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A description of regular group rings is well known (see [12]). Various authors have
considered regular semigroup rings (see [17], [8], [10], [11], [4]). These rings have been
characterized for many important classes of semigroups, although the general problem
turns out to be rather difficult and still has not got a complete solution. It seems natural to
describe the regular radical in semigroup rings for semigroups of the classes mentioned.
In [10], the regular semigroup rings of commutative semigroups were described. The aim
of the present paper is to characterize the regular radical p(/?[S]) for each associative ring
R and commutative semigroup 5.

We shall apply the approach to the investigations of these rings elaborated by a
number of authors ([3], a survey). It is based on the decomposition of a commutative
semigroup into the union of its Archimedean subsemigroups. Recall that a commutative
semigroup 5 is Archimedean if and only if, for any s, t e S, there is a natural number n
such that s" eSlt. In Section 1, the radical p(R[S]) is described for an Archimedean 5;
Section 2 is devoted to the general case.

So far that approach has been used only for some super-nilpotent radicals, i.e.
radicals whose classes contain all the nilpotent rings. The regular radical is not
super-nilpotent. This brings about esssential distinctions between its behaviour and that of
the radicals investigated earlier. For example, it is impossible to reduce the description of
p(R[S]) to the case where 5 is separative, as it has been done for all the other radicals
(see [3]). Another few differences will be pointed out in Section 2.

1. Archimedean semigroups. First of all we record two lemmas which will
illuminate the main result of this section. All semigroups considered are commutative.

LEMMA 1 (see [1, §4.3, Exercise 5]). If S a periodic Archimedean semigroup then it
contains a unique idempotent e and the ideal eS is the largest subgroup of S.

LEMMA 2. If R is a regular ring and n is a set of primes then there exists a largest ideal
I in R such that the additive period of any element of I has no divisor in n.

THEOREM 1. Let S be an Archimedean commutative semigroup, R an arbitrary ring. If
S is not periodic then the regular radical p(R[S]) is equal to zero. If S is periodic then
p(R[S]) = I[H], where H is the largest subgroup of S and I is the largest ideal of p(R) such
that the additive period of any element of I is not divisible by any prime that is the order of
an element in H.

Proof of Lemma 1. Let 5 be a periodic Archimedean semigroup. Each periodic
semigroup contains an idempotent. Let e denote an idempotent of 5. Since S is
Archimedean, for any idempotent / i n 5, we have f=feeS and eefS, whence
f =fe = e. So e is the only idempotent in 5. Given that 5 is periodic, for any x eS, there
exists n such that x" = e. Hence, for x e eS, the subsemigroup generated by A; is a group.
Thus eS is a group. Evidently, it contains every subgroup G of 5, because e must be the
identity of G and G = eG.

Glasgow Math. J. 34 (1992) 133-141.

https://doi.org/10.1017/S001708950000865X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000865X


134 A. V. KELAREV

Proof of Lemma 2. Let M designate the set of all ideals in R such that there is not
any prime in n which divides the additive period of an element of these ideals. Obviously
M is not empty, since it contains the zero ideal of R. Setting / = E / , we claim that

JeM
I eM. Each element of / belongs to a finite sum of ideals from M. Therefore we have to
prove that every finite sum of this sort is in M. Obviously, it suffices to consider a sum of
two ideals. Let A, B e M. Take any c e A + B, say c = a + b, a eA, b e B. Suppose that
pc = 0 for some pen. By the regularity of R, there exists d e R such that ada = a. Putting
e = ad, we get eceA and pec = 0. Since AeM, it follows that ec = O implying
a = ea — —eb e B. Therefore ce f l , a contradiction since B e M. Thus / e M, that is / is
the largest ideal in M.

REMARK. The analogue of Lemma 2 for non-regular rings is not valid.

For the proof of Theorem 1 several known results are needed.

LEMMA 3 [10]. Let R be an algebra over afield of characteristic p (a prime or 0), and
let S be a commutative semigroup. Then R[S] is regular if and only if R is regular and S is
a union of finite groups whose orders are not divisible by p.

n n
The set of all elements E nst e R[S] such that E r,, = 0 is called the augmentation ideal

of R[S] and will be denoted by Aug(#[S]). The following lemma is well known, see for
instance [12].

LEMMA 4. If G is a p-group and pR = 0 then Aug(R[G]) is a nil ideal.

A commutative semigroup 5 is said to be separative if s, t e S, s2 - st = t2 imply s = t.
There exists a least congruence on 5 whose factor semigroup is separative; denote it by £.

n

Let I(R,S,Z;) represent the ideal of R[S] consisting of all sums E (r,s,-r,r,), where
; i

LEMMA 5 [9]. I(R,S,%)isa nil ideal.

The following lemma is analogous to [12, Lemma 7.1.3].

LEMMA 6. If H is a subgroup of a group G then p(R[H]) 3 R[H] n p(R[G\).

Proof. Take any x e R[H] D p(R[G]). Then xyx=x for some y e R[G], say y =
E ygg. Since R[G] is a direct sum of K-modules R[H] and R[G\H], and xyggx e R[G\H]

geC
for any geG\H, then E xyggx = 0. Hence xzx = x, where z= E ygg e R[H]. Thus

geC\H geH
R[H] n p{R[G]) is a regular ideal of R[H].

LEMMA 7. If G is the infinite cyclic group then p(R[G]) = 0.

Proof. Let g denote a generator of G. Assume p(/?[G])=£0 and choose nonzero

x = E Xjg' e p(R[G]) such that the number of nonzero summands Jt,g' is minimal. Let

n
x = E Xjg', where m ^ n, xm ±0, xn # 0 .
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First we consider the case when m = n. Setting r=xm, y = rg + rg2, we get
y =xgl~m + xg2~m ep(R[G]), because p(R[G]) is an ideal of Rl[G]. Hence there exists

*
z = S r,/j,eft[G] such that yzy=y, r,€/?, r.^O, h,eG, and hu. . . ,hk are pairwise

/=i

distinct. If rr,r = 0 for some i then yrjh,y = 0 and we may take away the summand r,/i,
from z. Therefore we may assume that rr,r ¥= 0 for each i. Let a and b be, respectively, the
least and greatest numbers such that ga,gb e {hu . . . , hk}, and let g" = hc, g

b = hd. Then
rrcrga+2 and rrdrgb+A occur in yzy. Therefore 1 =s a + 2 and b + 4 =£ 2, which contradicts
a^b.

k

Now suppose that m<n. There exists y = £ r,/t, e fi[G] such that ry* =*, r, e R,
i=i

r, ̂  0, /t, e G and hu . . . ,hk are pairwise distinct. We may assume that AT,/I,;C =£0 for each
i because otherwise it would be possible to throw away the summand r,/i, of y. Now fix
some i, 1=£I=SA:. Then xrjhiXjg'^O for some j . If xng"r,/i,ocyg

y = 0 then xr/h^jg' has a
smaller number of summands than x, which is a contradiction since xrjhjXjg' e p(R[G\).
So x^rjhjXjg' =£ 0, and hence jcng"r,7i,j: =£ 0, from which it follows by a similar argument
that xng"rjhjXng" # 0. Likewise one can show that xmgmrihixmgm =£ 0. Let M be the set of
integers / such that g' = /i, for some ie {1,. . . ,&}. Denote by a and 6 the least and
greatest numbers in M, respectively. Let g"-hc, gb = hd. Then the summands
(xmrcxm)g2m+a and (xnrdxn)g

2n+b occur in xyx. Hence m=£2/n + a, 2n + b^n in con-
tradiction t o m < n . Thus the equality xyx =x is impossible.

LEMMA 8. Le/ S be a cancellative semigroup, G the group of quotients of S. Then
p(R[G])3p(R[S}).

Proof. Let / be the ideal generated in R[G] by p(/?[S]). We claim that / is regular.
T a k e a n y x e I. T h e r e e x i s t ru... ,rme p(R[S]), au...,am, bu . . . , bm e R[G],

af\ fe}0 e / ? [ G ] , i = 1 , . . . , m, j = 1 , . . . , rrtj, a n d i n t e g e r s « , , . . . , nm s u c h t h a t

= X U'V + a,r, + r,b, + 2 a^nbj'A.
<=1 X /=1 /

For each geG, fix elements s, t in 5 such that g = .sf '. This t will be called the
denominator of g. Let w denote the product of all denominators of elements of G
occurring in the supports of a,, bh af\ bj'\ Then a,w2, bjW2, a^w, bf^w e R[S]. Besides,
n^w2 e p(R[S]) since the radical is an ideal in Rl[S]. Hence xw2e p(R[S]), and so
xw2yxw2 = xw2 for some yeR[S]. Setting z=yw2, we get zeR[G] and xzx =
xw2yxw2w~2 = xw2w~2 = x. We have shown that / is regular. Therefore p(R[G]^I^
p(R[S]) and the proof is complete.

LEMMA 9. If S is a non-periodic Archimedean semigroup then p(R[S]) = 0.

Proof. Suppose to the contrary that p(R[S])^0. Lemma 5 ensures that
I(R, S, | ) n p(R[S]) = 0. Hence

p(/?[S/§]) = p(R[S]/I(R,S, I)) 3 [p(R[S]) + /(/?, 5, §)]//(/?, 5, §) ^ 0

and we may assume that from the very beginning 5 = 5/^, i.e. 5 is separative. By [1,
Theorem 4.16], every separative Archimedean semigroup is cancellative. Lemma 8
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implies p(/?[G])#O, where G is the group of quotients of S. Take any nonzero
n

x ep(R[G]), say x = E ngt, rteR, g,e G. Let H denote the group generated in G by
1=1

gx,...,gn and a non-periodic element of 5. By Lemma 6, x e p(R[H]). Each finitely
generated Abelian group is known to be a direct product of finitely many cyclic groups.
Since H is infinite, there is a group D and an infinite cyclic group C such that H = C x D.
Therefore R[H] = (R[D])[C] and Lemma 7 implies p(R[H]) = 0, a contradiction.

LEMMA 10. / / a prime p divides the order of a finite Abelian group G and pR = 0 then
p(R[G]) = 0.

Proof. Let H be the largest p -subgroup of G. Then G = H x N for a group N. Put
A = R[N]. Clearly R[G]=A[H]. We have to prove that p(A[H]) = 0.

Denote the elements of H by hx,. . . ,hn. Take any nonzero x in p(A[H]), say

x= t athh where a,-eA By Lemma 4, Aug(,4[//]) n pO4[//]) = 0 and so £ a,=£0.
(=i <=i

n
Hence, setting w = hx + . . . +hn, y=xw, we obtain y = w £ a , #0 and _y e p(/l[//]).

/ = 1

However, y e Aug(/1[//]) since p divides n, giving a contradiction. Thus p(A[H]) = 0.

LEMMA 11. If S is an Archimedean semigroup and p(R) = 0 then p(R[S]) = 0.
Proof. As at the beginning of the proof of Lemma 9, it suffices to consider the case

where 5 is cancellative. By Lemma 9, we may assume that 5 is periodic. It is known that
every cancellative periodic Archimedean semigroup 5 is a group. (Indeed, 5 contains an
idempotent e; es = e(es) implies s = es for each s, and so e is the identity of S; every s in 5
is invertible since e" esS1 for some n.) Thus 5 is a group.

Suppose that there exists a nonzero element x in p(R[S]). Let H be the subgroup
generated in 5 by all elements in the support of x. Since S is periodic, H is finite. By
Lemma 6, x e p(R[H]) #0 . Denote by P the set of additively periodic elements of R.
Clearly P is an ideal of R. The following two cases are possible.

Case 1. There exists a nonzero y in P[H] n p(R[H]). Let n be the least natural
number such that ny=0. Take a prime divisor p of n and set m=n/p, z = my,
D = {reR\pr = 0}. Then z e p(R[H]) HD[H], z * 0 . Since D[H] is an ideal of R[H]
and p is hereditary, z e p(D[//]). Evidently D[H] is an algebra over the prime field of
characteristic p. If p divides \H\ then p(D[H]) = 0 by Lemma 10. If p does not divide \H\
then \H\ is invertible in D, and [11, Theorems 1 and 2], yields p{D[H\) = p(D)[H] = 0,
a contradiction.

Case 2. P[H] H p(R[H]) = 0. Passing to the quotient ring R[H]/P[H]s(R/p)[H],
we may assume that from the very beginning P = 0 and p(R[H])^0. Further,
piR^HD^piRlHD^O. However, [11, Theorems 1 and 2] show that p(Rl[H]) =
p(Rl)[H] = 0.

Thus in both the cases we have got a contradiction. Therefore p(^?[5]) = 0.

LEMMA 12. Each regular ring whose additive group is periodic is a direct sum of
algebras over fields.
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Proof. Let R be regular. Denote by it the set of all primes. For p sit, let Rp denote
the set of elements x e R such that pkx = 0 for some k. We claim that Rp is an algebra
over the field with p elements. To this end it suffices to check that pRp = 0. Suppose
x eRp, * #0 . Let k be the least natural number such that pkx = 0. Then pk~lx ¥=0 and
pk~lx = (pk~1x)y(pk~lx) for some yeR. If k > 1 then 2k-2^k and so pk~lxypk~xx = 0.
Hence k = 1 and px = 0. Evidently R is a direct sum of the Rp, p e it.

LEMMA 13. If a regular ring R does not contain an additively periodic element then R
is an algebra over the field of rationals.

Proof. Take any x e R and any natural n. There exists yeR such that nxynx = nx.
Since R has no additively periodic element, nxyx =x. Therefore for any x eR and any
rational m/n there exists z eR (obviously, unique) such that nz = mx. We can define a
multiplication by rationals on the elements of R by putting (m/n)x = z. Thereby R will be
made an algebra over Q.

Proof of Theorem 1. If 5 is not periodic then the result follows by Lemma 9. Let S
be periodic. First we will prove that I[H] is regular.

Denote by P the set of periodic elements of /. Then P is an ideal of R, and so P is a
regular ring whose additive group is periodic. Lemma 12 shows that P is of the form
0 Ap, where each Ap is an algebra over a field of characteristic p > 0. Further, each Ap is

pen

an ideal of P and is therefore regular; and we can restrict it to be the set of all primes that
divide the additive periods of elements of P. Given that, for all p e it, p is not the order
of an element in H, Lemma 3 shows that J4P[H] is regular. Hence P[H] is regular.
Further, I[H]/P[H] = (I/P)[H] and IIP has no element which is additively periodic. By
Lemmas 13 and 3, (I/P)[H] is regular. Therefore I[H] is regular, too.

Now we will prove that p(R[H]) = I[H]. It suffices to show that p(R[H]/I[H]) = 0,
that is, to show that p((R/I)[H]) = 0. Denote by it the set of primes which are orders of
some elements in H. Let K be the class of rings which do not contain any element whose
additive period is in it. Then / is the largest regular ideal of R belonging to K. Clearly K is
closed under extensions. In particular, if / is an ideal of R such that / / / is regular and
belongs to K then J e K, J is regular, whence J = I. Therefore to simplify the notation we
may assume that / = 0, R = R/I.

n

Suppose that p(R[H]) ¥= 0 and take any nonzero x e p(R[H]), say x = £ xthh where
i=i

Xj6 R, Xj¥=0, ht e H. Assume that x is chosen so that n is the least possible number here.
Let J denote the ideal generated in R by xn. Since / = 0, it follows that J contains an
element whose additive period is divisible by a prime p that is the order of an element in
H. Hence H has a subgroup with p elements for the prime p such that J contains an

n

element y of additive period p, say y = mxn + axn + xnb + E ajXnbj, where m is an integer
/='

k
and a,b,aj,bjeR. Set z = mx + ax + xb + £ apcbj•,, Rp = {r e R \ pr} = 0. Note that

/=1

z =£0, since y =£0. Further, z e p(R[//]), because x is taken in p(R[H]) and z belongs to
the ideal generated by x in R[H], moreover z e R*xR\ Since py = 0, we see that pz has a
smaller number of summands than z, and so pz = 0, z e RP[H]. Therefore z e p(Rp[H]).
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Denote by G the subgroup generated in H by /i , , . . . , hn. Since 5 is periodic, then G is a
finite Abelian group. By Lemma 6, z e p(Rp[G]). However, Lemma 10 implies
p(Rp[H]) = 0. The contradiction shows that p(R[H]) = I[H].

Further, given that 5 is Archimedean, for each teS, there is an n such that
f eeS = H, where e is the identity of H. Therefore the ideal generated in R[S] by the set
Rt is nilpotent modulo R[H]. Hence R[S]/R[H] is a sum of nilpotent ideals, and so
p{R[S]) c p(R[H]). The heredity of p yields p(R[S]) = p(R[H]) = / [ / / ] . The theorem is
proved.

2. The general case. In this section, an arbitrary commutative semigroup S will be
considered. We shall need the following concept. A commutative semigroup T is called
a semilattice if it entirely consists of idempotents. We say that S is a semilattice T of
its subsemigroups Sa, a e T, if and only if 5 = U Sa, SanSp = 0 whenever a- =£ /? and
SaSp <= SaP for any a, /S e T (see [1]). aer

Now we fix some notation. Let R be a ring, 5 a commutative semigroup. It is known
[1, Theorem 4.18] that S is a semilattice T of Archimedean subsemigroups Sa (a e T). Let
x e R[S], x = E x,t. For any a e T, set xa = £ x,t. The semilattice supp(jc) generated in T

leS feS,,

by all a such that xa # 0 will be called the support of x. Consider the natural partial order
$ on T defined by the rule a « / 3 <=> a/3 = <*. Let max(x) denote the set of maximal
elements in supp(x). It is known that T is locally finite, so supp(jc) and max(jc) are finite.

THEOREM 2. The radical p(R[S]) is the largest ideal among ideals I in R[S] such that
Xp e p(R[Slx]) for any nonzero x e I, fi e max(x).

This theorem follows from the more general result of [5]. For the sake of
completeness we adduce a separate more simple proof.

Proof. Let M denote the set of ideals / in R[S] such that x^ e p(/?[SM]) for any
nonzero xel, juemax(x). By [16, proof of Theorem 1], p(R[S])eM. Now take any /
from M. We will show that / is regular. This will mean that / c p(R[S]).

Pick any xel and set n = |supp(*)|. We show by induction on n that there is y in R
such that xyx=x. The case where n-0 is trivial. Assume « > 0 . If juemax(jc) then
xMep(/?[5M]) and therefore xlizxfl=x for some ze/?[5M]. Putting u = x-xzx, we get
u el and |supp(«)| <n . Hence uvu = u for some v. Therefore

x = u + xzx = uvu + xzx = x(v — vxz — zxv + zxvxz + z)x.

Thus p(/?[5]) is the largest ideal in M, as asserted.

THEOREM 3. There exists a commutative semigroup S= {J Sa such that for any field F

each ring F[Sa] contains a nonzero regular ideal but p(F[S]) = 0.

Proof. Consider the set Z of all integers endowed with the multiplication ij =
min{i,j}. It is easy to see that Z is a semilattice. Set 5, = {«,, e,}, 5 = U 5,- and define a

ieZ

commutative multiplication on S by putting (for each i <j) ey«, = n;n, = «,, eye, = nye, = e,,
e, = ej = e,n, = nj. Straightforward verification shows that 5 is a semigroup and is a
semilattice Z of the 5,. It is clear that p(F[5,]) = Fe, for each field F. We have to prove
thatp(F[S]) = 0.
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Suppose that there is nonzero xep(R[S]), say x = E *,-, where xi=fiei + gini,

fi, gj e F. Let m be the largest integer such that xm ¥= 0. Theorem 2 implies xm e p(F[Sm]),
whence gm = 0. Further, xnm_x =fmnm_l +fem_l + E *,, where / = xm_1/im_1 e Fem_i.

Km — 1

Since /„,=£() and all the summands of xnm_u except /mnm_i, do not involve nm_u it is
clear that/mnm_, cannot be cancelled, so xnm_x ¥=0. By Theorem 2,

/mnm_, +/em_, = (xnm _,)„,_, e

and therefore nm_! = em_i- The contradiction completes our proof.

The results of [9] show that there is not any analogous example for the Jacobson
radical. If we take a semigroup ring over an arbitrary ring of coefficients then the
following question seems natural and rather difficult.

QUESTION. DO there exist a ring R and a commutative semigroup 5 = U Sa such that
a<=r

all the R[Sa] are not Jacobson semisimple but R[S] is semisimple?

Note that, in [16] and [14], examples of a non-commutative S = [J Sa were

constructed such that R[S] is Jacobson semisimple while there is only one semisimple ring
among the /?[£„], a eF. An analogous example of a non-commutative 5 where all R[Sa]
are not semisimple can be constructed with the use of the well-known Formanek's
example [13, Theorem 7.4.8].

We will point out one more difference between the descriptions for the regular
radical and the Jacobson one. In [5], the Jacobson radical /(i?[5]) for a commutative 5
was characterized with the use of so called simplest elements. These elements were earlier
applied to the investigations of other semigroup rings in [15]. In particular it was proved
that every simplest element lies in /(/?[5]). Now we will show that a simplest element
may not belong to the regular radical p(R[S]). So it is hardly possible to get a description of
p(R[S]) in terms of simplest elements in the general case.

Let Q be the set of a e T such that Sa has an idempotent ea. If fi e Q, x e #[SJ and
A is a finite (possibly empty) subset of /xQ then set (fi,x,A) = x U (e^-e^). Here

AeA

(n,x,A) = x for A = 0 . If, moreover, x e p(R[Stl]) and xt e p(R[Sa]) for each are/xlA
AF, teSa then (fi,x, A) is said to be a p-simplest element of R[S], It follows from [15]
that /-simplest elements belong to /(/?[5]). However, the ring F[S] constructed in the
proof of Theorem 3 contains a p-simplest element e-> — ex which does not belong to
p(F[5]) = 0.

Following [7], we say that p is S-invariant if p(R[S]) = p(R)[S] for each R.

COROLLARY 1. Let S be a commutative semigroup, R a ring. The regular radical
p(R[S]) is equal to p(R)[S] if and only if S is a union of finite groups whose orders are not
divisible by the additive period of any element from p(R).

Proof. Let S= U Sa, Sa the Archimedean components of 5. Set F = R/p(R). By
o-eT

Theorem 1, p(F[Sa]) = 0. Theorem 2 implies p(F[S]) = 0; so p(R[S]) c p(R)[S].
Therefore p(R[S]) = p(R)[S] is equivalent to the fact that p(R)[S] is regular.
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If S is a union of finite groups whose orders are not divisible by the additive period of
any element from p(R) then the same can be said of every Sa. Hence Theorem 1 implies
p(R[Sa]) = p(R)[Sa]. Then for each nonzero x e p(R)[S] and each m e max(jt), it is clear
that xmep(R)[Sm] = p(R[Sm]). By Theorem 2, p(R)[S] cp(fl([5]), and therefore
p(R)[S] = p(R[S]).

Suppose that 5 is not a union of finite groups whose orders are not divisible by the
additive period of any element from p(R). Then, by Theorem 1, p(R)[Sa] is not regular
for some aeT. Take x ep(R)[Sa]\p(R[Sa]). Then aemax(x), x ep(R)[S], but xa$
p(R[Sa]). Theorem 2 implies that p(R)[S] is not regular. This completes the proof.

Corollary 1 immediately gives us the following result.

COROLLARY 2. The regular radical is S-invariant if and only if S is a semilattice.

Strangely enough the same class of semigroups answers the question when the
Jacobson radical is ^-invariant (see [6]). For a non-commutative S, the corresponding
questions involve rather difficult problems in the case of characteristic p > 0. It is still not
known when the group ring of a locally finite group is Jacobson semisimple and when a
semigroup ring is regular (see [13], [10]).
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