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Abstract
We prove the Tits Alternative for groups acting on 2-dimensional CAT(0) complexes with a bound on the order of
the cell stabilisers.

1. Introduction

A triangle complex X is a 2-dimensional simplicial complex, possibly not locally compact, with a
following piecewise smooth Riemannian metric. Namely, we have a family of smooth Riemannian
metrics 𝜎𝑇 , 𝜎𝑒 on the triangles and edges, such that the restriction of 𝜎𝑇 to e is 𝜎𝑒 for each 𝑒 ⊂ 𝑇 . The
Riemannian metrics 𝜎𝑇 , 𝜎𝑒 induce metrics (i.e. distance functions) on triangles and edges. We then
equip X with the quotient pseudometric d (see [BH99, Chapter I.5.19]). We assume that for each metric
ball B, the simplices of X intersecting B have only finitely many isometry types (note that the only
time we will apply it to B of radius nonzero is in the proof of Remark 2.5). Then (𝑋, 𝑑) is a complete
length space, which can be deduced from [BH99, Chapters I.5.20 and I.7.13] using a bilipschitz map
from each B to a piecewise Euclidean complex. Note that we study triangle complexes, as opposed to
piecewise Euclidean 2-dimensional simplicial complexes, for applications to groups such as Tame(k3)
(Corollary D). All group actions on X will be by simplicial isometries.

We say that a group acts on a cell complex X almost freely if there is a bound on the order of the
cell stabilisers. Note that an almost free action on a triangle complex is proper in the sense of [BH99,
Chapter I.8.2]. Furthermore, any subgroup of a group acting properly and cocompactly acts almost
freely. A group is virtually cyclic (respectively, virtually Z2, virtually abelian, virtually solvable), if it
has a finite index subgroup that is cyclic (respectively, Z2, abelian, solvable).

Theorem A. Let G be a finitely generated group acting almost freely on a CAT(0) triangle complex X.
Then G is virtually cyclic, or virtually Z2, or it contains a nonabelian free group.

By [BH99, Chapters II.7.5 and 7.7(2)] and Remarks 2.4 and 2.5, if G acts almost freely on a CAT(0)
triangle complex with finitely many isometry types of simplices, then every sequence 𝐺1 < 𝐺2 < · · ·

of virtually abelian subgroups of G stabilises. Consequently:

Corollary B. If X has finitely many isometry types of simplices, then Theorem A holds also for G
infinitely generated.
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2 D. Osajda and P. Przytycki

As explained in [OP21, page 3], one cannot omit in Theorem A the assumption on almost freeness.
Here are some examples of applications of Theorem A to particular groups. The first result, which is

a consequence of Corollary B, was studied independently by Paul Tee. We are assuming that G below
acts freely instead of almost freely, since A is torsion free [CD95, Theorem B].

Corollary C. Let G be a subgroup of a 2-dimensional Artin group A acting freely on the modified
Deligne complex of A (see [CD95]). Then G is cyclic, Z2, the fundamental group of the Klein bottle, or
it contains a nonabelian free group.

The second result concerns the tame automorphism group Tame(k3), which is a subgroup of Aut(k3),
where k is a field (see [LP21]). In [LP21, Sections 2 and 5], we introduced a cell complex X with an
action of Tame(k3). We proved that X is CAT(0) for k of characteristic 0 [LP21, Theorem A]. Some
cells of X are polygons instead of triangles, but we can easily transform X into a triangle complex by
subdividing.

Corollary D. Let G be a finitely generated subgroup of Tame(k3), with k of characteristic 0. Suppose
that G acts almost freely on the cell complex X. Then G is virtually cyclic, or virtually Z2, or it contains
a nonabelian free group.

An ingredient in the proof of Theorem A is the following characterisation of CAT(0) triangle
complexes using a link condition. In [BB96, Theorem 7.1], this was proved only for locally compact
triangle complexes, and in [BH99, II.5.2], only for piecewise Euclidean and piecewise hyperbolic
triangle complexes.

Theorem E. A triangle complex X is locally CAT(0) if and only if

(i) the Gaussian curvature of 𝜎𝑇 at any interior point of a triangle T of X is ≤ 0, and
(ii) the sum of geodesic curvatures in any two distinct triangles of X at any interior point of a common

edge is ≤ 0 and
(iii) for each vertex v of X, the girth of the link lk𝑋𝑣 is ≥ 2𝜋.

Motivation and relation to other results.

The term Tits Alternative usually refers to the property that all finitely generated subgroups either are
virtually solvable or contain a nonabelian free group. The name comes from the theorem of Tits [Tit72],
who proved that every finitely generated linear group either is virtually solvable or contains a nonabelian
free group. It is widely believed (see, e.g. [Bes00, Question 2.8], [Bri06], [Bri07, Question 7.1], [FHT11,
Problem 12], [Cap14, Section 5]) that all CAT(0) groups (groups acting geometrically, that is, properly
and cocompactly, on CAT(0) spaces) satisfy the Tits Alternative. This was proved only in a limited
number of cases (see [NV02, SW05, CS11, MP20, MP22, OP21] and references therein). Groups acting
geometrically on 2-dimensional CAT(0) complexes were studied thoroughly by Ballmann and Brin in
[BB95], where they proved the Rank Rigidity Conjecture for such groups. They also proved that such
groups either are virtually abelian, or they contain a nonabelian free group (statements of this type are
sometimes called the Weak Tits Alternative [SW05]). However, the Tits Alternative for such groups has
been open till our current work (e.g. in [FHT11, Problem 12] the question on the Tits Alternative is
asked specifically in dimension 2). Just recently, together with Norin, we were able to show in [NOP22],
among other results, that the groups in question do not contain infinite torsion subgroups. This property
might be seen as the first step towards the Tits Alternative. In [OP21], we proved the Tits Alternative
for the class of 2-dimensional recurrent complexes. This class contains all 2-dimensional Euclidean
buildings, 2-dimensional systolic complexes, as well as some complexes outside the CAT(0) setting.

Regarding Corollary C, for right-angled Artin groups, the Tits Alternative follows from the work
of Baudisch [Bau81]. In our previous work [OP21], we showed the Tits Alternative for a subclass of
2-dimensional Artin groups, containing all large-type Artin groups. Recently, in [MP22], we proved
the Tits Alternative for 2-dimensional Artin groups of hyperbolic type, and in [MP20], we proved
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it for FC-type Artin groups. An approach to the Tits Alternative for subgroups of 2-dimensional
Artin groups acting not almost freely on the modified Deligne complex has been developed by Martin
[Mar22]. As for Corollary D, Cantat proved that the group of birational transformations Bir(C2) satisfies
the Tits Alternative [Can11]. Earlier, Lamy proved the Tits Alternative for the group of polynomial
automorphisms Aut(C2) [Lam01]. These proofs extend to any field k of characteristic 0 [Lam22]. The
same statement for Aut(k3) seems at the moment out of reach, since there is no analogue for Aut(k3)
of the CAT(0) complex X from [LP21]. However, we believe that for Tame(k3) � Aut(k3), with k
of characteristic 0, one could study the subgroups acting not almost freely on X by generalising the
methods of the current paper.1

One of the main obstacles to generalising Theorem A to higher-dimensional complexes lies in the
proof of Proposition 3.1, where it is used that the fundamental groups of graphs are free, whereas the
fundamental groups of higher-dimensional complexes can be arbitrary.

Finally, note that assuming in Theorem A that X is locally compact would allow us to avoid proving
Theorem E, but otherwise it would not simplify the proof.

Organisation

In Section 2, we prove Theorem E. In Section 3, we recall the method of invariant cocompact subcom-
plexes from [OP21], which allows us to reduce Theorem A to Proposition 3.2 that assumes the existence
of edges of degree ≥ 3 in our complex X. Under this assumption, we can exclude the cases of virtually
cyclic or Z2 groups in Section 4. In technical Section 5, which we recommend to skip at the first reading,
we arrange our complex X to have no ‘unfoldable’ links.2 We give criteria for finding ‘rank 1’ elements,
and consequently free subgroups, in Section 6. In the absence of ‘rank 1’ elements, we obtain a particular
rationality property of the complex X in Section 7. In Section 8, we give new criteria for distinguishing
the endpoints of certain piecewise geodesics. Together with a Poincaré recurrence argument, this allows
us to prove Proposition 3.2 in Section 9.

2. Characterisation of CAT(0) triangle complexes

In this section, we prove Theorem E, which characterises CAT(0) triangle complexes. The following
result is known under the name of the Cartan–Hadamard theorem.

Theorem 2.1 [BH99, II.4.1(2)]. Let X be a complete connected metric space. If X is simply connected
and locally CAT(0), then it is CAT(0).

We also have the following consequence of [BH99, II.1.7(4) and II.4.14(2)].

Theorem 2.2. Let X be a complete CAT(0) space. A piecewise local geodesic in X with Alexandrov
angles 𝜋 at the breakpoints is a geodesic.

Let x be a point of a triangle complex X. Let lk𝑋𝑥 be the metric graph that is the link of x, as defined
in [BB95, page 176]. Namely, if x is a vertex of X, then the vertices of lk𝑋𝑥 correspond to the edges of X
containing x, and the edges of lk𝑋𝑥 correspond to the triangles of X containing x. The length of each edge
is the angle in the corresponding triangle of X. Since we assumed that triangles containing x belong to
only finitely many isometry classes of 𝜎𝑇 , there are only finitely many possible edge lengths in a given
lk𝑋𝑥 . If x lies in the interior of an edge e of X, then lk𝑋𝑥 has two vertices corresponding to the components
of 𝑒 \ 𝑥, and edges of length 𝜋 corresponding to the triangles of X containing e. If x lies in the interior
of a triangle, then lk𝑋𝑥 is a circle of length 2𝜋. We denote by 𝑑𝑋𝑥 (or, shortly, 𝑑𝑥) the length metric on
lk𝑋𝑥 . By [NOP22, Lemma 2.1], we can identify lk𝑋𝑥 with the completion of the space of directions at x

1We have recently extended Corollary D to such subgroups using methods tailored to Tame(k3) [LP22].
2This solves an issue that seems to have been overlooked in the proof of [BB95, Theorem C], page 197, line 9. Namely, not all

angles 2𝜋 are excluded there, since in [BB95, Lemma 7.6], one cannot remove the assumption 𝜉 ≠ 𝜂 for 𝜔 of length 2𝜋, for
example, for 𝑆𝑣 a wedge of two circles of length 2𝜋.
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(see [BH99, II.3.18]). Thus, a local geodesic in X starting at x determines a point in lk𝑋𝑥 . The angle at x
between two such local geodesics is defined to be the distance between the two corresponding points in
lk𝑋𝑥 with respect to the metric 𝑑𝑥 . By [NOP22, Lemma 2.1], if this angle is < 𝜋, then it coincides with
the Alexandrov angle, and if it is ≥ 𝜋, then the Alexandrov angle equals 𝜋.

Proof of Theorem E. In the ‘only if’ part, condition (i) follows from [BH99, II.1A.6]. The proof of
condition (ii) is identical to that in [BB96, Theorem 7.1], and the proof of condition (iii) was given in
[NOP22, Section 2]. For the proof of the ‘if’ part, suppose that a triangle complex X satisfies conditions
(i)–(iii). By condition (i) and [BH99, II.1A.6], we have that X is locally CAT(0) at any interior point of
a triangle.

Consider now an edge e of X. Let St(𝑒) be the union of all the closed triangles containing e. We will
show that St(𝑒) is CAT(0), which implies that X is locally CAT(0) at any interior point x of e, since
the metrics on St(𝑒) and on X coincide on a sufficiently small neighbourhood of x. Let 𝑌 ⊂ St(𝑒) be
the union of the triangles T for which there exists a point on e with positive geodesic curvature in T. By
condition (ii), there is at most one such triangle of given isometry type 𝑇0 and given embedding 𝑒 ⊂ 𝑇0,
so Y has finitely many triangles. We denote this number by 𝑚(𝑒) for future reference. For each triangle
T of St(𝑒) outside Y, denote 𝑌𝑇 = 𝑌 ∪ 𝑇 . By conditions (i) and (ii), and by [BB96, Theorem 7.1], we
have that each 𝑌𝑇 is locally CAT(0), hence, CAT(0) by Theorem 2.1 (note that a geodesic in 𝑌𝑇 might
enter and exit a given triangle infinitely many times). Furthermore, the inclusion 𝑌 ⊂ 𝑌𝑇 is an isometric
embedding, since points of e have nonpositive geodesic curvature in T. By [BH99, II.11.3], the union
St(𝑒) of 𝑌𝑇 is CAT(0), as desired.

Consider now a vertex v of X. After possibly subdividing X, we can assume that in each triangle T
containing v, the local geodesic 𝛾𝑇 starting at v and bisecting the angle of T at v ends at the opposite side
of T. We will prove that the union St(𝑣) of all the closed triangles and edges containing v is CAT(0). This
will imply that X is locally CAT(0) at v, since the metrics on St(𝑣) and on X coincide on a sufficiently
small neighbourhood of v.

Claim. St(𝑣) is geodesic, and there is 𝑀 > 0, such that each geodesic in St(𝑣) intersects the interiors
of at most M triangles.

To justify the Claim, we employ the idea of a taut string [BH99, Chapter I.7.20]. Let 𝜃 be the minimum
of 𝜋 and the minimum length of an edge in lk𝑋𝑣 , and set 𝑁 = 2 + 𝜋

𝜃 . Let 𝑀 = 1 + 𝑁 (1 + max𝑒 𝑚(𝑒)),
where 𝑚(𝑒) is defined as above and the maximum is taken over all the edges e of St(𝑣) containing v. For
each such edge e, let St′(𝑒) ⊂ St(𝑒) be the closure of the component containing e of St(𝑒) \

⋃
𝑇 ⊂St(𝑒) 𝛾𝑇 ,

for 𝛾𝑇 as above. Since St′(𝑒) is convex in St(𝑒), it is CAT(0) [BH99, II.1.15(1)].
For 𝑥, 𝑦 ∈ St(𝑣), a string between x and y is a sequence of edges 𝑒1, . . . , 𝑒𝑛 of St(𝑣) containing v

and points 𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑛 = 𝑦 with St′(𝑒𝑖) containing both 𝑥𝑖−1 and 𝑥𝑖 . The length of the string is
the sum Σ𝑛

𝑖=1𝑑𝑖 (𝑥𝑖−1, 𝑥𝑖), where 𝑑𝑖 is the metric on St′(𝑒𝑖). The distance between x and y in St(𝑣) is the
infimum of the lengths of strings between x and y. A string is taut, if 𝑛 ≤ 2, or

• for each 0 ≤ 𝑖 ≤ 𝑛, the point 𝑥𝑖 is distinct from v, and
• for each 0 < 𝑖 < 𝑛, the point 𝑥𝑖 belongs to one of the 𝛾𝑇 defined above and
• for each 0 < 𝑖 < 𝑛, the concatenation of geodesics 𝑥𝑖−1𝑥𝑖 in St′(𝑒𝑖) and 𝑥𝑖𝑥𝑖+1 in St′(𝑒𝑖+1) is a

geodesic in St′(𝑒𝑖) ∪ St′(𝑒𝑖+1).

We now justify that for each string (𝑒𝑖), (𝑥𝑖) between x and y, we can find a taut string between x
and y whose length does not exceed the length of (𝑒𝑖), (𝑥𝑖). Indeed, by discarding some 𝑥𝑖 , we can first
assume that consecutive 𝑒𝑖 are distinct, and so for each 0 < 𝑖 < 𝑛, the point 𝑥𝑖 belongs to one of the 𝛾𝑇 .
Since 𝛾𝑇 are compact, there is a choice of 𝑥 ′𝑖 in the same 𝛾𝑇 as 𝑥𝑖 , minimising the length of the string
(𝑒𝑖), (𝑥

′
𝑖). Then the concatenation of geodesics 𝑥 ′𝑖−1𝑥

′
𝑖 in St′(𝑒𝑖) and 𝑥 ′𝑖𝑥

′
𝑖+1 in St′(𝑒𝑖+1) is a geodesic in

St′(𝑒𝑖) ∪ St′(𝑒𝑖+1). Finally, if an 𝑥 ′𝑖−1 equals v, and 𝑥 ′𝑖 ≠ 𝑥𝑛, then for 𝑥 ′𝑖 ∈ 𝛾𝑇 , the subpath of 𝛾𝑇 from
𝑥 ′𝑖−1 to 𝑥 ′𝑖 is a geodesic in both St′(𝑒𝑖) and St′(𝑒𝑖+1), and consequently, we can discard 𝑥 ′𝑖 and 𝑒𝑖 from the
string. Repeating the argument, we arrive at 𝑖 − 1 = 𝑛 − 1 or 𝑖 − 1 = 𝑛. Analogously, we obtain 𝑖 − 1 = 1
or 𝑖 − 1 = 0, and so 𝑛 ≤ 2.
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We will now show that a taut string satisfies 𝑛 ≤ 𝑁 . We can assume 𝑛 > 2, and so none of 𝑥𝑖 equals v.
For 0 < 𝑖 < 𝑛, let 𝜃𝑖 be the Alexandrov angle at 𝑥𝑖 in St′(𝑒𝑖+1) between the geodesics 𝑥𝑖𝑥𝑖+1 and 𝑥𝑖𝑣. The
concatenation of geodesics 𝑥𝑖−1𝑥𝑖 in St′(𝑒𝑖) and 𝑥𝑖𝑥𝑖+1 in St′(𝑒𝑖+1) is a geodesic in St′(𝑒𝑖) ∪ St′(𝑒𝑖+1),
which is CAT(0) by [BH99, II.11.3]. Consequently, by the definition of 𝜃, we have 𝜃𝑖 ≥ 𝜃𝑖−1 + 𝜃. Thus,
𝜋 ≥ 𝜃𝑛−1 ≥ (𝑛 − 2)𝜃 + 𝜃1, and so, 𝑛 − 2 ≤ 𝜋

𝜃 = 𝑁 − 2.
Since there are finitely many isometry types of simplices in St(𝑣), and each taut string satisfies 𝑛 ≤ 𝑁 ,

the distance between x and y in St(𝑣) is realised by the length of some taut string (𝑒𝑖), (𝑥𝑖). Then the
concatenation of all the geodesics 𝑥𝑖−1𝑥𝑖 in St′(𝑒𝑖) is a geodesic between x and y, proving that St(𝑣) is
geodesic. Furthermore, for any geodesic 𝛾 from x to y in St(𝑣), one can choose points on 𝛾 forming a
taut string. Since any taut string satisfies 𝑛 ≤ 𝑁 , and we have that 𝛾 intersects the interiors of at most
1 + 𝑛(1 + max𝑒 𝑚(𝑒)) triangles, the Claim follows.

Returning to the proof of Theorem E, we follow the scheme in [BB96, Theorem 7.1] to find a sequence
of CAT(0) spaces Gromov–Hausdorff converging to St(𝑣). Namely, realise each (isometry type of a)
triangle T of St(𝑣) as𝑇 ⊂ R2, with metric induced from some smooth Riemannian metric of nonpositive
Gaussian curvature on R2 defined in a neighbourhood U of T. Denote by 𝑒, 𝑓 the edges of T containing
v and by g the remaining edge of T. Let l denote the length of e. For each 𝑛 > 0, we decompose e into
paths 𝑎1 · 𝑎2 · · · 𝑎𝑛 of length 𝑙

𝑛 , and we define 𝜅𝑘 to be the integral of the geodesic curvature along 𝑎𝑘 .
Let 𝑒𝑛 be the piecewise geodesic in U that starts at v tangent to e, has n locally geodesic pieces of length
𝑙
𝑛 and exterior angle at the k-th breakpoint that equals 𝜅𝑘 . For n sufficiently large the path 𝑒𝑛 exists,
and they 𝐶1-converge to e as n tends to ∞. We define paths 𝑓𝑛 analogously. We define 𝑔𝑛 to be any
piecewise geodesics joining the endpoints of 𝑒𝑛 and 𝑓𝑛 and 𝐶1-converging to g. This gives us a triangle
𝑇𝑛 ⊂ 𝑈 bounded by 𝑒𝑛, 𝑓𝑛 and 𝑔𝑛, whose boundary is piecewise geodesic (one can pass to a union of
triangles with locally geodesic boundary by subdividing). Furthermore, we have a map 𝑇𝑛 → 𝑇 , whose
restriction to 𝑒𝑛, 𝑓𝑛 preserves length and which is bilipschitz with the bilipschitz constant converging
to 1 as n tends to ∞. Glueing various 𝑇𝑛 along the sides corresponding to the ones of T that we glued
to form St(𝑣) yields a triangle complex that we call St(𝑣)𝑛. Then St(𝑣) is a Gromov–Hausdorff limit of
St(𝑣)𝑛. Note that since St(𝑣) satisfied conditions (i)–(iii), we have that St(𝑣)𝑛 satisfies conditions (i)–
(iii). Since St(𝑣)𝑛 has locally geodesic edges, and is geodesic by the Claim (applied to St(𝑣)𝑛 instead of
St(𝑣)), the same proof as for [BB96, Theorem 7.1, case 1] shows that St(𝑣)𝑛 is locally CAT(0), hence,
CAT(0) by Theorem 2.1. Consequently, by [BH99, II.3.10], we have that St(𝑣) is CAT(0). �

We have the following immediate consequence of Theorem E.

Corollary 2.3. If X is a triangle complex that is locally CAT(0), then all of its subcomplexes are locally
CAT(0).

Note that while we did not apply the Claim to St(𝑣) in the proof of Theorem E, it will be used in the
following remarks.

Remark 2.4. Suppose that X is a CAT(0) triangle complex with finitely many isometry types of
simplices. Then the constant M in the Claim does not depend on v. As in the ‘Ψ𝑛 ⇒ Φ𝑛’ part of the
proof of [BH99, Chapter I.7.28], we obtain that for each l there is 𝑀 ′ > 0, such that each geodesic
in X of length ≤ 𝑙 intersects the interiors of at most 𝑀 ′ simplices. Using this in the place of [Bri99,
Lemma 1] in the proof of [Bri99, Lemma 2 and Theorem A], we obtain that every simplicial isometry g
of X is semisimple: it fixes a point, or is loxodromic, meaning that there is a geodesic line 𝜔 in X (called
an axis), such that g preserves 𝜔 and acts on it as a nontrivial translation.

Remark 2.5. Suppose that X is a CAT(0) triangle complex with finitely many isometry types of
simplices. Then the set of translation lengths of simplicial isometries of X is a discrete subset of [0,∞),
which is proved using the Claim exactly as [Bri99, Proposition]. Similarly, we obtain the following: Let
X be a CAT(0) triangle complex with a subcomplex Y on which some group of simplicial isometries of
X acts coboundedly. Since any metric ball in X intersects finitely many isometry types of simplices, we
have that each bounded neighbourhood of Y intersects finitely many isometry types of simplices. Then
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for each simplicial isometry g of 𝑋, the set inf𝑦∈𝑌 𝑑 (𝑦, 𝑔𝑦) attains its infimum, which we denote |𝑔 |𝑌 .
Moreover, the set of |𝑔 |𝑌 over all simplicial isometries g of X is a discrete subset of [0,∞).

3. G-cocompact subcomplexes

Let X be a simplicial complex with an action of a group G. We say that a subcomplex 𝑍 ⊂ 𝑋 is an
invariant cocompact subcomplex with respect to G (shortly, G-c.s.) if Z is G-invariant, and the quotient
𝑍/𝐺 is compact. Note that a G-c.s. is not required to be connected.

A 2-dimensional simplicial complex is essential if every edge has degree at least 2 and none of
connected components is a single vertex. An essential simplicial complex is thick if it has an edge of
degree at least 3.

A disc diagram D is a compact contractible simplicial complex with a fixed embedding in R2. Its
boundary path is the attaching map of the cell at ∞. If X is a simplicial complex, a disc diagram in X is
a nondegenerate simplicial map 𝜑 : 𝐷 → 𝑋 , and its boundary path is the composition of the boundary
path of D and 𝜑. We say that 𝜑 is reduced if it maps triangles sharing an edge to two distinct triangles.
By [OP21, Remark 3.6], for each contractible closed edge-path 𝛼 in a simplicial complex X, there is a
reduced disc diagram in X with boundary path 𝛼.

A group G acts on a simplicial complex X without inversions if for any 𝑔 ∈ 𝐺 stabilising a simplex
𝜎 of X, we have that g fixes 𝜎 pointwise. More generally, we say that G acts without weak inversions if
for each vertex v of X, there is no 𝑔 ∈ 𝐺 sending v to a distinct vertex in a common edge.

The first ingredient in our proof of Theorem A is the following earlier result.

Proposition 3.1 [OP21, Proposition 3.7]. Let G be a finitely generated group acting almost freely
and without inversions on a simply connected 2-dimensional simplicial complex X that contains no
simplicial 2-spheres. If X contains no thick G-c.s., then G is virtually cyclic, or virtually Z2, or it
contains a nonabelian free group.

The second ingredient in the proof of Theorem A is the following, the proof of which will occupy
the present article.

Proposition 3.2. Let G be a group acting almost freely and without weak inversions on a CAT(0)
triangle complex X that is an increasing union of connected essential G-c.s. If X contains an edge of
degree ≥ 3, then G contains a nonabelian free group.

We now show how Theorem A follows from these two ingredients.

Proof of Theorem A. By passing to a subdivision (see [NOP22, Lemma 2.1]), we can assume that G
acts without weak inversions. By Proposition 3.1, we can assume that X contains a thick G-c.s. 𝑍1. We
will prove that G contains a nonabelian free group. By passing to a connected component of 𝑍1 and its
stabiliser 𝐺 ′ in G (which is finitely generated, since it acts properly and cocompactly on a connected
complex), we can assume that 𝑍1 is connected. If 𝑍1 contains a closed edge-path that is not contractible
in 𝑍1, repeatedly attaching to 𝑍1 the images of reduced disc diagrams and their G-translates, we obtain
an increasing sequence 𝑍1 ⊂ 𝑍2 ⊂ · · · of connected essential G-c.s., such that their union 𝑋 ′ is simply
connected. By Corollary 2.3, we have that 𝑋 ′ is locally CAT(0), and so 𝑋 ′ is CAT(0) by Theorem 2.1.
It remains to apply Proposition 3.2. �

4. Not virtually cyclic or Z2

The first step of the proof of Proposition 3.2 is the following.

Lemma 4.1. Let G be a group acting almost freely on a CAT(0) triangle complex X. If X contains a
subcomplex Z that is a connected thick G-c.s., then

(i) G is not virtually cyclic and
(ii) G is not virtually Z2.
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Figure 1. The geodesic ray 𝛾1.

In the proof of Lemma 4.1, we will need the following vocabulary. Let X be a triangle complex. We
say that a ray 𝛾 : [0,∞) → 𝑋 or a path 𝛾 : [0, 1] → 𝑋 starts (respectively, ends) in a simplex 𝜎, if for
some 𝜀 > 0 the points 𝛾(0, 𝜀) (respectively, 𝛾(1− 𝜀, 1)) all lie in the interior of 𝜎. If 𝛾(0) (respectively,
𝛾(1)) lies in the interior of an edge e, then 𝛾 starts (respectively, ends) perpendicularly to e if the angle
at 𝛾(0) (respectively, 𝛾(1)) between 𝛾 and e is 𝜋

2 .
We will also need the following, which generalises an argument in the proof of [MP21, Theorem A].

Lemma 4.2. Let A be a group isomorphic to Z2 acting freely on a CAT(0) triangle complex W
with finitely many isometry types of simplices. Then there is an isometrically embedded A-cocompact
subcomplex in W isometric to the Euclidean plane.

Proof. Since W has finitely many isometry types of simplices, by Remark 2.4, all elements of A act as
loxodromic isometries on W. By [BH99, II.7.20(1)], we have Min(𝐴) = 𝑌 × R𝑛 with A preserving the
product structure and acting trivially on Y. By [BH99, II.7.20(2)], we have 𝑛 ≤ 2, but since A acts freely
by simplicial isometries, we have 𝑛 = 2, and so Y is a point, as desired. �

Proof of Lemma 4.1. Let e be an edge of Z of degree ≥ 3, and let x be a point in the interior of e. Let
𝑏1, 𝑏2, 𝑏3, be geodesics starting at x perpendicularly to e contained in distinct triangles 𝑇1, 𝑇2, 𝑇3. For
each 𝑖 = 1, 2, 3, the set of starting directions at points in 𝜕𝑇𝑖 of geodesics intersecting 𝑏𝑖 at angle < 𝜋

6
has positive Liouville measure (see [BB95, Section 3]). Let S denote the union of all the open edges
in the links lk𝑍𝑦 for all 𝑦 ∈ 𝑍1 \ 𝑍0, with the (infinite) Liouville measure. We say that (𝜉 𝑗 ) 𝑗 ∈ 𝑆Z with
𝜉 𝑗 ∈ lk𝑍𝑦 𝑗 determines a locally geodesic oriented line 𝛾 in 𝑍 \ 𝑍0 transverse to 𝑍1 if 𝛾 intersects 𝑍1

exactly at points 𝑦 𝑗 in directions 𝜉 𝑗 , in that order. Since G acts on Z properly and cocompactly, the set
of (𝜉 𝑗 ) 𝑗 ∈ 𝑆Z that determine locally geodesic oriented lines projects to a full measure subset in each
coordinate S (see [BB95, Section 3], which relies on [CFS82, Chapter 6]). Consequently, for 𝑖 = 1, 2, 3,
there exists a locally geodesic ray 𝛾𝑖 in Z starting at an interior point 𝑥𝑖 of 𝑏𝑖 at angle < 𝜋

6 from 𝑏𝑖 ,
disjoint from 𝑍0 and transverse to 𝑍1. Let 𝑎𝑖 = 𝑥𝑥𝑖 ⊂ 𝑏𝑖 . See Figure 1.

Since X is CAT(0), by Theorem 2.2, we have that 𝛾𝑖 are geodesic rays in X and 𝑎−1
𝑖 · 𝑎 𝑗 are geodesics

in X. Since each 𝛾−1
𝑖 · 𝑎−1

𝑖 · 𝑎 𝑗 · 𝛾 𝑗 is a piecewise geodesic with angles > 5𝜋
6 at the two breakpoints,

by [BH99, II.9.3], the rays 𝛾𝑖 , 𝛾 𝑗 are not asymptotic and they determine points at distance > 2𝜋
3 in

the Tits boundary of X. In particular, Z cannot be quasi-isometric to R since it contains three pairwise
nonasymptotic geodesic rays. This proves (i).

For (ii), assume for contradiction, that G is virtually Z2 generated by elements 𝑔, ℎ. Let 𝛼, 𝛽 be edge-
paths in Z connecting a basepoint 𝑦 ∈ 𝑍0 to 𝑔𝑦, ℎ𝑦, respectively. Then the concatenation 𝛼 ·𝑔𝛽 ·ℎ𝛼−1 ·𝛽−1

is a closed edge-path, and since X is simply connected, there is a reduced disc diagram 𝐷 → 𝑋 with
that boundary path. Let 𝑍 ′ ⊂ 𝑋 be the connected thick G-c.s. obtained from Z by adding the translates
under G of the image of D. The complex 𝑍 ′ is locally CAT(0) by Corollary 2.3. Let 𝑍 ′ → 𝑍 ′ be the
universal cover of 𝑍 ′, which is CAT(0) by Theorem 2.1. The action of G on 𝑍 ′ lifts to an almost free
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action of a group 𝐺 on 𝑍 ′ fitting into the short exact sequence 𝜋1𝑍
′ → 𝐺 → 𝐺. Since 𝐷 → 𝑍 ′ lifts to

𝐷 → 𝑍 ′, we have commuting �̃�, ℎ̃ ∈ 𝐺 mapping to 𝑔, ℎ ∈ 𝐺, and, hence, generating a subgroup 𝐴 < 𝐺
isomorphic to Z2.

Since A acts almost freely and is torsion free, we have that it acts freely on 𝑍 ′. By Lemma 4.2 applied
with 𝑊 = 𝑍 ′, there is an isometrically embedded A-cocompact subcomplex 𝐸 ⊂ 𝑍 ′ isometric to the
Euclidean plane. We now justify that the composition 𝜙 : 𝐸 ⊂ 𝑍 ′ → 𝑍 ′ ⊂ 𝑋 is an isometric embedding.

Indeed, for two triangles 𝑇,𝑇 ′ of E containing a common edge 𝑒′, the sum of the geodesic curvatures
in 𝜙(𝑇) and 𝜙(𝑇 ′) at any point of 𝜙(𝑒′) equals 0, and so the geodesic curvature at 𝜙(𝑒′) in any triangle
of X distinct from 𝜙(𝑇), 𝜙(𝑇 ′) is nonpositive. Consequently, 𝜙 is a local isometric embedding at 𝑒′.
Furthermore, since E is isometric to the Euclidean plane, for any geodesic 𝛾 in E passing through a
vertex v, the angle (see Section 2) between the incoming and outgoing directions of 𝛾 at v equals 𝜋. Since
the map that 𝜙 induces between lk𝐸𝑣 and lk𝑋𝜙 (𝑣) is locally injective, the angle between the incoming and
outgoing directions of 𝜙(𝛾) at 𝜙(𝑣) equals 𝜋 as well. By Theorem 2.2, we have that 𝜙(𝛾) is a geodesic.
Thus, 𝜙 is an isometric embedding, as desired.

Since the image of A in G is of finite index, it acts cocompactly on 𝑍 ′. Consequently, the geodesic
rays 𝛾𝑖 from the proof of part (i) are at bounded distance from 𝜙(𝐸) in 𝑍 ′. Since X is CAT(0), we obtain
that each 𝛾𝑖 is asymptotic to a geodesic ray in 𝜙(𝐸) and these three rays are pairwise at angle > 2𝜋

3 in
𝜙(𝐸), which is a contradiction. �

5. Folding

This section is devoted to a technical reduction of Proposition 3.2 to the case where the vertex links of
X are not ‘unfoldable’.

By a graph, we mean a (possibly infinite) metric graph with finitely many possible edge lengths. A
closed edge-path embedded in a graph Λ is a cycle of Λ. An edge-path I in Λ that is embedded, except
possibly at the endpoints, is a segment of Λ if the endpoints of I have degree ≥ 3 in Λ, but every internal
vertex of I has degree 2.

Definition 5.1. Let S be a set with an equivalence relation ∼, each of whose equivalence classes has size
≥ 2. A graph is a ∼-clover if it is obtained from the disjoint union of intervals 𝑆 × [0, 𝜋] by identifying
all the points in 𝑆 × 0 to one point called the basepoint and identifying each 𝑠 × 𝜋 with 𝑠′ × 𝜋 for 𝑠 ∼ 𝑠′.
A graph is a clover if it is a ∼-clover for some 𝑆,∼. A graph Γ is unfoldable at a vertex y if Γ is a wedge
Γ1 ∨ Γ2 at y of a cycle Γ1 of length 2𝜋 and a clover Γ2 with basepoint y (in particular, Γ is also a clover).
See Figure 2.

Suppose that we have a triangle complex 𝑋 ′ and a vertex 𝑤′ contained in distinct edges 𝑒1 = 𝑤′𝑣1,
𝑒2 = 𝑤′𝑣2 of the same length. Suppose that lk𝑋

′

𝑣1 is a circle of length 2𝜋 and lk𝑋
′

𝑣2 is a clover with
basepoint corresponding to 𝑒2. Then the quotient map 𝑝′ : 𝑋 ′ → 𝑋 with X obtained from 𝑋 ′ by
identifying 𝑣1 with 𝑣2 and 𝑒1 with 𝑒2 is called a folding (note that X might not be a simplicial complex,

Figure 2. An unfoldable graph.
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Figure 3. A folding 𝑝′ : 𝑋 ′ → 𝑋 over Γ1. Subgraphs corresponding to the links Γ1 and Γ2 and their
preimages are thickened, the edge 𝑣𝑤 and its preimage are dashed.

but in this article, we will be using only the inverse operation to folding which does result in a simplicial
complex).

Conversely, suppose that X is a triangle complex with a vertex v whose link Γ1 ∨ Γ2 is unfoldable at
a point y corresponding to an edge 𝑣𝑤. Then, up to an isometry, there exists a unique triangle complex
𝑋 ′ and a folding 𝑝′ : 𝑋 ′ → 𝑋 identifying edges 𝑤′𝑣1, 𝑤

′𝑣2 to 𝑤𝑣 and such that the links of 𝑣𝑖 in 𝑋 ′

map isometrically to the graphs Γ𝑖 in the link of v. See Figure 3. We call 𝑝′ the folding over Γ1 (since it
is uniquely determined by Γ1).

Suppose now that 𝑝′ : 𝑋 ′ → 𝑋, 𝑝′ : �̂� ′ → 𝑋 are foldings over Γ1 ≠ Γ̂1. Suppose that 𝑣 ≠ �̂� and
�̂� ≠ 𝑤. We have that Γ̂1 lifts to a link lk𝑋

′

𝑣′ , which is again, unfoldable, except when lk𝑋
′

𝑣′ = Γ̂1. In that
exceptional case, we have Γ2 = Γ̂1 and 𝑝′ = 𝑝′, and we set 𝑝′′ = id. Otherwise, let 𝑝′′ : 𝑋 ′′ → 𝑋 ′ be
the folding over Γ̂1. We call 𝑝′′ ◦ 𝑝′ the folding over Γ1, Γ̂1. Note that the folding over Γ1, Γ̂1 coincides
with the folding over Γ̂1, Γ1.

Analogously, given a finite family of foldings 𝑝′𝜆 : 𝑋 ′𝜆 → 𝑋 over Γ𝜆1 (where 𝜆 is an index) with all
𝑣𝜆 distinct from all 𝑤𝜆, the folding over {Γ𝜆1 } is the composition of foldings over the lifts of Γ𝜆1 , which
does not depend on the order. For a countable family of such foldings 𝑝′𝜆 : 𝑋 ′𝜆 → 𝑋 , the folding over
{Γ𝜆1 } is the inverse limit of the foldings over the finite subsets of {Γ𝜆1 }.

Lemma 5.2. Let 𝑝F : 𝑋F → 𝑋 be the folding over a (finite or countable) family F = {Γ𝜆1 }.

(i) The map 𝑝F is a homotopy equivalence.
(ii) If X is locally CAT(0), then 𝑋F is locally CAT(0).

(iii) If X is essential, then 𝑋F is essential.

Proof. For part (i), note that if for some indices 𝜆, 𝜇, we have 𝑣𝜆 = 𝑣𝜇, then 𝑤𝜆 = 𝑤𝜇, since the point
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𝑦𝜆 in lk𝑋
𝑣𝜆

does not depend on Γ𝜆1 . Consequently, distinct edges 𝑣𝜆𝑤𝜆 might intersect only along 𝑤𝜆.
Thus, their union 𝑉 ⊂ 𝑋 is a forest, and so the quotient map 𝑞 : 𝑋 → 𝑋∗ collapsing each component of
V into a point is a homotopy equivalence. Similarly, the subcomplex𝑉F = 𝑝−1

F (𝑉) ⊂ 𝑋F is a forest, and
so the quotient map 𝑞F : 𝑋F → 𝑋∗ collapsing each component of 𝑉F into a point is also a homotopy
equivalence. Thus, the identity 𝑞F = 𝑞 ◦ 𝑝F implies part (i).

Part (ii) follows from the fact that the maps that 𝑝F induces between the links of 𝑋F and X are locally
injective and from Theorem E.

The map 𝑝F is a local isometry at the open edges outside 𝑉F . Thus, for part (iii), it suffices to justify
that the links of the vertices in each 𝑝−1

F (𝑣𝜆) have no leaves. But each such link is a cycle Γ𝜇1 (for
𝑣𝜇 = 𝑣𝜆) or a clover, as desired. �

Proposition 5.3. Let G be a group acting almost freely and without weak inversions on a CAT(0)
triangle complex X that is an increasing union of connected essential G-c.s. Then G acts almost freely
and without weak inversions on a CAT(0) triangle complex 𝑋 ′ that is an increasing union of connected
essential G-c.s., and none of whose links are unfoldable.

Furthermore, if X contains an edge of degree ≥ 3, then 𝑋 ′ contains an edge of degree ≥ 3 or G
contains a nonabelian free group.

Proof. We fix an increasing sequence 𝑍𝑘 ⊂ 𝑋 of connected essential G-c.s. exhausting X. A multifolding
(𝑋 ′, (𝑍 ′

𝑘 ), 𝑝
′) is a:

(i) CAT(0) triangle complex 𝑋 ′ with an action of G,
(ii) a sequence (𝑍 ′

𝑘 ) of essential G-c.s. exhausting 𝑋 ′ and
(iii) a G-equivariant simplicial map 𝑝′ : 𝑋 ′ → 𝑋 that

• maps bijectively the set of triangles of each 𝑍 ′
𝑘 to the set of triangles of 𝑍𝑘 and

• whose restriction 𝑍 ′
𝑘 → 𝑍𝑘 is a homotopy equivalence.

We introduce a partial order ≤ on the set of multifoldings, writing (𝑋 ′, (𝑍 ′
𝑘 ), 𝑝

′) ≤ (𝑋 ′′, (𝑍 ′′
𝑘 ), 𝑝

′′)

(or, shortly, 𝑋 ′ ≤ 𝑋 ′′) if there is a G-equivariant simplicial map 𝑟 : 𝑋 ′′ → 𝑋 ′ satisfying 𝑝′′ = 𝑝′ ◦ 𝑟 .
Multifoldings 𝑋 ′, 𝑋 ′′ are equivalent if 𝑋 ′ ≤ 𝑋 ′′ and 𝑋 ′′ ≤ 𝑋 ′. Let X be the set of equivalence classes
of multifoldings.

We claim that every chain of elements 𝑋 ′𝜆 in X (where 𝜆 is an index) has an upper bound. Indeed,
denote by 𝑝′𝑘 the restriction of 𝑝′ to 𝑍 ′

𝑘 and write (𝑍 ′
𝑘 , 𝑝

′
𝑘 ) ≤ (𝑍 ′′

𝑘 , 𝑝
′′
𝑘 ) whenever there is a G-equivariant

simplicial map 𝑟 : 𝑍 ′′
𝑘 → 𝑍 ′

𝑘 satisfying 𝑝′′𝑘 = 𝑝′𝑘 ◦ 𝑟 . For each k, since G acts properly and cocompactly
on 𝑍 ′𝜆

𝑘 , by the first bullet point, we have that (𝑍 ′𝜆
𝑘 , 𝑝′𝜆𝑘 ) can take on only finitely values up to the

appropriate equivalence. Thus, there exists a largest element among the (𝑍 ′𝜆
𝑘 , 𝑝′𝜆𝑘 ), which we call 𝑍 ′∞

𝑘 .
Furthermore, since (𝑍 ′

𝑘+1, 𝑝
′
𝑘+1) ≤ (𝑍 ′′

𝑘+1, 𝑝
′′
𝑘+1) implies (𝑍 ′

𝑘 , 𝑝
′
𝑘 ) ≤ (𝑍 ′′

𝑘 , 𝑝
′′
𝑘 ), we have natural injective

maps 𝑍 ′∞
𝑘 → 𝑍 ′∞

𝑘+1. Let 𝑋 ′∞ be their direct limit, equipped with the limit map 𝑝′∞ to X. Since each 𝑍 ′∞
𝑘

is locally CAT(0) (Corollary 2.3), we have that 𝑋 ′∞ is locally CAT(0) (Theorem E).
To prove that 𝑋 ′∞ is an upper bound for our chain in X , by Theorem 2.1, it remains to prove that 𝑋 ′∞

is simply connected. Let 𝛼 be a closed edge-path in the 1-skeleton of 𝑋 ′∞, and fix k, such that 𝛼 lies
in 𝑍 ′∞

𝑘 . Fix 𝜆 with 𝑍 ′𝜆
𝑘 = 𝑍 ′∞

𝑘 , and keep the notation 𝛼 for its copy in 𝑍 ′𝜆
𝑘 . Since 𝑋 ′𝜆 is simply connected,

there is a disc diagram 𝐷 → 𝑋 ′𝜆 with boundary path 𝛼. Fix l, such that the image of D is contained in
𝑍 ′𝜆
𝑙 . Since, by the second bullet point, the induced map 𝜋1𝑍

′∞
𝑙 → 𝜋1𝑍

′𝜆
𝑙 is an isomorphism, we have

that 𝛼 is trivial in 𝜋1𝑍
′∞
𝑙 and, hence, in 𝜋1𝑋

′∞. Consequently, by the Kuratowski–Zorn lemma, there is
a maximal element 𝑋 ′ ∈ X .

We now prove that none of the links of 𝑋 ′ are unfoldable. Otherwise, suppose that 𝑋 ′ has a vertex v
whose link Γ = Γ1 ∨ Γ2 is unfoldable at a point corresponding to an edge 𝑣𝑤 of 𝑋 ′. Let F = {𝑔Γ1}, for
𝑔 ∈ 𝐺. Since G acts without weak inversions, we have 𝑔𝑣 ≠ ℎ𝑤, for all 𝑔, ℎ ∈ 𝐺. Thus, we can define
the folding over F , which we denote by 𝑋F → 𝑋 ′. The action of G on 𝑋 ′ lifts to an action of G on 𝑋F .
For each essential G-c.s. 𝑍 ′ ⊂ 𝑋 ′, let 𝑍F ⊂ 𝑋F be the closure of the union of all the open triangles
of 𝑋F mapping into 𝑍 ′. Note that if 𝑍 ′ does not contain v, or if 𝑍 ′ contains v, but lk𝑍

′

𝑣 is contained
in Γ1 or Γ2 (in the latter case, lk𝑍

′

𝑣 ⊂
⋂

𝑔∈Stab(𝑣) 𝑔Γ2), then 𝑍F → 𝑍 ′ is an isometry. Otherwise, lk𝑍
′

𝑣
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contains edges lying on both the cycle Γ1 and the clover Γ2. Since 𝑍 ′ is essential, the link lk𝑍
′

𝑣 is the
wedge of Γ1 and a clover, so it is unfoldable. Then 𝑍F → 𝑍 ′ is the folding over the family {𝑔Γ1}, for
𝑔 ∈ 𝐺. By Lemma 5.2(i,iii), we have that 𝑍F is essential and 𝑍F → 𝑍 ′ is a homotopy equivalence.
By Lemma 5.2(i,ii), we have that 𝑋F is simply connected and locally CAT(0), and, hence, CAT(0) by
Theorem 2.1. Consequently, we have 𝑋F ∈ X and 𝑋F > 𝑋 ′, contradicting the maximality of 𝑋 ′. Thus,
none of the links of 𝑋 ′ are unfoldable.

For the last assertion, note that, by Lemma 4.1 applied to X, we have that G is neither virtually cyclic,
nor virtually Z2. Moreover, G is finitely generated, since it acts properly and cocompactly on 𝑍1, which
is connected. Consequently, if 𝑋 ′ does not have edges of degree 3, then by Proposition 3.1, we have that
G contains a nonabelian free group, as desired. �

6. Criteria for rank 1 elements

In this section, we give criteria for finding ‘rank 1’ elements, and, consequently, free subgroups in G.

Definition 6.1. Let 𝛾 be a geodesic line in a CAT(0) triangle complex X. We say that 𝛾 is curved if 𝛾
passes through a vertex v and its incoming and outgoing directions at v are at angle > 𝜋.

Lemma 6.2. Let g be a loxodromic isometry of a CAT(0) triangle complex X with a curved axis 𝛾.
Then there exists M, such that the projection to 𝛾 of each closed metric ball in X disjoint from 𝛾 has
diameter ≤ 𝑀 .

Proof. Suppose that 𝛾 passes through a vertex v with incoming and outgoing directions at angle > 𝜋+ 𝜅,
for some 𝜋

2 > 𝜅 > 0. Let R be the translation length of g. We will prove that 𝑀 = 𝑅� 2𝜋
𝜅 � satisfies the

lemma. Otherwise, let 𝑥, 𝑦 be points in a closed metric ball disjoint from 𝛾, such that the projections
𝑥 ′, 𝑦′ of 𝑥, 𝑦 to 𝛾 are at distance > 𝑀 .

There are at least 𝑛 = � 2𝜋
𝜅 � translates of v under 〈𝑔〉 on 𝑥 ′𝑦′ distinct from 𝑥 ′, 𝑦′. We denote these

translates by 𝑣′1, . . . , 𝑣
′
𝑛, in the order in which they appear on 𝑥 ′𝑦′. By the continuity of the projection

map, there are points 𝑣1, . . . , 𝑣𝑛 lying on the geodesic 𝑥𝑦 in that order, such that each 𝑣′𝑖 is the projection
of 𝑣𝑖 to 𝛾. We additionally denote 𝑣0 = 𝑥, 𝑣′0 = 𝑥 ′, 𝑣𝑛+1 = 𝑦, 𝑣′𝑛+1 = 𝑦′. For 0 ≤ 𝑖 ≤ 𝑛, let 𝛽𝑖 denote the
geodesic quadrilateral 𝑣𝑖𝑣𝑖+1𝑣

′
𝑖+1𝑣

′
𝑖𝑣𝑖 . The sum of the four Alexandrov angles of each 𝛽𝑖 is ≤ 2𝜋 [BH99,

II.2.11], so the sum of all the Alexandrov angles of all 𝛽𝑖 is ≤ (𝑛 + 1)2𝜋.
On the other hand, for 0 ≤ 𝑖 < 𝑛, the sum of the Alexandrov angles of 𝛽𝑖 and 𝛽𝑖+1 at 𝑣𝑖+1 is ≥ 𝜋.

We will now prove that the sum of the Alexandrov angles of 𝛽𝑖 and 𝛽𝑖+1 at 𝑣′𝑖+1 is > 𝜋 + 𝜅. Indeed, if
one of them is not equal to the angle in the usual sense (see Section 2), then it equals 𝜋. However, since
𝑣′𝑖+1 is the projection of 𝑣𝑖+1, the second Alexandrov angle is ≥ 𝜋

2 , so their sum is ≥ 3𝜋
2 , as desired.

Consequently, we have 𝑛(𝜋 + 𝜋 + 𝜅) < (𝑛 + 1)2𝜋, and so 𝑛𝜅 < 2𝜋, which is a contradiction. �

Lemma 6.3. Let G be a group acting almost freely on a CAT(0) triangle complex X with a fixed point
𝜉 in the visual boundary of X. Suppose that there is a curved axis 𝛾 for some 𝑔 ∈ 𝐺 with one of the limit
points 𝜉. Then G is virtually cyclic.

Proof. Consider the space of geodesic rays 𝜌 : [0,∞) → 𝑋 representing 𝜉, with the pseudometric
𝑑 (𝜌1, 𝜌2) = inf𝑡1 ,𝑡2 𝑑 (𝜌1(𝑡1), 𝜌2(𝑡2)). Identifying 𝜌1 with 𝜌2 for 𝑑 (𝜌1, 𝜌2) = 0, we obtain a metric space
whose metric completion 𝑋𝜉 is CAT(0) [Lee00, Proposition 2.8]. Since X has geometric dimension
≤ 2 (see [Kle99]), by [Cap09, Remark after Corollary 4.4], we have that 𝑋𝜉 has geometric dimension
≤ 1 (more precisely, as we learned from Pierre-Emmanuel Caprace, for any 𝜌 representing 𝜉, the space
𝑋𝜉 ×R embeds isometrically in the pointed ultralimit of (𝑋, 𝜌(𝑛))𝑛, which has geometric dimension ≤ 2
by [Lyt05, Lemma 11.1]). Since G fixes 𝜉, the action of G on X induces an action of G on 𝑋𝜉 .

We will now justify that a complete CAT(0) space 𝑋𝜉 of geometric dimension ≤ 1 is an R-tree,
which we learned also from Pierre-Emmanuel Caprace. For a geodesic triangle 𝑥𝑦𝑧 in 𝑋𝜉 , let 𝑥 ′ be the
projection of x to the geodesic 𝑦𝑧. If 𝑥 ′ ≠ 𝑥, 𝑦, then the direction of the geodesic 𝑥 ′𝑥 in lk𝑋𝜉

𝑥′ is distinct
from that of the geodesic 𝑥 ′𝑦. Thus, the geodesic 𝑥𝑦 must pass through 𝑥 ′, since otherwise mapping it
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to lk𝑋𝜉

𝑥′ would give a path between distinct points of a discrete set. Analogously, the geodesic 𝑥𝑧 passes
through 𝑥 ′, and so 𝑥𝑦𝑧 is 0-thin, justifying that 𝑋𝜉 is an R-tree.

Suppose, first, that there is ℎ ∈ 𝐺 acting loxodromically on 𝑋𝜉 . Let M be the constant given
by Lemma 6.2 for 𝛾. Let 𝜌 be a ray in 𝛾 representing 𝜉. Since h acts loxodromically on 𝑋𝜉 , after
possibly replacing h by its power, we can assume 𝑑 (𝜌, ℎ𝜌) > 𝑀 . Assume, without loss of generality,
that the Busemann function (see [BH99, II.8.17 and II.8.20]) satisfies 𝐵𝜉 (𝜌(0)) ≤ 𝐵𝜉 (ℎ𝜌(0)). Then
for each 𝑡 ≥ 0, the projection 𝑝(𝑡) of 𝜌(𝑡) to ℎ𝛾 is contained in ℎ𝜌, and for 𝐷 = 𝑑 (𝜌(0), ℎ𝜌(0)),
we have 𝑑 (𝜌(𝑡), 𝑝(𝑡)) ≤ 𝐷. Pick 𝑘 ∈ N with 𝑘𝑀 > 2𝐷. Then, by the triangle inequality, we have
𝑑 (𝑝(0), 𝑝(2𝑘𝑀)) ≥ 2𝑘𝑀−2𝐷 > 𝑘𝑀 . Consequently, there is 0 ≤ 𝑛 < 𝑘 , such that 𝑑 (𝑝(2𝑛𝑀), 𝑝(2(𝑛+
1)𝑀)) > 𝑀 . Thus, the closed ball of radius M centred at 𝜌((2𝑛+ 1)𝑀) is disjoint from ℎ𝛾 and contains
points 𝜌(2𝑛𝑀), 𝜌(2(𝑛 + 1)𝑀) whose projections to ℎ𝛾 are at distance > 𝑀 . This contradicts the choice
of M.

Consequently, G has a global fixed point in 𝑋𝜉 (which might not be represented by a geodesic ray
but be a point added in the completion). Thus, there is 𝐷 > 0, such that for any 𝜀 > 0, there is a
geodesic ray 𝜌′ representing 𝜉 at distance ≤ 𝐷 from 𝜌 and satisfying 𝑑 (𝜌′, 𝑔𝜌′) < 𝜀 for each 𝑔 ∈ 𝐺.
Consider the homomorphism 𝜓 : 𝐺 → R defined by 𝜓(𝑔) = 𝐵𝜉 (𝑔𝑥) − 𝐵𝜉 (𝑥) for any 𝑥 ∈ 𝑋 . We will
now justify that 𝜓 has discrete image. Otherwise, for any 𝜀 > 0 and 𝜌′ as above, there is 𝑡 > 0, such
that 𝑑 (𝜌′(𝑡), 𝑔𝜌′(𝑡)) < 2𝜀, but g does not fix a point of X. This contradicts Remark 2.5 applied with Y
containing the D-neighbourhood of 𝛾.

Let K be the kernel of 𝜓. Arguing as in the previous paragraph, we obtain that every 𝑔 ∈ 𝐾 fixes
a point of X. By [NOP22, Theorem 1.1(i)], every finitely generated subgroup of K fixes a point of X.
Since K acts almost freely, we have that K is finite and so G is virtually cyclic. �

Proposition 6.4. Let G be a group acting almost freely on a CAT(0) triangle complex X. Assume that
G contains a loxodromic element g with a curved axis 𝛾. Then G is virtually cyclic or contains a
nonabelian free group.

Proof. By Lemma 6.2, g is rank 1 in the sense of [BF09, Definition 5.1]. By Lemma 6.3, we can assume
that G does not have a finite index subgroup fixing a limit point of 𝛾. Then there is 𝑓 ∈ 𝐺 with 𝛾 and
𝑓 𝛾 having disjoint limit point pairs. Consequently, by [BF09, Proposition 5.9], for some n, the elements
𝑔𝑛 and 𝑓 𝑔𝑛 𝑓 −1 generate a nonabelian free group. �

7. Extrationality

The main result of this section will be Proposition 7.4, where we will show that in the absence of
unfoldable vertices and curved axes, the complex X enjoys a particularly strong rationality property of
angles, which we call extrationality.

Definition 7.1. The branching locus E of a triangle complex X is the subcomplex of X that is the union
of all the closed edges of degree ≥ 3. A patch of X is a maximal connected subspace P of 𝑋 \ 𝐸 , such
that 𝑃 \ 𝑋0 is connected (see Figure 4). If X is simply connected, then by Van Kampen’s theorem, P is
a planar surface, and so we can choose an orientation on P.

We equip 𝑃 \ 𝑋0 with the length metric induced from 𝑋 \ 𝑋0 (see [BH99, Chapter I.3.24]). Let 𝑃
denote the completion of 𝑃 \ 𝑋0, which admits an obvious embedding of P. Furthermore, 𝑃 admits
an obvious triangle complex structure and a simplicial map 𝑃 → 𝑋 fitting the following commutative
diagram.

𝑃 𝑋

𝑃

.............................................................................. ............

.................................
.....
.......
.....

..................................................................................
...
............

Note that 𝑃 is a connected surface with boundary, which we denote 𝜕𝑃.
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Figure 4. A patch (in dark grey).

Definition 7.2. A triangle complex X is piecewise Euclidean if all its triangles are geodesic Euclidean
triangles. A piecewise Euclidean triangle complex X is rational if for any vertex v of X, all cycles and
segments (see Section 5) in the link of v have lengths commensurable with 𝜋. In particular, the angle at v
between any edges of the branching locus E is then commensurable with 𝜋. A rational triangle complex
X is extrational if

• for any vertex v of X with a component C of lk𝑋𝑣 a circle, we have that the length of C is 2𝜋 and
• each homomorphism 𝜓 defined below is trivial.

We define 𝜓 = 𝜓(𝑃) for each patch P of X. Consider the chain complex 𝐶∗(𝑃, 𝜕𝑃) consisting of those
singular chains that are affine with respect to the affine structure on 𝑃 induced by the piecewise Euclidean
metric. Note that the affine structure on 𝑃 has singularities at the points x of 𝜕𝑃 with lk𝑃𝑥 of length ≠ 𝜋,
and so we require our affine chains to be disjoint from such x except possibly at the vertices. For each
𝑥 ∈ 𝑃, choose (not necessarily continuously) a direction 𝜉𝑥 ∈ lk𝑃𝑥 at x, with the only restriction that
for 𝑥 ∈ 𝜕𝑃, the direction 𝜉𝑥 corresponds to one of the edges in 𝜕𝑃 containing x. For an affine singular
1-simplex 𝜎 → 𝑃 with endpoints x and y, let 𝜓(𝜎) ∈ R/𝜋Q be the oriented angle between 𝜉𝑥 and 𝜎 at
x minus the oriented angle between 𝜉𝑦 and 𝜎 at y. Note that since X was rational, this equals 0 mod 𝜋Q

for 𝜎 in 𝜕𝑃, and so we obtain a homomorphism 𝜓 : 𝐶1 (𝑃, 𝜕𝑃) → R/𝜋Q. Note that the restriction of 𝜓
to 𝑍1 (𝑃, 𝜕𝑃) does not depend on the choice of the 𝜉𝑥 . Furthermore, for each affine singular 2-simplex
𝜏, we have 𝜓(𝜕𝜏) = ±𝜋 = 0 mod 𝜋Q, and so 𝜓 descends to a homomorphism 𝜓 : 𝐻1 (𝑃, 𝜕𝑃) → R/𝜋Q.
It is not hard to check that our 𝐻1(𝑃, 𝜕𝑃) coincides with the usual first (singular) homology group.

We will need the following variant of [BB95, Lemma 7.4] that was implicit in the proof of [NOP22,
Proposition 3.4].

Lemma 7.3. Let G be a group acting almost freely on a CAT(0) triangle complex X that is an increasing
union of essential G-c.s. Furthermore, assume that there is a vertex v of X with points 𝜉𝑖 , 𝜂𝑖 ∈ lk𝑋𝑣 , for
𝑖 = 1, . . . , 𝑛, such that

• 𝑑𝑋𝑣 (𝜉𝑖 , 𝜂𝑖) = 𝜋 for 𝑖 = 1, . . . , 𝑛, and
• 𝑑𝑋𝑣 (𝜂𝑖 , 𝜉𝑖+1) ≥ 𝜋 for 𝑖 = 1, . . . , 𝑛 − 1 and
• 𝑑𝑋𝑣 (𝜂𝑛, 𝜉1) > 𝜋.

Then G contains a loxodromic element g with a curved axis.

Proof. Let 𝑍 ⊂ 𝑋 be an essential G-c.s. containing v, such that lk𝑍𝑣 contains 𝜉𝑖 , 𝜂𝑖 , with 𝑑𝑍𝑣 (𝜉𝑖 , 𝜂𝑖) = 𝜋,
for 𝑖 = 1, . . . , 𝑛. By [NOP22, Lemma 5.4] (which was stated in terms of the compact quotient but has
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the same proof for proper and cocompact actions), for any 𝜀 > 0, there is a path 𝜔 = 𝜔1 · · ·𝜔3𝑛 in Z,
such that

• paths 𝜔 𝑗 are local geodesics in Z, and
• there are 𝑔0 = id, 𝑔1, . . . , 𝑔𝑛 = 𝑔 ∈ 𝐺 such that paths 𝜔3𝑖+1 start at 𝑔𝑖𝑣, paths 𝜔3𝑖 end at 𝑔𝑖𝑣, and

except for that 𝜔 is disjoint from the vertex set 𝑍0 and transverse to 𝑍1, and
• the starting direction of 𝜔3𝑖+1 is at distance < 𝜀

2 to 𝑔𝑖𝜉𝑖+1 in lk𝑍𝑔𝑖𝑣 , and the ending direction of 𝜔3𝑖 is
at distance < 𝜀

2 to 𝑔𝑖𝜂𝑖 and
• at the remaining breakpoints, 𝜔 𝑗 and 𝜔 𝑗+1 are at angle > 𝜋 − 𝜀 (and ≤ 𝜋 since outside 𝑍0).

Since 𝜔 𝑗 are disjoint from 𝑍0 and transverse to 𝑍1, by Theorem 2.2, they are geodesics in X. The last
two bullet points hold in X as well. In particular, at all the breakpoints 𝜔 𝑗 and 𝜔 𝑗+1 are at angle > 𝜋 − 𝜀.
By [BB95, Lemma 2.5], the geodesic 𝛾 in X with the same endpoints as 𝜔 starts and ends in directions
at distance < (3𝑛 − 1)𝜀 to 𝜉1, 𝑔𝜂𝑛. Consequently, for 𝜀 sufficiently small, by Theorem 2.2, we have that⋃

𝑙∈Z 𝑔
𝑙𝛾 is a curved axis for g. �

Proposition 7.4. Let G be a group acting almost freely on a CAT(0) triangle complex X that is an
increasing union of essential G-c.s. and none of whose links are unfoldable. If X is not G-equivariantly
isometric (by a possibly nonsimplicial isometry) to a piecewise Euclidean triangle complex 𝑋 ′ or X is
isometric to such 𝑋 ′ but 𝑋 ′ is not extrational, then G is virtually cyclic or contains a nonabelian free
group.

Proof. To prove that G is virtually cyclic or contains a nonabelian free group in each case we will show
the existence of a curved axis in X (or in a different CAT(0) triangle complex 𝑋) for an element of G,
since then the proposition follows from Proposition 6.4.

Assume first that X is not G-equivariantly isometric to a piecewise Euclidean triangle complex 𝑋 ′.
Then by [BB95, Proposition 2.11] there is

(i) a point in the interior of a triangle of X with negative Gaussian curvature, or
(ii) a point in the interior of an edge of X with negative sum of geodesic curvatures of some two

incident triangles, or
(iii) a vertex v of X with lk𝑋𝑣 a circle of length > 2𝜋.

In case (iii), or, more generally, if lk𝑋𝑣 has a component C that is a circle of length > 2𝜋, let 𝜉1, 𝜂1 be
points at distance 𝜋 in C, and let 𝜂2, 𝜉2 be their antipodal points. Applying Lemma 7.3 with 𝑛 = 2, we
obtain a curved axis. In cases (i) and (ii), by [NOP22, Lemma 5.5], there is a CAT(0) triangle complex
𝑋 , obtained from X by a G-equivariant subdivision and a G-equivariant replacement of the smooth
Riemannian metrics, with a vertex 𝑢 ∈ 𝑋 whose lk𝑋𝑢 is either

• a circle of length > 2𝜋 or
• a graph obtained from a family of disjoint circles 𝐶1, 𝐶2, . . . of length 2𝜋 by glueing them along a

nontrivial arc b of length < 𝜋.

The first bullet point brings us to case (iii). In the case of the second bullet point, let 𝜉1, 𝜉2 ∈ 𝐶1 \ 𝑏

and 𝜂1, 𝜂2 ∈ 𝐶2 \ 𝑏 be points at distance 𝜋
2 from the endpoints of b, with 𝑑𝑋𝑢 (𝜉1, 𝜂1) = 𝑑𝑋𝑢 (𝜉2, 𝜂2) = 𝜋.

Applying Lemma 7.3 with 𝑛 = 2, we obtain a curved axis in 𝑋 , as desired.
Thus, without loss of generality, we can assume that X is a piecewise Euclidean triangle complex. If

X is not rational, then by [BB95, Proposition 7.7], applied to an essential G-c.s., there is a closed locally
injective edge-path 𝛽 in some lk𝑋𝑣 whose length is not commensurable with 𝜋. In particular, by [BB95,
Lemma 6.1(iii)], there are points 𝜉, 𝜂 in lk𝑋𝑣 at distance > 𝜋+𝛿, for some 𝛿 > 0 (one could apply [NOP22,
Corollary 1.7] to find such 𝜉, 𝜂 in 𝛽, but it does not simplify the argument). Let 𝛽− (respectively, 𝛽+) be
the shortest path from 𝜉 (respectively, 𝜂) to 𝛽. Since the length of 𝛽 is not commensurable with 𝜋, there
is a path 𝛽−𝛽0𝛽+ with 𝛽0 factoring through the universal cover of 𝛽 whose length equals (2𝑛 − 1)𝜋 + 𝛿′

for some 𝑛 ∈ N and 0 ≤ 𝛿′ ≤ 𝛿. Choosing 𝜉1 = 𝜉, 𝜂1, 𝜉2, . . . , 𝜂𝑛 as consecutive points at distance 𝜋
along that path, we have 𝑑𝑋𝑣 (𝜉1, 𝜂𝑛) > 𝜋. Applying Lemma 7.3, we obtain a curved axis.
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Finally, if X is not extrational, let P be a patch of X with nontrivial 𝜓 = 𝜓(𝑃). Since P is planar,
there is an element in 𝐻1 (𝑃, 𝜕𝑃) represented by a piecewise affine path 𝛼 in 𝑃 with endpoints in 𝜕𝑃
and 𝜓(𝛼) ≠ 0. Let 𝛼 be shortest among such paths, which exists since Stab(𝑃) acts cocompactly on 𝑃.
Note that then 𝛼 does not intersect 𝜕𝑃 except at its endpoints, since, otherwise, we could decompose it
into two shorter paths, with 𝜓 nontrivial on at least one of them. Thus, the image of 𝛼 in X (for which
we keep the same notation) is a local geodesic in X that intersects the branching locus E exactly at its
endpoints 𝑥, 𝑥 ′. Let e (respectively, 𝑒′) be the segment of lk𝑋𝑥 (respectively, lk𝑋𝑥′) containing the point
corresponding to the direction of 𝛼. By the shortness condition, we have that e (respectively, 𝑒′) has
endpoints at distance ≥ 𝜋

2 from x (respectively, 𝑥 ′), and so is of length ≥ 𝜋. They cannot both have length
𝜋, since then we would have 𝜓(𝛼) = 0, so assume, without loss of generality, that the length l of e is > 𝜋.

If 𝑙 > 2𝜋, then it is easy to find points 𝜂1, 𝜉1, 𝜉2, 𝜂2 lying on l in that order and satisfying the
hypothesis of Lemma 7.3 with 𝑛 = 2. If 2𝜋 > 𝑙 > 𝜋 or 𝑙 = 2𝜋 and the endpoints of e are distinct, then
the construction of such points is given in the proof of [BB95, Lemma 7.6]. It remains to consider the
case where 𝑙 = 2𝜋 and where both endpoints of e are equal to a vertex y. Let Γ2 be the graph obtained
from lk𝑋𝑥 by removing e. If Γ2 contains a point z at distance > 𝜋 from y, then it is easy to find points
𝜉1, 𝜂1, 𝜉2, 𝜂2 on a geodesic from z to the midpoint of e satisfying the hypothesis of Lemma 7.3 with
𝑛 = 2. Otherwise, Γ2 is a clover, contradicting the assumption that lk𝑋𝑥 is not unfoldable. �

8. Sheared geodesics

In this section, we prove that the following piecewise geodesics have distinct endpoints. We will use
some vocabulary from Section 4.

Definition 8.1. A sheared geodesic in a piecewise Euclidean triangle complex X is a concatenation
𝛾1 · 𝛾2 · · · 𝛾2𝑘−1 · 𝛾2𝑘 of geodesics, such that (see Figure 5):

• for 𝑖 = 1, . . . , 𝑘, the (possibly trivial) geodesic 𝛾2𝑖 lies in the interior of an edge 𝑒𝑖 of X and
• for 𝑖 = 1, . . . , 𝑘 − 1, the geodesic 𝛾2𝑖−1 ends and the geodesic 𝛾2𝑖+1 starts perpendicularly to 𝑒𝑖 in

triangles of X that are distinct, and the geodesic 𝛾2𝑘−1 ends perpendicularly to 𝑒𝑘 in a triangle.

Proposition 8.2. Let X be a piecewise Euclidean triangle complex that is CAT(0). Let 𝛾 in X be a
sheared geodesic. Then 𝛾 is not a closed path.

The proof will use the following two building blocks.

Lemma 8.3. Let X be a piecewise Euclidean triangle complex that is CAT(0). Let 𝑥𝑦 be a nontrivial
geodesic in X, such that y belongs to the interior of an edge e of X and 𝑥𝑦 ends in a triangle T. Then for
any z in the interior of e, the geodesic 𝑥𝑧 is nontrivial and ends in T.

Proof. We have 𝑧 ≠ 𝑥 since edges are geodesics, and so, in particular, x does not lie in e. If for some z in
the interior of e the geodesic 𝑥𝑧 does not end in T, then, since the geodesic 𝑥𝑧 varies continuously with
z, for some z in the interior of e, the geodesic 𝑥𝑧 ends in e. Denote by 𝑒1, 𝑒2 the two subedges into which

Figure 5. A sheared geodesic.
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such z divides e. Suppose that 𝑥𝑧 ends in 𝑒1. Then the entire 𝑒1 must lie in 𝑥𝑧. Moreover, appending 𝑥𝑧
by 𝑒2, we also obtain a geodesic (Theorem 2.2). Since y lies in 𝑒 = 𝑒1 · 𝑒2, this shows that 𝑥𝑦 ends in e,
which is a contradiction. �

Lemma 8.4. Let X be a piecewise Euclidean triangle complex that is CAT(0). Let 𝑥𝑧 be a nontrivial
geodesic in X, such that z belongs to the interior of an edge e of X and 𝑥𝑧 ends in a triangle T.
Suppose that y belongs to the interior of an edge 𝑒′ of X and 𝑧𝑦 is a nontrivial geodesic in X that starts
perpendicularly to e in a triangle distinct from T and ends perpendicularly to 𝑒′ in a triangle 𝑇 ′. Then
the geodesic 𝑥𝑦 is nontrivial and ends in 𝑇 ′.

Proof. Consider the geodesic triangle 𝑥𝑦𝑧. By our assumptions, its Alexandrov angle at z is > 𝜋
2 , and so,

in particular, 𝑥 ≠ 𝑦, and its Alexandrov angle at y is < 𝜋
2 . Since 𝑧𝑦 ends in a triangle 𝑇 ′ perpendicularly

to 𝑒′, we have that 𝑥𝑦 ends in 𝑇 ′, as desired. �

Proof of Proposition 8.2. Let 𝛾 = 𝛾1 · 𝛾2 · · · 𝛾2𝑘−1 · 𝛾2𝑘 as in Definition 8.1. For 𝑖 = 1, . . . , 𝑘, denote
𝛾2𝑖 = 𝑦𝑖𝑧𝑖 and denote by 𝑇𝑖 the triangle in which 𝛾2𝑖−1 ends. Let x be the starting point of 𝛾1. We
prove by induction on 𝑖 = 1, . . . , 𝑘, that x and 𝑧𝑖 are distinct and that the geodesic 𝑥𝑧𝑖 ends in 𝑇𝑖 . The
proposition follows from this induction hypothesis applied with 𝑖 = 𝑘 .

For 𝑖 = 1, the induction hypothesis follows from Lemma 8.3. Suppose now that we have established
it for some 𝑖 = 𝑚 < 𝑘 . Then, by Lemma 8.4, the geodesic 𝑥𝑦𝑚+1 is nontrivial and ends in 𝑇𝑚+1. Thus,
by Lemma 8.3, the induction hypothesis holds for 𝑖 = 𝑚 + 1. �

9. Free

Proof of Proposition 3.2. By Proposition 5.3, we can assume that none of the vertex links of X are
unfoldable. Thus, by Proposition 7.4 and Lemma 4.1(i), we can assume that X is piecewise Euclidean
and extrational. Let 𝑍 ⊂ 𝑋 be a thick G-c.s. Note that each patch of X either has no triangle in Z or is
contained in Z, in which case, we call it a Z-patch.

Since X is rational, and Z is a G-c.s., there is 𝑞 ∈ N, such that for each Z-patch P and each vertex
𝑣 ∈ 𝜕𝑃, the length of lk𝑃𝑣 is a multiplicity of 𝜋

𝑞 . For each Z-patch P, we define the homomorphism
𝜓 ′ = 𝜓 ′(𝑃) : 𝐻1(𝑃, 𝜕𝑃) → R/

𝜋
𝑞 Z in the same way as 𝜓, but replacing 𝜋Q by 𝜋

𝑞 Z. We have 𝜓 = 𝜓 ′ mod
𝜋Q. Since 𝜓 is trivial, the image of 𝜓 ′ is contained in 𝜋Q/ 𝜋

𝑞 Z. Since there are finitely many G-orbits of
Z-patches, and since each 𝐻1(𝑃, 𝜕𝑃) is finitely generated as a Stab(𝑃)-module, there is 𝑞′ ∈ N, such
that the image of each 𝜓 ′ is contained in 𝜋

𝑞′Z/
𝜋
𝑞 Z. Consequently, for any Z-patch P, any geodesic 𝑥𝑦 in

𝑃 disjoint from 𝜕𝑃, except at its endpoints, that is at angle ∈ 𝜋
𝑞′Z from 𝜕𝑃 at x, is also at angle ∈ 𝜋

𝑞′Z

from 𝜕𝑃 at y. Without loss of generality, assume that 𝑞′ is even.
We need the following variant of the Liouville measure 𝜇 from [BB95, Section 3]. Let S be the set

of all the directions 𝜉 at an angle 𝜃 (𝜉) ∈ 𝜋
𝑞′Z ∩ (− 𝜋

2 ,
𝜋
2 ) from a direction normal to E in the links lk𝑍𝑥

for all the points 𝑥 ∈ 𝑍 that lie in the interior of an edge e of E. The Liouville measure 𝑑𝜇(𝜉) on S is
given as cos 𝜃 (𝜉)𝑑𝑥, where 𝑑𝑥 is the volume element on e. Let 𝑉 ⊂ 𝑆 be the full measure subset of
S of directions 𝜉, such that each geodesic ray 𝛾 in Z with starting direction 𝜉 is disjoint from 𝑍0. Let
𝐹 : 𝑉 → P (𝑉) be the map defined by 𝜂 ∈ 𝐹 (𝜉) for 𝜂 ∈ lk𝑍𝑥 if there exists a geodesic 𝑦𝑧 in Z with
starting direction 𝜉, intersecting E only in y and x and with 𝜂 being the direction at x of 𝑥𝑧. Since G acts
on Z properly and cocompactly, we have that each 𝐹 (𝜉) is finite. We can thus define a Markov chain
with states V and transition probabilities 1

|𝐹 ( 𝜉 ) | from 𝜉 to each 𝜂 ∈ 𝐹 (𝜉). By (the calculation in) [BB95,
Proposition 3.3], the measure 𝜇 is stationary for this Markov chain. Thus, the space 𝑉Z can be equipped
with Markov measure 𝜇∗ invariant under the shift (see, e.g. [Wal82, Example (8), page 21]). Since Z
is a G-c.s., the quotient 𝑉Z/𝐺 by the diagonal action of G is of finite measure. Note that the shift map
descends to 𝑉Z/𝐺 and is still measure preserving.

Let e be an edge of Z lying in three distinct triangles 𝑇𝑎, 𝑇𝑏 , 𝑇𝑐 of Z. Let𝑉𝑎𝑏 ⊂ 𝑉Z be the set of (𝜉𝑖)𝑖 ,
such that
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Figure 6. The graph Γ.

• we have 𝜉1 ∈ lk𝑇𝑎𝑥 for 𝑥 ∈ 𝑒, and 𝜉1 is at angle 𝜋
2 from e and

• the geodesic 𝑦𝑥 from the definition of 𝜉1 ∈ 𝐹 (𝜉0) ends in 𝑇𝑏 .

Note that𝑉𝑎𝑏 has positive Markov measure. Thus, by the Poincaré recurrence (see, e.g. [Wal82, Theorem
1.4]), there is (𝜉𝑖)𝑖 ∈ 𝑉𝑎𝑏 and 𝑗 > 0 with (𝜉𝑖− 𝑗 )𝑖 ∈ 𝐺𝑉𝑎𝑏 . Consequently, there is a geodesic 𝛾𝑎𝑏 in 𝑍 \𝑍0

starting perpendicularly to e in 𝑇𝑎 and ending perpendicularly to a translate 𝑓 𝑒 in 𝑓 𝑇𝑏 , for some 𝑓 ∈ 𝐺.
Denote by 𝑎, 𝑓 𝑏 the endpoints of 𝛾𝑎𝑏 . Let 𝐼𝑎𝑏 be the domain of the isometric embedding 𝛾𝑎𝑏 : 𝐼𝑎𝑏 →

𝑍 \ 𝑍0. Analogously, there is a geodesic 𝛾𝑐𝑎 : 𝐼𝑐𝑎 → 𝑍 \ 𝑍0 starting perpendicularly to e in 𝑇𝑐 and
ending perpendicularly to a translate 𝑔𝑒 in 𝑔𝑇𝑎, with endpoints 𝑐, 𝑎′, for some 𝑔 ∈ 𝐺. Finally, there
is a geodesic 𝛾𝑏𝑐 : 𝐼𝑏𝑐 → 𝑍 \ 𝑍0 starting perpendicularly to 𝑔𝑒 in 𝑇𝑏 and ending perpendicularly to a
translate 𝑓 ′𝑔𝑒 in 𝑓 ′𝑔𝑇𝑐 , with endpoints 𝑏′, 𝑓 ′𝑐′, for some 𝑓 ′ ∈ 𝐺. Let 𝛾 : 𝐼 → 𝑒 be the shortest geodesic
in e containing all 𝑎, 𝑏, 𝑐 in its image (possibly I is a single point), and let 𝛾′ : 𝐼 ′ → 𝑔𝑒 be the shortest
geodesic in 𝑔𝑒 containing all 𝑎′, 𝑏′, 𝑐′ in its image.

Let Γ be the metric graph obtained in the following way. We start from the disjoint union of the five
intervals 𝐼𝑎𝑏 , 𝐼𝑐𝑎, 𝐼𝑏𝑐 , 𝐼, 𝐼 ′, and we identify (see Figure 6):

• points of I and 𝐼𝑎𝑏 mapping to a under 𝛾 and 𝛾𝑎𝑏 ,
• points of I and 𝐼𝑐𝑎 mapping to c under 𝛾 and 𝛾𝑐𝑎,
• points of 𝐼 ′ and 𝐼𝑐𝑎 mapping to 𝑎′ under 𝛾′ and 𝛾𝑐𝑎 and
• points of 𝐼 ′ and 𝐼𝑏𝑐 mapping to 𝑏′ under 𝛾′ and 𝛾𝑏𝑐 .

Note that Γ admits the map 𝜑 : Γ → 𝑍 that is the quotient of 𝛾𝑎𝑏 � 𝛾𝑐𝑎 � 𝛾𝑏𝑐 � 𝛾 � 𝛾′. Let 𝑠, 𝑡, 𝑠′, 𝑡 ′,
be the points in 𝐼, 𝐼𝑎𝑏 , 𝐼 ′, 𝐼𝑏𝑐 mapping under 𝜑 to 𝑏, 𝑓 𝑏, 𝑐′, 𝑓 ′𝑐′, respectively.

Let 𝐹2 be the free group on two generators ℎ, ℎ′, and let Γ̂ be the quotient of the graph 𝐹2 × Γ (which
is the disjoint union of 𝐹2 copies of Γ) by the relations 𝑤 × 𝑡 ∼ 𝑤ℎ× 𝑠, 𝑤 × 𝑡 ′ ∼ 𝑤ℎ′ × 𝑠′, for all 𝑤 ∈ 𝐹2.
Note that Γ̂ is a tree with a free action of 𝐹2. Let 𝜑∗ : 𝐹2 → 𝐺 be the homomorphism mapping ℎ, ℎ′ to
𝑓 , 𝑓 ′, respectively. Then 𝜑 extends to a 𝜑∗-equivariant map 𝜑 : Γ̂ → 𝑍 mapping each 𝑤 × 𝑟 ∈ 𝐹2 × Γ to
𝜑∗(𝑤)𝜑(𝑟) ∈ 𝑍 .

Let w be a nontrivial element of 𝐹2, and let R𝑤 be the axis for w in Γ̂. Pick 𝑝 ∈ R𝑤 an endpoint of
a translate of one of 𝐼𝑎𝑏 , 𝐼𝑐𝑎, 𝐼𝑏𝑐 contained in R𝑤 . Let 𝐼𝑤 ⊂ R𝑤 be the interval between p and 𝑤𝑝,
and let 𝛾𝑤 : 𝐼𝑤 → 𝑍 be the restriction of 𝜑 to 𝐼𝑤 . Since 𝑇𝑎, 𝑇𝑏 , 𝑇𝑐 , were distinct, we have that 𝛾𝑤 is a
sheared geodesic. By Proposition 8.2, we have 𝜑(𝑝) ≠ 𝜑(𝑤𝑝) = 𝜑∗(𝑤)𝜑(𝑝), and, consequently, 𝜑∗(𝑤)
is nontrivial. Thus, 𝜑∗ is injective, and so G contains a nonabelian free group. �
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