 0(G,n) =n-p"(G)P(Gfn). 

It follows that 0(G, ft) = 0 if G has a loop. The function 0(G, ft) need not 
vanish if G has a loop. Indeed if g is a 1-chain on G over (^ and A is a loop of 
G then the 0-chain dg is independent of g (A), by (3). Hence if Go is the graph 
obtained from G by suppressing the loops, say /(G) in number, we have 

(5) 0(Go,ft) = ( f t - l)-z ( G )0(G,ft). 

However <£(G, ft) does vanish if G has an isthmus. An edge yl of G with 
ends x and y is called an isthmus of G if each path from x to y has i a s a term. 
Thus an isthmus is necessarily a link. If GA' is the graph obtained from G by 
suppressing A we may say that A is an isthmus of G provided x and ^ belong 
to different components of GA'. An equivalent definition is that A is an isthmus 
of G provided that it is a term of no circular path in G. For iî A is a term of 
such a circular path then x and y are clearly connected in GA'. And if a path 
from x to y exists in GA

7 the path of this kind with fewest terms is simple and 
can be extended to form a circular path in G having i a s a term.1 

We observe that a tree may be defined as a connected graph in which each 
edge is an isthmus. 

The proof that #(G, w) vanishes when G has an isthmus A is as follows. 
Let H be the component of GA

f having the end x of A in G as a vertex. Let 
g be any 1-cycle on G over Qn. Then 

Zv(B,b)g(B) = 0 
. B 

^ u r term "isthmus" applies to each of the two kinds of edge for which Kônig uses the 
terms "Briicke" and "Endkan te" (3, pp. 3, 179). 
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for each b £ V{H)y where B runs through E(G), by (3). Summing this over all 
the vertices of H we obtain ^(A, x)g{A) = 0. Hence g (A) = 0. Accordingly 
no 1-cycle on G over Qn is a colour-cycle. 

The connection between the function 0(G, n) and the ordinary theory of 
map-colourings is best seen by considering two dual graphs G and G* on the 
sphere. It may be shown—though we do not prove it here—that 0(G*, n) = 
0(G, n). Accordingly each of the following unproved propositions is equivalent 
to the famous Four Colour Conjecture. 

(i) 0(G, 4) > 0 if G is a planar graph without a loop. 
(ii) 0(G, 4) > 0 if G is a planar graph without an isthmus. 
I wish to draw attention to some unsolved problems related to (ii) but having 

to do with general graphs. They are the problems of proving or disproving the 
following conjectures. 

CONJECTURE I: There exists a positive integer m such that </>(G, n) > 0 when
ever n > m and G has no isthmus. 

CONJECTURE II : <£(G, n) > 0 whenever n > 5 and G has no isthmus. 

Conjecture II is a stronger version of Conjecture I. We cannot replace 5 
by a smaller integer because it can be shown that the Petersen graph (3, p. 194) 
satisfies <f>(G, 4) = 0. 

We prove <£(G, 4) = 0 for the Petersen graph as follows. If $(G, 4) > 0 
then for any orientation of G we can find a colour-cycle g on G over Q±. Let [m] 
denote the residue class of an integer m modulo 4. If a is any vertex of G the 
three residue classes t\(A, a)g{A) corresponding to the edges A having a as 
an end are non-zero and sum to zero. Their values must be either [1], [1], and 
[2] or [— 1], [— 1] and [2]. In the first case we call a a positive vertex, in the 
second a negative vertex. The edges A such that g (A) = [1] o r ["" 1] a r e there
fore the edges of some disjoint circular paths no two of which have a common 
term and which together involve all the vertices. Each of these paths has an 
even number of edges since positive and negative vertices must alternate in it. 
It follows that the edges of G can be arranged in three disjoint classes so that 
each vertex is an end of one member of each class. But it is well known that 
this is not true for the Petersen graph (4). 

We may perhaps regard the following theorem as a very short first step 
towards a verification of Conjecture I. 

THEOREM: If 0(G, n) > 0 then 0(G, n + 1) > 0. 

Proof. In the preceding combinatorial definitions we may replace Qn by the 
ring of ordinary integers, obtaining integral 0-chains, l-chains, l-cycles, etc. 

If $(G, n) > 0 there exists a colour-cycle g on G over Qn. It follows that there 
is an integral 1-cycle g' on G such that g'(A) Ç g (A) and |g'C4)| < n for each 
A Ç E(G). This is a consequence of Theorem IV of (5). It is true that that 
theorem is stated only for the case in which G is a simplicial 1-complex, that 
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is a graph without loops and in which no two links have the same two ends, 
but its proof is valid with only trivial modifications in the general case. Now 
for each A Ç E(G) we have g'(A) ^ 0 mod (n + 1). Replacing each integer 
gr(A) by its residue class mod (n + 1) we obtain a colour-cycle on G over 
Qn+i. The theorem follows. 

The methods now available for the computation of d(G, n) and <t>(G, n) are 
laborious. They depend on some recursion formulae which we exhibit below. 

If A is an edge of G not a loop we define GA" as the graph obtained from G 
by suppressing A and then identifying the ends of A in G to form a single 
vertex /. 

By examining the relationships between the colour-coboundaries, and between 
the colour-cycles, of the three graphs G, GA' and GA

n', where A is any edge of 
G not a loop or isthmus, we obtain the identities 

(6) 0(G,n) =B(GA',n) -0(GA",n), 

(7) 0(G,n) = <t>(G/\n) - * ( G / , n). 

For a disconnected graph G with components Gi, . . . , Gk we evidently have 

(8) 6(Gyn) = I I KGt,n), 

(9) <f>(G,n) = n <f>(Gi,n). 
z = l 

LEMMA: If J is a graph in which every edge is an isthmus then every 1-chain 
on J over Qn is a coboundary on J. 

Proof. If ai(J) = 0 this is trivial. Suppose it is true whenever a\(J) is less 
than some positive integer q. Consider the case ai(J) = q. 

Let h be any 1-chain on / over Qn. Let hA be the 1-chain on JA over Qn such 
that hA{B) = h{B) for each B Ç E(J) — {^4}. By the inductive hypothesis 
hA is the coboundary of a 0-chain / on GA . Let x be the positive and y the 
negative end of A in / . Let J0 be the component of JA of which x (but not y) 
is a vertex. If we replace /(a) by /(a) + 5 for each a Ç F(J0), where s is an 
element of Qn, we shall not alter the coboundary of / in JA. We may therefore 
suppose that/(#) — f(y) = h (A). Then h is the coboundary of/ in 7. 

The Lemma follows by induction. 
Now consider a graph for which each edge is either a loop or an isthmus. 

Suppose such a graph H has 1(H) loops and i(H) isthmuses. We have, as a 
consequence of the Lemma, 

(10) e(H, 

As a consequence of (5) we have also 

\il(H) > 0, 
l)m) \il(H) = 0. 

we have also 

(11 ) * ( £ r ' n ) j = ( » - l ) ' W ) if.(i7) = 0. 
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3. The dichromate of a graph. We now define a function x(G, x, y) of 
two variables x and y, which may be regarded as generalizing both 0(G, n) 
and #(G, n). We call it the dichromate of G. 

If G has no edge we write 

(12) x(G,x,y) = 1. 

If G has an edge and is connected we proceed as follows. First we enumerate 
the edges of G as A i, . . . , Am. 

Consider any spanning tree P of G. Suppose Aj is an edge of P. Then TA/ 
has two components, C and D say. Each has one end of Aj as a vertex. We say 
A j is internally active in P if each edge Ak of G other than 4̂ ; which has one end a 
vertex of C and one end a vertex of D satisfies k < j . 

Now suppose Aj is not an edge of P. Denote its ends by a and b. (They may 
not be distinct.) There is a simple path P in P from a to b. There is only one 
such path. For suppose there are two distinct simple paths P i and P 2 in T 
from a to b. Then we may suppose some edge Ak of T appears in P i but not 
in P2 . Let its ends be c and d, c preceding Ak in Pi . Then in TAk

f there are 
paths from d to b, from a to 6 and from a to c. Hence c and d are vertices of 
the same component of TAk'. This is impossible since Ak is an isthmus of T. 
We say Aj is externally active in P if each Ak which is a term of P satisfies 
& < j . 

If ^ is an edge of G we write \{T, A3) = 1 or 0 according as Aj is or is not 
internally active in T. We write also fx(T, Aj) = 1 or 0 according as Aj is or 
is not externally active in T. We call X(P, ^4.,) and fi(T,Aj) the internal and 
external activities respectively of ^ in P. We denote by r(T) and s(P) the 
numbers of edges of G which are internally and externally active respectively 
in P. 

We define the dichromate of G by the formula 

(13) x(G,x,y)= 2 > K r y ( r ) , 
T 

the summation being over all the spanning trees of G. 
We note that at least one spanning tree of G exists. This is proved by Kônig 

(3, p. 60). (Our "spanning tree" is Konig's Geriist). Hence the polynomial on 
the right of (13) is not identically zero. 

To make the above definition significant we must show that %(G, x, y), as 
defined by (13), is independent of the particular enumeration of the edges of 
G which is used. 

To prove this we study the effect of interchanging the symbols A t and A m 

between the two corresponding edges. With respect to the new enumeration let 
X'(P, Aj) and M'(P> AJ) denote the internal and external activities respectively 
in the spanning tree P of G, of the edge initially denoted by A j . For each P let 
the interchange of the two symbols replace r(T) and s(T) by r'(T) and s'(T) 
respectively. 

The following argument is stated in terms of the initial enumeration. 
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First we observe that the interchange leaves X(7\ Aj) and /JL(T} Aj) unaltered 
if A j is not A t or A i+ i . Hence 

(14) r'{T) = r{T) - \(T,Ai) - \(T9At+1) + \'(T,At) + \f(T,Ai+1)f 

(15) s'(T) = s(T) - »(T,At) - »{T,Ai+l) + M'(7\ At) + n\T9Aw). 

We partition the set of all spanning trees of G into three disjoint classes X} Y, 
and Z as follows. T £ X if A t and 4̂ i+i are both edges of T, T G F if neither 
Ai nor -4*+i is an edge of T, and T G Z if one but not both of At and A i+i 

is an edge of T. 
If T Ç X or JH Ç F it is clear that the internal and external activities in 

T of Af and Ai+i are not altered by the interchange. Hence r'(T) — r (T) and 
s'(T) = s(T) in these cases, by (14) and (15). 

If T Ç Z let ^ be the member of the pair [At, Ai+\) which is an edge of 
T and let Ak be the other member. Let the ends of Aj be a and b. Let C and 1} 
be the two components of TA/, having a and b respectively as a vertex. Let c 
and d be the ends, not necessarily distinct, ol Ak. We partition the set Z into 
two disjoint subclasses Z\ and Z2 by the following rule: T Ç Zi if c and d are 
vertices of the same component of TAi\ and T Ç Z2 otherwise. 

If 2" 6 Zi the simple path P from c to ̂  in T does not have i y as a term. 
Accordingly the internal and external activities of Aj and Ak in T are not 
affected by the interchange. So r'(T) = r(T) and s'(T) = s(!T) in this case also. 

Suppose T Ç Z2. Then we may suppose that c is a vertex of C and d is a 
vertex of D. Let a (J1) be the spanning subgraph of G obtained by suppressing 
the edge Aj and adjoining the edge Ak. Clearly <r(T) is connected. We show that 
it is a spanning tree of G. For otherwise there is a circular path P in <r(T). This 
has i f t a s a term since it is not a path in T. This implies that there is a simple 
path from c to d in (o-(r))^/, that is in 7 ^ / , which is false. Now clearly <r(T) Ç 
Z2 and a(a(T)) = 7\ We note that 4̂ j and ^4* must be redefined in terms of <r(T) 
before the operation a is repeated. 

We deduce that Z2 can be partitioned into disjoint pairs of the form {T, 
a(T)} such that A t is an edge of T. In what follows we take T to be the first 
member of such a pair. 

Suppose first that some edge Aw of G distinct from A * and A i+i is internally 
active in T but not in a(T). 

Without loss of generality we may suppose A w is an edge of the tree C. Let 
C\ and C2 be the two components of CAJ* & being a vertex of C2. Let Aw have 
ends a G V(Ci) and 0 G F(C2). If c 6 F(C2) then since X((r(r), i4w) = 0 there 
is an edge Av of G such that v > w and which has one end in V(Ci) and one 
end in F(C2) or V(D). But then Aw cannot be internally active in T, contrary 
to its definition. We deduce that c £ V(Ci). Now since \(a(T), Aw) = 0 it 
follows that there is an edge Av of G having one end y in F(C2) and one end d 
in V(D) or F(Ci), and which satisfies v > w. Actually 5 G l^(^) since X(r, 4̂W) 
= 1. This state of affairs is represented in Figure 1. 
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A. —«J 
- - ' " \ j 

/ w < 

c, 

D 

Figure 2 

Since X(T, 4 t t) = 1 we have v > w > i + 1. Hence 

(16) \(T,At) = x'Cr.iio = o, \(,(r),4m) = x'(er(r), 4<+i) = o. 
There is a circular path J from a to a in G which has A t, A i+i and Aw as terms. 

Apart from these terms it is made up of three simple paths, one from b to d in 
D, one from c to a in Ci and one from ft to a in C2. It follows that the simple 
paths from c to d in 7" and from a to 5 in <r(T) each have 4̂W as a term. Hence 

(17) n(T,Ai+i) = M' (7 \ il,+i) = 0, /xGKr), 4<) = M'OKn i4,) = 0. 

Suppose next that some edge Aw of G distinct from A t and A i+i is externally 
active in T but not in a{T). Let its ends be a and /3. They are not vertices of the 
same tree C or D; otherwise the simple paths from a to ft in T and <r(T) would 
be identical and this would imply fi(T, Aw) = /x(<r(r), i4w). Hence we may 
suppose a G 7(C) and 0 Ç 7(D). (See Fig. 2.) 
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Let P i and P 2 be the simple paths in P and cr(T) respectively from a to p. 
Then A t is a term of P i and A i+i is a term of P2. Since /z(P, ^4^) = 1 we have 
w > i and therefore w > i + 1- Hence formula (16) holds in this case also. 

In P i let a' be the last vertex of G preceding A t which is a term of P2, and 
let ft be the first vertex of G succeeding A t which is a term of P2 . Clearly a f 
V(C) and ft Ç F(Z>). Let P i and P 2 be the subsequences of P i and P 2 respec
tively extending from a to ft. There is a circular path J m G formed by taking 
first the terms of P i and then the terms of P 2 in reverse order. It has At and 
A i+i as terms, for they are terms of P i and P 2 respectively. The subsequences 
of P i and P 2 extending from a to a' are identical, since C is a tree. Similarly 
the subsequences of P i and P 2 extending from ft to fi are identical. 

Since n(T, Aw) = 1 and /x(cr(P), Aw) = 0 there must be an edge Av of G 
which is a term of J and satisfies v > w. Then the simple paths from c to d in P 
and from a to & in c(P) each have Av as a term. Hence formula (17) still 
holds. 

Next we consider the case in which some edge of G is internally or externally 
active in <r(T) but not in P. We first go over to the new enumeration by inter
changing the symbols A t and At+i. This interchanges T and <r(P). The fore
going argument shows that (16) and (17) are true in the new enumeration. 
They are relations between the two enumerations. To state them in terms of the 
old enumeration we have merely to interchange the symbols X and X', /x and //, 
Ai and Ai+i and finally P and a(T). But the sets of equations are invariant 
under this operation. 

In all these three cases (16) and (17) are true. Hence by (14) and (15) we 
have r'(T) = r(T), r'(a(T)) = r(*(T)), s'(T) = s(T) and s'(a(T)) = s(a(T)). 

We now consider the remaining case, in which X(P, Aw) = \(a(T), Aw) and 
M(P, AW) = ix{v(T), Aw) for each edge Aw of G other than A t and A i + i . If there 
is an edge Av of G satisfying v > i + 1 and having ends in both V(C) and 
V(D), then X(P, i4,) = X'(r, At) = X(cr(P), il f+1) = Xr(cr(P), i4 i+1) = 0. If 
there is no such edge Av we have instead X(P, A t) = X;(o-(P), 4̂ <+i) = 0 and 
X(cr(r),i4<+i) = X / ( 7 \ i l , ) = 1. 

There is a circular path J from a to a in G having A t and 4̂ i+i as terms and 
otherwise consisting of a simple path from a to c in C and another from d to b 
in P . If J has a term ^ such that v > i + 1, then /z(P, 4̂ i+ i) = /x'(P, 4̂ <+i) = 
M(O-(P), i4i) = M'(O"(P)» -4f) = 0 - If ^ n a s n o s u c r i t e r m w e have instead 
M(P, i4<+i) = /x'((7(P), il,) = 1 and /X((T(P), i4,) = Mr(P, Ai+1) = 0. 

It follows that r '(P) = r(cr(r))f / ( ^ ( P ) ) = r(T), sf(P) = s(<r(P)) and 
^(cr(T)) = . (P ) . 

The foregoing analysis shows that the sum on the right of (13) is not affected 
by the interchange of the symbols A t and Ai+\. All that happens is that the 
contributions to the sum of certain pairs of trees are interchanged. But any 
permutation of the symbols Au . . . , Am can be effected by a finite number of 
interchanges of consecutive symbols. Hence the function x(G, x, y) defined by 
(13) is independent of the particular enumeration of edges employed. 
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We extend the definition of the dichromate to graphs which are not connected 
as follows. If the components of G are G\, . . . , Gk, then 

(18) x{G,x,y) = n x(Gi,x,y). 
i = l 

This is consistent with (12) in the case of an edgeless graph. 
We note some general properties of the dichromate. 

(i) x(G, x, y) is a polynomial of degree ^(G) — po(G) in x and of degree 
cn(G) — a0(G) + po(G) iny. 

Proof. By a simple induction we find that a graph 5 in which each edge 
is an isthmus satisfies ai(S) = a0(5) — po(S). A connected graph G has at 
least one spanning tree, and each such tree T satisfies a±(T) = CCQ(G) — pa(G). 

If G is connected and has an edge the theorem follows from (13). For the 
contribution to the sum on the right of (13) of any spanning tree T is of degree 
at most oti(T) in x and at most ai(G) — ai(T) in y. By choosing a suitable 
enumeration of the edges of G we can arrange that either of these values is 
attained. The proposition follows in this case. 

We extend it to all G by applying (12) and (18). 

(ii) If A is an edge of G not a loop or an isthmus, then 

(19) X(G, x, y) = X(GA', x, y) + X(GA", x, y). 

Proof. This proof depends on the observation that for a connected G the 
spanning trees of GA' are those spanning trees of G which do not have A as an 
edge, while the spanning trees of GA" are the graphs TA" such that T is a 
spanning tree of G having A as an edge. We enumerate the edges of G so that 
A — A\. We obtain corresponding enumerations for GA and GA" by rejecting 
A\ and then reducing each suffix by 1. With these enumerations each tree not 
having A as an edge makes the same contribution to x(GA\ x, y) as to x(G, x, y), 
and any other tree T makes the same contribution to x(G, x, y) as does TA" 
to x(GA", x, y). 

The proposition follows for a connected G. 
If G is not connected let G\ be its component having A as an edge. Then 

GA and GA" have the same components as G except that G\ is replaced by 
{G\)A and {G\)A

n respectively. Since (19) is true for G\ it follows from (18) 
that it is true also for G. 

(hi) Let H be a graph having 1(H) loops, i{II) isthmuses, and no other edge. Then 

(20) x(H,x,y)=xi(HYm. 
Proof. If II is connected form IIQ from it by suppressing the loops. Clearly 

Ho is the only spanning tree of H. So (20) follows from (12) and (13). Using 
(18) we readily extend the formula to the general case. 

Formulae (19) and (20) provide a method for computing the dichromate 
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of a given graph G. If G has an edge A which is not a loop or an isthmus then 
(19) expresses the dichromate in terms of the dichromates of simpler graphs. 
Otherwise (20) gives the dichromate directly. 

Such computations may sometimes be shortened by using the following 
theorem. 

(iv) If G consists of two connected graphs II\ and H2 having just one vertex 
b in common, then 

X(G, x, 3O = xCHi, *, y) x(H2, x, y). 

To prove this we observe that a subgraph of G is a spanning tree of G if and 
only if it is the union of a spanning tree of Hx and a spanning tree of II2. We 
then apply (13). 

Comparing (19) and (20) with (6) and (10), or with (7) and (11), we arrive 
at inductive proofs of the following formulae. 

(21) 6(G, n) = (-l)ao (0 )-*' (<? )x(G, 1 - », 0), 

(22) 0(G, n) = („i)«^)-«o(c)+Po(s)x(G> Q T _ ny 

These formulae justify our description of x(G, x, y) as generalizing both 
d(G, n) and <t>(G, n). 

The result that for a connected graph G the sum on the right of (13) is in
variant under a change of enumeration of the edges is an interesting theorem 
about the spanning trees of G. As one of its corollaries we have : 

For each enumeration of the edges of G there exist spanning trees T\ and T2 of G 
such that each edge of T\ is internally active in T\ and each edge of G not an edge 
of Ti is externally active in T2. 

The number C{G) of spanning trees of a graph G is important in the theory 
of electrical networks in which the conductance of each wire is unity. A summary 
of this theory is given in (2). So the theory of spanning trees provides a link 
between the theory of graph-colourings and the theory of electrical networks. 
The dichromate can be regarded as a generalization of C(G), for we have 

C(G) = X(G, 1, 1). 

C(G) has a simple expression as a determinant, and its properties are well 
known. Perhaps some of them will suggest new properties of the dichromate 
and hence of the chromatic polynomials. 
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