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AN ANALYTIC EXTENSION OF A SPACELIKE MAXIMAL SURFACE

SUNG-EUN KOH

It is shown that a spacelike maximal surface in the three dimensional Lorentz-
Minkowski space can be extended analytically if it meets a spacelike plane at a
constant hyperbolic angle.

Let L3 be the three dimensional Lorentz-Minkowski space, that is, the real vector
space K3 endowed with the Lorentzian metric tensor (•, •) given by (•, •) = dx2 + dy2 — dt2

where (x, y, t) are the canonical coordinate of R3. An immersed surface E C L3 is called
spacelike if the induced metric on E is a Riemannian metric, which is equivalent to the
fact that the unit normal vector field 77 to E is a timelike vector field. If the trace of
the map dr] : TE —• TE is zero everywhere on S, the surface E is called a maximal
surface. It is well knows that for a spacelike maximal surface E the coordinate functions
x, y, t: E —• E are harmonic functions and hence it admits a Weierstrass representation
[4], similar to minimal surfaces in the three dimensional Euclidean space E3. But it is
very different from the minimal surfaces in E3 in that it has naturally arising singularities
due to the geometry of the unit normal vector field 77.

If a spacelike maximal surface E has no singular point, the unit normal vector field
can be considered as a map 77 : E —y H2 = {(x,y,t) : x2 + y2 — t2 = — l } . Let
a : C - {\z\ = 1} -4 EF be the stereographic projection defined by

that is, a(z) is the intersection of H2 and the line joining the point (Re(z), Im(z), 0) and
"the south pole" (0,0, —1) of H2. It is well known that a is conformal in the natural
manner. Then one has a complex-valued conformal Gauss map a~l o 77: E -> C — {\z\ =
l } . If, moreover, E is connected (which is assumed in this paper), one has by the
connectivity either 77: E -» H^ = {(x, y, t) : x2 + y2 -12 = - 1 , t > 0} and consequently
|u-1o77(p)j < 1 for every p € E or 77: E -»• H i = {{x,y,t) : x1 + y2 - t2 = - 1 , t < 0}
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and consequently \a~l o n(p)\ > 1 for every p 6 E. Hence, if E has a singular point, say
g e E , then one has \a~x o t](q)\ = 1 and vice versa.

On the other hand, it has long been known that in the three dimensional Euclidean
space E3 one can reflect a minimal surface across a part of its boundary if the minimal
surface meets a plane at a constant angle (not necessarily 90 degrees) along the boundary
[3]. The proof of this fact makes use of H. A. Schwarz's reflection principle for holomorphic
functions.

Then, since a spacelike maximal surface in L3 is represented with holomorphic data,
similar to a minmal surface in E3, one may expect that a spacelike maximal surface in L3

has the same reflection property. In fact, the argument in [3] gives the following theorem.

THEOREM 1. Let E C L3 be a spacelike maximal surface (possibly with singular
points) and let FI be a spacelike plane. Suppose that L C E n II is a C1-curve, E is Cl

along L and at all points of L the tangent plane to E makes a constant hyperbolic angle
9 > 0 with II. Then E can be analytically extended across L to a spacelike maximal
surface E satisfying the following properties:

(i) E = E U E* where E* is the set of all images p* ofp € E under the analytic
extension map *.

(ii) Two points p and p* are separated by U. in such a way that

where d is the Lorentzian distance.

(iii) The Gauss map g : E —> C satisfies

9(P)9(P*) = tanh2(0/2).

For the definition of the hyperbolic angle, see for example, [2, p. 57].
REMARK 1. Since the hypothesis on L requires that the tangent plane is defined at every
point of L, it is assumed implicitly in Theorem 1 that L contains no singular point of E.

REMARK 2. For a given real analytic curve 7 in the spacelike plane II, the existence of
the spacelike maximal surface S which meets II along 7 at a constant hyperbolic angle
9 ^ 0 is guaranteed by the Bjorling's representation formula [1].

PROOF: We may assume that II = {{x,y,t,) : t = 0} and r;(S) C H .̂. Since x,y,t
are harmonic functions on the spacelike maximal surface E, one can find the conjugate
harmonic (possibly multi-valued) functions x, y, t to x, y, t respectively on E. Then

u = x + ix, v = y + iy, w = t + it

are holomorphic (possibly multi-valued) functions on E and

du = dx + idx, dv = dy + idy, dw = dt + idt
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are holomorphic 1-forms on E. Introduce t,t as conformal parameters on E. Then E can

be recaptured by setting

du, y = Re / dv, t — Re / dw.

From the holomorphicity of u, v, w, it follows that

du2 + dv2 - dw2 = 0.

Define a meromorphic function g on E by

du — idv

Then we have
f W 1\

x = Re / — I g -\— I dw,
J 2V gJ

(i) y = B

= Re /

Put
- E ={(z, y , -*) : (* , y, * )€E}

and define a surface
E = EU(-E) .

For any p g S , let -p = (x, y, - t ) e - E . Since < = 0 o n i c E n (~S), we can extend
the conformal parameters t, t over E across L by the usual reflection with respect to Ft;
that is

t(-p) = -t(p), t(-p)=i(p)

for any —p € (—E). Hence we see that dw is a well-defined holomorphic 1-form on the
surface E.

On the other hand, it is well known that g is the same as the complex-valued Gauss
map, g = a~x o 77. Then the constant hyperbolic angle hypothesis implies

for all p € L. That is, g maps L into a circle of radius ^ 1 in C. Since E is C1 along
L and L plays the same role in the surface E as a line does in C, we can extend g
holomorphically over E across L as follows:

Define the extension of g, still called g, by

(2) 9(-p) = tanh2(0/2)FfrT\ -p £ (-E).
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Clearly g is holomorphic on —E and continuous on E. Let h : C —> C be a linear fractional
transformation which maps the circle \w\ = tanh(0/2) onto the imaginary axis of C. Then
the real part of hog is continuous on S and harmonic on S and - S . Moreover, we have

Re[hog(-p)] =Re[hog(p)] = 0 for p 6 i ,

Re[/i of l(-p)] = -Re[hog(p)] for - p € (-E).

Hence by the reflection principle we conclude that hog is holomorphic on E and so is g.

Using this extended map g, the extended 1-form dw and the representation formula

(1), we can define the analytic extension map • as follows:

For any p e E, p* is determined by integrating (1) over a contour on E
from a fixed point to —p.

Then we can obtain the extended spacelike maximal surface E = EuE*. This completes

the proof of (i).

Conclusion (ii) follows from symmetry of — E to S and the formula for t in (1).

Conclusion (iii) follows from (2). D

Let E be the spacelike maximal surface in Theorem 1. For any real number 0 < r < 1,
let us denote by Er the spacelike maximal surface in L3 defined by the formula

= Re - (rg + —) dw,
J L V rg/

w
dw.

Then we see that E can be deformed into a 1-parameter family of spacelike maximal
surfaces and that this deformation preserves t-coordinates and multiplies g by r. As a
corollary of the proof, we have the following theorem:

THEOREM 2 . Let E C L3 be a spacelike maximal surface with nonempty boundary

9E which makes a constant angie 9 > 0 with t ie spacelike plane U along 5E n II. For
any a > 0, there exists an r > 0 such that the spacelike maximal surface Er maies a
constant angle a with U along 9Er DII.

PROOF: We have t = 0 on every point of 3E D II. Since the deformation preserves
the t-coordinate, we have t = 0 as well on every point of 9Er n II. Now take

r = tanh(a/2)[tanh(tf/2)]"1.

Then we have

{t = 0} = {\g\ = tanh(0/2)} = {\rg\ = tanh(a/2)},
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which implies that, since rg is the complex-valued Gauss map if Er , the surface E r makes

a constant angle a with II along 5E r n II. D

The following example shows a behaviour of the singular point under the analytic

extension, which cannot happen in the case of minimal surfaces in E3.

EXAMPLE. Let E be an elliptic catenoid E = {(x, y, t) : x2 + y2 - sinh2i = 0} which

has the singular point (0,0,0). Now consider E[OJJ,) = {( i , y, t) : x2 + y2 — sinh2t = 0,

0 ^ a ^ £ < 6 } c E which meets the spacelike plane n o = {(x, y,t) : t = a) at a

constant hyperbolic angle. Note that E is a surface of rotation whose axis of rotation is

the t-axis. Then by (ii) of Theorem 1, the extended surface E[o,6) of E[a,b) is

E[a,6) = E( 2 o_M ) = {(x, y, t):x2 + y2- sinh21 = 0, 2a - b < t < b}.

We first consider the case when a > 0.

(i) If b < 2a, since 2a — 6 > 0, neither E[o>(,) nor the extended surface E[o,f,)

have singular points.

(ii) If b > 2a, the surface E[a)j,) has no singular point but the extended surface

E[a,j) contains a singular point (0,0,0) since 2a - b < 0 < b. In fact, every

point (x, y, 2a) € E[ajj,) reflects to the singular point (0,0,0). This happens

because the set {(x, j / ,2a)} c E[O)j,) is parameterised by {\g\ — c} for a

constant c / 0,1 which reflects to the set parametrised by {\g\ = l } , which

is the (singular) parametrisation of the singular point (0,0,0).

(iii) If b = oo, the surface E[a)6) extends to make the whole elliptic catenoid E.

We next consider the case when a < 0.

(iv) If b < 0, the same case as (i) or (ii) occurs.

(v) If b > 0, the surface E[Oij,) contains the singular point (0,0,0) and the
singular point (0,0,0) reflects to the whole {(x, y, 2a)}. The reason of this
result is the same as the case (ii).
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