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ABSTRACT. Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role
in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low
for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source.
Optically derived snow indices allow for more accurate quantification of snow cover using higher-
resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow
index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes:
MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral
Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference
snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation
datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent.
At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had
accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave
products, which provide snow depth and snow water equivalent, has the potential to contribute to
hydrologic and energy-balance modeling in the Tibetan Plateau.

INTRODUCTION

Snow cover in Asian cold deserts is highly variable both
spatially and temporally. Thin, discontinuous sheets of
snow can occur year-round (Zheng and others, 2000).
Extreme cold-weather events, in which prolonged low
temperatures following snowstorms prevent snowmelt, are
also common and can cause extensive damage to humans,
livestock and the economy (Miller, 1998; Zheng and
others, 2000). Remote-sensing and in situ observations
indicate rapid changes in the cryosphere in China since the
1960s, with a 5.5% decline in glacier area, large inter-
annual variation in snow depth with a small increasing
trend (Qin and others, 2006; Che and others, 2008; Li and
others, 2008) and significant permafrost degradation (Li and
others, 2008).

The presence of snow cover plays a key role in the cold-
desert ecosystem by affecting the hydrology, ecology and
climate. Snowpack affects soil temperature, moisture,
permeability, microbial activity and potentially carbon
sequestration (Monson and others, 2006; Isard and others,
2007). The presence of snow acts as an insulator to soils,
preventing freezing and decreasing evaporation/sublim-
ation, while increasing the surface albedo and reinforcing
atmospheric stability. Deep snowpack prevents grazing and
increases infiltration of water into the soils, revitalizing
grasslands in the coming spring (Miller, 1998).

In the absence of snow, soils are more vulnerable to
freezing and potentially decreased rates of transpiration by
microbes in the soil, which may alter the soil’s ability to
sequester carbon (Monson and others, 2006). Freezing of the
soil decreases permeability and infiltration rates, thus
promoting runoff and vulnerability to soil erosion. Soil
freezing can also thereby alter rates of groundwater recharge
and the availability of water for vegetation.

Cold deserts differ from hot deserts primarily in that the
dominant form of precipitation in cold deserts is snowfall.
The Tibetan Plateau is the largest non-polar cold desert in
the world, with an average elevation above 4000m (Fig. 1).
Snow disasters are common in the Tibetan Plateau, and
variability in snow cover has been linked to local and global
climate (Barnett and others, 1989; Vernekar and others,
1995; Wu and Qian, 2003).

Temperature and precipitation decrease northwestward
across the Tibetan Plateau, with annual precipitation
decreasing from about 400 to 200mm (WWF, http://
www.worldlife.org/wildworld/profiles/terrestrial_pa.html).
The amount of precipitation that falls as snow increases with
latitude, so snow is also an important water resource for
vegetation, especially in higher latitudes on gentle slopes
where radiation intensity is less and conditions are more
conducive for vegetation growth (L.R. Verma and others,
http://www.fao.org/docrep/x5672e/x5672e00.htm).

Due to the remoteness and topographic complexity of the
Tibetan Plateau, remote sensing offers the most practical tool
for monitoring snow-cover dynamics in Asian cold deserts.
For the past few decades, microwave and optical sensors
have been applied to global snow-cover mapping (Arm-
strong and Brodzik, 2002; Hall and others, 2002; Dozier
and Painter, 2004), with microwave sensors having the
added capacity to infer snow depth and snow water
equivalent. However, evaluation of microwave-derived esti-
mates of snow on the Tibetan Plateau with ground-truth data
revealed that snow is often overestimated in the Tibetan
Plateau (Chang and others, 1992; Basist and others, 1996;
Bo and Feng, 2000; Che and others, 2008).

Snow grain size and density (Che and others, 2008), snow
wetness, similarity in the scattering properties of snow, ice
and permafrost (Tait and others, 2000) and the presence of
vegetation (Ghedira and others, 2006; Che and others, 2008)
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are variables affecting passive microwave estimates of snow
cover, snow depth and snow water equivalent. Additionally,
the shallowness (<3 cm) and discontinuity of snow cover
(common for snow on the Tibetan Plateau (Bo and Feng,
2000)) may be a source of error in passive microwave
estimates (Tait and others, 2000). Recent modifications to
passive microwave remote-sensing data correct for snow
grain size and density and consider the effects of vegetation
and snow wetness; however, the low resolution of the
passive microwave products (25 km) makes validation of
snow-cover extent difficult because observations at some
sites cannot represent regional information within a single
large pixel (625 km2) (Che and others, 2008). Higher-
resolution datasets such as MODIS (moderate-resolution
imaging spectroradiometer) can be applied to achieve
regional-scale measures of snow extent.

Snow grain size also affects estimation of snow cover in
the reflected solar spectrum; however, measurable grain-size
effects on snow reflectance can also yield valuable
information on snow properties necessary for snow hydro-
logic and energy-balance models (Painter and others, 1998,
2003; Nolin and Dozier, 2000). Higher-resolution optically
derived snow indices which consider the effects of snow
grain size on optical reflectance may provide more accurate
estimates of snow cover for the Tibetan Plateau than lower-
resolution passive microwave estimates.

Band ratio and spectral mixture analysis (SMA) tech-
niques are commonly applied for monitoring snow cover
using remotely sensed optical data (Hall and others, 1995,
2002; Painter and others, 1998, 2003, 2009; Okin, 2007).
The most common band threshold approach, the normal-
ized-difference snow index (NDSI; Crane and Anderson,
1984; Dozier, 1984; Hall and others, 1995, 2002), is used to
generate snow maps on a global scale using MODIS data.
Until recently, MODIS snow products were binary (e.g. they
classified a pixel as either ‘snow’ or ‘not snow’). Binary
products, though computationally efficient, are not accurate
enough for many hydrologic and energy-balance models.

More recent MODIS products (MOD10A1) provide
fractional snow cover using the regression equation of
Salomonson and Appel (2004). This approach utilized
higher-resolution Landsat data for three sites typifying diverse
snow conditions in Alaska, Canada and Russia. Independent
tests suggest that these relationships are robust, stable and an
improvement upon earlier methods of mapping fractional

snow cover (e.g. Barton and others, 2000). However, a
similar regression approach applied using MODIS NDSI data
in the Tibetan Plateau using higher-resolution Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) data suggested regression relationships were sensi-
tive to local conditions (Xu and others, 2005). The scatter in
the data used for the regression suggests a large range of
fractional snow-covered area solutions for a given NDSI, as
would be expected with changes in grain size and optical
properties of the non-snow constituent.

Modifications to SMA have been used to retrieve sub-
pixel snow-covered area using Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS; Painter and others, 1998,
2003, 2009) and MODIS datasets (Okin, 2007). Topographic
conditions influence the morphology (grain size) of snow
and hence the spectral reflectance (Painter and others,
1998). Multiple Endmember Spectral Mixture Analysis
(MESMA; Painter and others, 1998, 2003; Roberts and
others, 1998), a variant of SMA which allows for spectral
variation caused by grain-size effects, may have the poten-
tial to retrieve snow-covered area in Asian cold deserts more
accurately than band ratio products and provide fractional
snow cover in the absence of a regression approach.

The purpose of this study is to introduce a new MESMA
snow index, Relative Multiple Endmember Spectral Mixture
Analysis (RMESMA), and compare its performance in
mapping fractional snow cover in the western Tibetan
Plateau with a more computationally comprehensive
MESMA variant, MODIS Snow Covered Area and Grain
Size (MODSCAG); a less computationally expensive single
end-member SMA technique, Relative Spectral Mixture
Analysis (RSMA); and a band ratio technique, NDSI. The
MODIS dataset, although it does not encompass the extreme
winter of 1998 in the Tibetan Plateau, provides a realistic
scale for monitoring snow cover in the Tibetan Plateau and
allows comparison of several different snow indices. Classi-
fied Landsat Enhanced Thematic Plus (ETM+) sensor data are
used to validate the MODIS snow results (classification
described below).

METHODS
Datasets and geographic location of study site
Two tiles of the MODIS nadir bidirectional reflectance
distribution function (BRDF) adjusted reflectance (NBAR)

Fig. 1. True-color mosaic image of h24 and h25v05 MODIS tiles for 22 April 2001 spanning the majority of the Tibetan Plateau. Red outlines
mark the location of the two Landsat scenes used for validation: path 147 row 36 to the west and path 139 row 35 to the east. People’s
Republic of China provinces are overlain in yellow. Meteorological stations are shown as blue dots.
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data with 1 km spatial and 16 day temporal resolution
(MOD43B4 v004) were used (Fig. 1) reprojected to the
geographic coordinate system. Together, these tiles cover
nearly the entire Tibetan Plateau. Dates for the MODIS
images were 16 October 2000 and 10 November 2000.
These dates represent the final day of the 16 day composite
period in which data were collected.

Landsat ETM+ path 139 row 35 (NASA Landsat Program,
2000, Landsat ETM+ scene L7CPF20001001_20001231_07,
SLC-off, US Geological Survey (USGS), Sioux Falls, SD,
16 October 2000) and path 147 row 36 (NASA
Landsat Program, 2000, Landsat ETM+ scene
L7CPF20001001_20001231_07, SLC-off, USGS, Sioux Falls,
1 November 2000) were used to produce a validation
dataset for the MODIS-derived snow indices. The location of
these two scenes reprojected to the geographic coordinate
system is shown in red in Figure 1.

Snow index descriptions
MODSCAG
MODSCAG (Painter and others, 2009) uses MESMA (Roberts
and others, 1998) to simultaneously solve for sub-pixel snow-
covered area and grain size of the fractional snow cover.
MODSCAG estimates the fraction of each pixel that is
covered by snow and its grain size using SMA and a radiative
transfer model for snow directional reflectance. Non-snow
end-members include rock and vegetation and were col-
lected in the field at nadir. The dominant form of vegetation in
the Tibetan Plateau is classified asMontane Grassland (WWF,
http://www.worldlife.org/wildworld/profiles/terrestrial_pa.
html). Vegetation structure in the Tibetan Plateau is very flat,
i.e. has a low structure, and can be considered a Lambertian
surface. In the absence of highly structured vegetation such as
forest, treating non-snow end-members as a Lambertian
surface is an adequate approximation. End-members are
constrained to sum to 1. The best end-member is selected
within a sub-model run based first on whether it meets
modeling constraints on root mean square (RMS), fractions
and consecutive residuals. There are 30 model subsets used
to partition the spectral library permutations sensibly, and
within each of these an optimal scene is produced. The 30
scenes are then merged into a final suite using RMS error
(RMSE) as the metric for fit quality.

RSMA and RMESMA
RSMA (Okin, 2007) uses SMA to quantify changes in
vegetation and snow cover in a pixel through time. The first
step in RSMA is to generate a ‘baseline spectrum’ for each
pixel in an image. The baseline spectrum is the apparent
surface reflectance of a pixel at a reference time, t0. The
baseline spectrum for a pixel is typically selected at a time
with the least amount of snow and vegetation cover. At time,
ti, other than the reference time, RSMA indices quantify
change in ground-cover components (GV (green vegetation),
NPV (non-photosynthetic vegetation)/litter, and snow) rela-
tive to the reference time. RSMA indices are calculated by
modeling the pixel reflectance at ti as a linear combination of
four end-members: the baseline spectrum and reference end-
members for GV, NPV/litter and snow. The least-squares best-
fit coefficients of the GV, NPV/litter and snow reference end-
members to the pixel spectrum are the RSMA indices XGV,
XNPV/litter and XSnow respectively. The fourth RSMA index, XB,
is equal to the best-fit coefficient for the baseline spectrum
minus one. The four RSMA indices must sum to zero.

RSMA does not prohibit the coefficients of the linear
mixture model from being negative, as is often the case in
other SMA approaches (e.g. Roberts and others, 1998).
Positive values in RSMA indices reflect an increase in the
ground-cover component with respect to the baseline
spectrum, while negative values reflect a decrease in the
ground-cover component. When the fractional cover of
any ground cover in the baseline spectrum is zero, the
RSMA index for that ground cover is equal to the fractional
cover of that ground cover. Since the baseline spectra are
generally chosen at snow-free times, the fractional cover of
snow in the baseline spectrum is often zero. In these cases,
which represent the majority of cases in an image, the value
of XSnow is equal to the actual fractional cover of snow
in a pixel. In cases where there is snow present in the
baseline spectrum, XSnow must be less than the fractional
cover of snow.

RMESMA, which is presented here for the first time and is
a new technique developed by the authors, is a multiple
end-member implementation of RSMA (Okin, 2007) in
which multiple spectra of GV, NPV/litter and snow are
combined into multiple mixture models with the baseline
spectrum as the fourth end-member. The RSMA indices of
the model with the lowest RMSE are chosen as the best-fit
index values for each pixel. GV and NPV/litter spectra were
obtained by convolving field spectra to MODIS bands. Snow
end-members were obtained from the MODSCAG snow
spectral library (Painter and others, 2009). Preliminary
results showed the best-fit snow end-members were of
varying grain size and predominately solar zenith angle of
308, so these end-members were retained for the modeling.
Up to ten input reference spectra for each ground-cover
component (e.g. GV, NPV/litter, snow) were included.

NDSI
NDSI is a band ratio index of snow cover utilizing the
shortwave infrared and red bands (Hall and others, 1995).
The global criteria for characterizing a pixel as snow in the
MODIS snow-cover products include an NDSI value greater
than 0.4 and additional threshold values in bands 2 and 4 of
�0.11 and 0.1 respectively, to mask out water bodies. In
addition, a criterion test is applied using the normalized-
difference vegetation index (NDVI) for areas of dense
vegetation (after Riggs and others, 1994). NDSI and NDVI
were calculated for this study directly from MODIS NBAR
data (after Hall and others, 1995, 2002):

NDSI ¼ ðband4� band6Þ=ðband4þ band6Þ
and

NDVI ¼ ðband2� band1Þ=ðband2þ band1Þ:
The fractional NDSI product (MOD10A1) was not used in
this study, due to discrepancies in both the temporal
resolution between ETM+ scenes used and the available
MOD10A1 scenes and the spatial resolution of the MODIS
snow indices used (1 km vs 500m).

Creation of a validation snow-cover dataset using
ETM+
Snow was classified in the ETM+ scenes using the ENVI (ITT
VIS, Inc., Boulder, CO, USA) Sequential Maximum Angle
Convex Cone (SMACC) spectral tool to extract spectral end-
members and their abundance. SMACC uses a convex cone
model (also known as Residual Minimization) to identify
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image end-member spectra. We used a six end-member
limit, a 0.25 (25%) RMSE tolerance and a constraint that
end-member abundances sum to unity. Redundant end-
members were coalesced so that snow abundances were
merged into a single band of total snow cover.

The snow-classified ETM+ scenes were then degraded to
the MODIS NBAR pixel size. The resulting image gave
fractional snow cover at the same resolution as the MODIS
snow-cover indices. MODIS snow indices were spatially
and temporally subset to match the resampled ETM+
scenes. A 5� 5 moving average box filter was applied to
both the degraded ETM+ derived snow cover and the
subset MODIS snow-cover index images to decrease noise
in the images.

Statistical tests
We compared 2500 randomly selected pixels with �20%
snow cover in the ETM+ snow classifications, and subset
MODIS scenes using linear least-squares regression and
Pearson correlation. Pixels without snow were excluded
from the analysis to avoid weighting the dataset near the
origin and distorting the regression relationship. Five
iterations were repeated, and final regression and correl-
ation results were calculated as the average regress and
correlation results for all five runs. RMSE was also calculated
between SMACC and MODIS snow-index values for pixels
containing snow.

RESULTS
Linear least-squares regressions showed that the MODSCAG
index had the best agreement with the validation datasets,
with slope values close to 1 and y-intercept values close to 0
(Table 1). The 95% confidence intervals in the regression
analysis for slope and y-intercept were [0.98, 1.06] and
[–0.02, 0.06] for the eastern scene and [0.94, 1.02] and
[–0.01, 0.07] for the western scene. Therefore, at a 95%
confidence level, the slope and y-intercept values were not
significantly different from 1.0 and 0.0, and MODSCAG had
accuracy comparable to the Landsat validation scenes.

RMESMA, RSMA and NDSI underestimated snow in
comparison to the validation datasets (Table 1), with the
95% confidence of slope and y-intercept for regression
analysis of [0.77, 0.89; 0.75, 0.81; 0.66, 0.72] and [0.03,
0.15; –0.02, 0.04; –0.04, 0.02] for the eastern scene and
[0.76, 0.84; 0.71, 0.79; 0.80, 0.86] and [–0.03, 0.05; 0.0,
0.08; 0.07, 0.13] for the western scene.

Pearson correlation coefficients were significant
(p ¼ 0.01) and positively correlated for all snow-index
comparisons and were higher for the western scene
(�0.75) vs the eastern scene (�0.52) (Table 1). The RMSE
(Table 2) ranged from a minimum of 0.0158 for NDSI (1.6%)
in the western scene to a maximum of 0.0290 (2.9%) for
RMESMA in the eastern scene.

DISCUSSION

Absolute value comparisons
The underestimation of snow by RSMA and RMESMA in
comparison to the validation datasets can be attributed
largely to the presence of snow in the baseline image.
Snowy pixels in the baseline image exhibit reduced snow-
covered area at later times (t > t0) in a manner proportional
to the fraction of snow at time t0. To verify that snow cover in
the baseline image caused the original underestimation of
snow cover by RSMA and RMESMA, snow was classified in
the baseline images for the h24v05 and h25v05 tiles using
the ENVI SMACC algorithm. Pixels identified with �25%
snow in the SMACC classification of the baseline image
were screened out from the random pixel selection for the
linear regression and Pearson correlation calculations. In
regression analysis of these data (Table 1), the 95%
confidence intervals for slope and y-intercept were [0.93,
0.99; 0.93, 1.0] and [–0.03, 0.08; –0.05, 0.03] for RMESMA
in the eastern and western scenes respectively and [0.83,
0.89; 0.98, 1.06] and [0.06, 0.12; –0.02, 0.06] for RSMA.
Therefore, at the 95% confidence interval, RMESMAwas not
significantly different from 1.0 and 0.0 for the western scene,
indicating that RMESMA has comparable accuracy to the
Landsat validation scenes when snowy pixels are identified
in the baseline image. For the eastern scene, the RMESMA
slope was slightly less than 1.0 according to the 95%
confidence interval, but the y-intercept was not significantly
different from 0.0.

Pearson r-values between NDSI and the validation
datasets, which measure the spread or scatter of the data,
were significant and positively correlated for both scenes,
indicating a linear relationship between NDSI and the
validation data. The slope values, which reflect the actual fit
to the linear regression and can be thought of as the
calibration coefficient for NDSI, were <1 for both scenes
and varied significantly between scenes. These results
suggest that NDSI, while providing a reasonable index of
the total snow cover within a scene, is sensitive to local
conditions. The results of this study are consistent with Xu
and others’ (2005) study, which suggests that the calibration
coefficient for NDSI fractional snow cover is sensitive to
local conditions (e.g. variables such as snow grain size,
vegetation and soil types, and snow impurities) and there-
fore is not suitable for quantifying snow cover in the
complex terrain of the Tibetan Plateau.

Table 1. Linear regression coefficients (ETM+ = Slope� Index + y-
intercept) and Pearson correlation values. All Pearson r values were
significant at p ¼ 0.01. Second line values for RMESMA and RSMA
denote values calculated with a correction for snowy pixels in the
baseline image

Index Slope y-intercept Pearson r

MODSCAG 1.02, 0.98 0.02, 0.03 0.67, 0.82
RMESMA (all pixels) 0.83, 0.80 0.09, 0.01 0.52, 0.75
RMESMA (snowy pixels) 0.96, 0.97 0.02, –0.01 0.67, 0.80
RSMA (all pixels) 0.78, 0.75 0.01, 0.04 0.68, 0.76
RSMA (snowy pixels) 0.86, 1.02 0.09, 0.02 0.66, 0.84
NDSI 0.69, 0.83 –0.01, 0.1 0.68, 0.83

Table 2. RMSE results for both validation scenes

RMSE MODSCAG RMESMA RSMA NDSI

Path 139 row 35 0.0221 0.0290 0.0178 0.0174
Path 147 row 36 0.0204 0.0218 0.0180 0.0158
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Influence of terrain and spatial distribution of snow
In general, the spatial distribution of snow was better
maintained by all snow indices for the western scene than
the eastern scene (Fig. 2). Visual inspection of the scenes
suggests that glacial moraines, which contaminate snow
with dust and debris, and a greater percentage of shadowing
due to the physical structure of the glaciers, were more
prevalent in the eastern scene (Fig. 3 shows enlarged regions
of this scene). Snow cover in the western scene (Fig. 4) was
more spatially coherent (e.g. larger patches), and thus more
easily identifiable.

By selecting scenes that varied both in topographic and
snow-cover conditions, this analysis was more represen-
tative of the complex topographic conditions and highly
variable nature of snow cover in the Tibetan Plateau. Our
results suggest that the MESMA snow indices, especially
MODSCAG, are insensitive to terrain effects since both had
accuracy comparable to validation scenes.

Limitations associated with Landsat sensor
characteristics and end-member selection
The visible bands of the Landsat sensor, which were
designed for the analysis of vegetation, soils and open
water, are often saturated by the upwelling radiance over
snow and clouds (Dozier, 1984; Painter and others, 2003).
This saturation can reduce the ability to separate snow from
other surfaces in mixture analysis because the complete
spectrum of snow is not represented. Saturation of Landsat
bands could result in underestimation of the amount of snow
cover in the validation scene.

Technique-specific limitations
Techniques that utilize the entire spectrum of a sensor, rather
than specific absorption features, are more sensitive to grain-
size effects (Painter and others, 2003). In this study
MODSCAG, RSMESMA, RSMA and SMACC algorithms
utilize end-members that span the full range of the sensor
spectrum, but end-member selection varies for each of these
techniques. RSMA, the single end-member variant, does not
account for spectral variation within the same material.
Therefore, we did not expect this index to quantify snow
cover as accurately as the MESMA techniques, and this was
supported by the results. MODSCAG and RMESMA, the two
MESMA variants, address this issue by allowing end-
members and the number of end-members to vary on a
per-pixel basis (Roberts and others, 1998). In contrast to the
SMA and MESMA techniques, which rely on uniform end-
members input from a spectral library, SMACC extracts end-
members directly from the image. Figure 3 shows two
enlarged regions of the eastern scene with small, intermittent
patches of snow. Pixels containing these snowpatches are
more likely to be contaminated by other ground-cover
components and misclassified. Visual comparison between
Figures 2 and 3 suggests that MODSCAG and RMESMA
quantify snow with these spatial characteristics better than
the SMACC algorithm. This could explain the slightly higher
RMSE values for MODSCAG and RMESMA. However,
further work that compares SMACC and MESMA is required
before this conclusion can be drawn.

Similar to MESMA, SMACC is sensitive to the number of
end-members selected for a scene (Gruninger and others,

Fig. 2. True-color image of (a) path 139 row 35; (b) SMACC (validation); (c) MODSCAG snow index; (d) RMESMA snow index; (e) RSMA
snow index; and (f) NDSI.
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2004). While the literature is robust both for optimizing end-
member selection for MESMA techniques (Dennison and
Roberts, 2003a,b) and quantifying fractional snow cover
using MESMA across sensors (Painter and others, 1998,
2003, 2009; Okin, 2007), literature for the SMACC
algorithm is less abundant, and unavailable pertaining
specifically to snow mapping. However, preliminary work
for this study, comparing validation scenes generated using

multiple unsupervised and supervised classification tech-
niques, suggested the SMACC was more accurate in
classifying snow cover from ETM+ than other techniques.
In addition, at the time of writing, the MODSCAG algorithm
is being implemented for ETM+ and Thematic Mapper (TM)
data, and preliminary results indicate RMSE <5% for
fractional snow cover in complex terrain.

Accuracy assessments are unavailable for snow-cover
mapping using ETM+ data at the global scale. However,
studies have shown that both the MODIS (Hall and others,
1995, 2002; Xiao and others, 2001; Wang and Li, 2003) and
Landsat sensors (Dozier, 1984; Boresjö Bronge and Bronge,
1999; Sidjak and Wheate, 1999) are suitable for mapping
snow cover in alpine and glacial environments and in
regional studies of the Tibetan Plateau (Xiao and others,
2001; Wang and Li, 2003).

Application of optical indices for quantifying spatial
and temporal patterns in snow cover
Snow cover is highly variable both spatially and temporally
in the Tibetan Plateau, with the greatest concentration of
snow cover and snow depth occurring along the primary
mountain ranges (Wu and Qian, 2003; Qin and others,
2006; Che and others, 2008). Figure 5 shows the average
winter (December–February) snow cover from 2000 to
2005 using the RMESMA snow index. The winters of 2001
and 2005 showed a higher concentration of snow cover
near the Kunlun Shan (�35–368N, 78–888 E). Winter 2001
also showed a higher average snow cover in the inner
plateau, and the winter of 2002/03 showed greater snow-
covered area along the eastern border of the plateau in
comparison with other years. Figure 6 shows the 6 year
winter average fractional snow cover using the RMESMA
snow index and emphasizes that the greatest concentration
of snow cover occurs primarily along the mountain ranges
in the Tibetan Plateau. These results are in agreement with
literature estimations of the spatial locations of regions of
greatest snow cover in the Tibetan Plateau (Wu and Qian,
2003; Qin and others, 2006; Che and others, 2008). The
lower-elevation region to the southwest of the Himalaya
(�28–348N, 78–908 E) in northern India received little to
no winter snow cover, while the Himalaya and Kunlun
Shan to the west, Nyainqêntanglha Shan and Tanggula
Shan (�30–328N, 90–1008 E) in the south and southeast,
and Bayan Har Shan, A’nyêmaqên Shan (�34–358N,
95–1008 E) and Qilian Shan (�36–378N, 95–978 E) in the
northeast region received the greatest snow cover. These
results briefly demonstrate the potential of optical snow
indices to enhance our understanding of the spatial and
temporal patterns of snow cover for the Tibetan Plateau.

CONCLUSIONS
This study compares four optically derived snow indices,
three variants of spectral mixture analysis (MODSCAG,
RSMA, RMESMA) and continuous NDSI using Landsat-
derived validation data for two diverse snow-cover and
topographic conditions. The results show that the MESMA
variants of SMA, particularly MODSCAG, compared ex-
ceptionally well to the validation datasets. RSMA and
RMESMA underestimated snow cover due to the presence
of snow in the baseline image where this was the case. This
highlights the importance of choosing a baseline image with
minimum snow cover. RSMA, the single end-member

Fig. 3. Enlarged true-color images of smaller, less continuous snowy
regions in the path 139 row 35 scene. Red-outlined area is enlarged
as (a) and yellow-outlined area as (b). MODSCAG, RMESMA and
RSMA did a better job detecting snow in these regions where
SMACC did not (Fig. 2).
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Fig. 4. True-color image of (a) path 147 row 36; (b) SMACC (validation); (c) MODSCAG snow index; (d) RMESMA snow index; (e) RSMA
snow index; and (f) NDSI.

Fig. 5. Yearly winter (December–February) average fractional snow cover: (a) 2000; (b) 2001; (c) 2002; (d) 2003; (e) 2004; (f) 2005.
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relative SMA technique, underestimated snow cover in the
lower snow-validation scene. NDSI performed as well as
other indices as an index of snow cover, but our results
suggest that the linear calibration coefficient to convert
NDSI values to fractional snow cover is not constant in
space or time.

Taken together, the regression, correlation and RMSE
results for MODSCAG, RMESMA and RSMA in both low-
snow and high-snow conditions with differing topographies
suggest that the SMA approach, particularly the MESMA
variants, is suitable for quantifying snow cover in the Tibetan
Plateau.

RMESMA and RSMA provide simultaneous indices of GV,
NPV/litter and snow, parameters necessary for biophysical
studies on vegetation productivity and energy balance as it
pertains to both vegetative cover/litter decomposition and
snow cover. RMESMA, which had accuracy comparable to
validation scenes once persistently snowy pixels in the
baseline spectrum were accounted for, is more sensitive to
lower fractional snow-cover conditions compared to MOD-
SCAG because it does not have the 20% snow-cover
threshold constraint. Low-snow conditions on the Tibetan
Plateau are common (Zheng and others, 2000) and may play
an important role in vegetation productivity through
insulating soils and providing a water resource.

MODSCAG outputs of grain size, albedo and fractional
snow cover can greatly enhance our understanding of the
seasonal evolution of these variables and improve upon the
current generation of climate and snowmelt models which
rely largely on empirical aging functions to predict snow
albedo (Molotch and Bales, 2006; Dozier and others, 2008).
Though snow cover in the Tibetan Plateau has been linked to
climate change, much uncertainty remains regarding the
magnitude and mechanisms, largely because monitoring of
snow cover is insufficient (e.g. still based on binary products
or low-resolution microwave datasets).

Recent advances in sensor resolution and adjustments to
variables affecting estimates of snow extent have improved
passive-microwave derived estimates of snow cover (Che and
others, 2004, 2008; Armstrong and Brun, 2008), but the low
resolution constrains regional snow-cover estimates. Frac-
tional snow-covered area derived using optical snow indices
at the 1 km scale would provide additional information about
where snow water equivalent is distributed within a 25 km
microwave pixel. Application of RMESMA, RSMA or
MODSCAG to quantifying fractional snow cover in the
Tibetan Plateau has the potential to further our understanding
of cryospheric changes in this climatically sensitive region.
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