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On the classification of rank-two representations of

quasiprojective fundamental groups

Kevin Corlette and Carlos Simpson

Abstract

Suppose that X is a smooth quasiprojective variety over C and ρ : π1(X,x) → SL(2,C) is
a Zariski-dense representation with quasiunipotent monodromy at infinity. Then ρ factors
through a map X → Y with Y either a Deligne–Mumford (DM) curve or a Shimura
modular stack.

1. Introduction

Let X be a connected smooth quasiprojective variety over C with basepoint x. We look at repre-
sentations ρ : π1(X,x) → SL(2,C). We assume throughout that the monodromy at infinity is quasi-
unipotent. If X ⊂ X is a normal-crossings compactification with complementary divisor D =

∑
Di,

and if γi are loops going around the components Di, this condition means that the ρ(γi) are quasi-
unipotent, in other words their eigenvalues are roots of unity.

A representation ρ is Zariski-dense if the Zariski-closure of its image is the whole group SL(2,C).
A reductive representation of rank two is either Zariski-dense or otherwise it becomes reducible upon
pullback to a finite unramified covering of X. We classify representations ρ which are Zariski-dense
and have quasiunipotent monodromy at infinity. See [Ara97, Bea92, Del07, Dim06, Fy07] for a
similar classification in the reducible case.

The geometry of the fundamental group of an algebraic variety has been studied from many
different angles [ACT02, ABCKT96, Ara97, ABR92, Cam94, Cat96, Don85, Gro89, JY86, KM98,
Kol93, Pan04, Rez02, RT97, Tol90, Vie05]. The methods we use here are based on the theory of
harmonic mappings, both to symmetric spaces and combinatorial complexes [Cor88, Cor91, Del06,
Don87, Eys04, GS92, JZ96, JZ00, Kat97, KR98, Kli03, Moc07, NR08, Sim92, Sim91, Siu80, Zuo94].

Our classification is obtained by looking at the interplay between different properties of ρ. The
main property is factorization: we say that ρ factors through a map f : X → Y if it is isomorphic
to the pullback of a representation of π1(Y, f(x)). This notion can be extended in two ways, for
example, ρ projectively factors through f if the projected representation into PSL(2,C) factors
through f . The other extension is that it is convenient—and basically almost essential—to look
at the notion of factorization through maps to Deligne–Mumford (DM) stacks Y rather than just
varieties. In a certain sense this takes the place of complicated statements involving coverings of X.
It even subsumes the notion of projective factorization, because projective factorization is equivalent
to factorization through a new DM-stack obtained by putting a stack structure with group Z/2 (the
center of SL(2,C)) over the generic point of Y .

One of the main cases of factorization we are concerned with is factorization through a curve.
A smooth one-dimensional DM-stack is called a DM-curve. Recall that an orbicurve is a DM-curve
whose generic stabilizer is trivial. An orbicurve is given by the data of a smooth curve together

Received 27 February 2007, accepted in final form 20 February 2008.
2000 Mathematics Subject Classification 58E20 (primary), 14D07, 22E40, 32J27 (secondary).
Keywords: fundamental group, representation, harmonic map, tree, Deligne–Mumford stack, Shimura variety.
This journal is c© Foundation Compositio Mathematica 2008.

https://doi.org/10.1112/S0010437X08003618 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X08003618


K. Corlette and C. Simpson

with a collection of marked points that are assigned integer (�2) weights. Factorization through a
DM-curve is equivalent to projective factorization through an orbicurve (Corollary 3.3).

The other case we need to consider arises when the representation is motivic; in fact, it comes
from a family of abelian varieties. The families of abelian varieties whose monodromy representa-
tions break up into rank-two pieces are given by maps to certain Shimura varieties or stacks. These
Shimura varieties are closely analogous to Hilbert modular varieties. However, Hilbert modular
varieties parametrize abelian varieties with real multiplication, while in general we need to look at
abelian varieties with multiplication by a totally imaginary extension of a totally real field. The con-
dition that the tautological representation goes into SL(2) basically says that the universal covering
of the Shimura variety is a polydisk, that is, a product of one-dimensional disks. We work without
level structure and call these polydisk Shimura modular DM-stacks. A classical example is the case
of Shimura curves. The precise construction is reviewed in § 9. If H is a polydisk Shimura DM-stack
then π1(H) has a tautological representation into SL(2, L) for a totally imaginary extension L of a
totally real field, and this gives a collection of tautological representations into SL(2,C) indexed by
the embeddings σ : L→ C.

Classifying our rank-two Zariski-dense representations that are quasiunipotent at infinity will
consist then of showing that any such representation factors through a map f : X → Y , with Y
being either a DM-curve or a polydisk Shimura modular DM-stack. We consider as ‘known’ the
representations on these target stacks Y . There may be some overlap between these two cases, but
one of our basic tasks is to have properties which determine which case of the classification we want
to prove for a given representation.

Since we are looking at representations on quasiprojective varieties, we define rigidity in a way
that takes into account the monodromy at infinity. Fix a normal crossings compactification of X. For
each component Di of the divisor at infinity, we have a well-defined conjugacy class of elements of
π1(X,x) corresponding to a loop γi going around that component. Thus, for a given representation
ρ this gives a conjugacy class Ci in the target group. We are assuming that these monodromy
elements are quasiunipotent, so Ci is a quasiunipotent conjugacy class. We can define an affine
variety R(X,x,SL(2), {C i}) of representations such that the monodromies ρ(γi) are contained in the
closures of the Ci. LetM(X,SL(2), {C i}) denote its universal categorical quotient by the conjugation
action. We say that ρ is rigid if it represents an isolated point in the moduli space M(X,SL(2), {C i})
obtained by looking at its own conjugacy classes. In the case of a Zariski-dense representation, this
form of rigidity means that there is no non-isotrivial family of representations all having the same
conjugacy classes at infinity, going through ρ (Lemma 6.5).

A property that plays a similar role but that is easier to state is integrality. Say that a represen-
tation ρ is integral if it is conjugate, in SL(2,C), to a representation ρ : π1(X,x) → SL(2, A) for A
a ring of algebraic integers. For Zariski-dense representations, this is equivalent to asking that the
traces Tr(ρ(γ)) be algebraic integers for all γ ∈ π1(X,x).

Say that ρ comes from a complex variation of Hodge structure if there is a structure of complex
variation of Hodge structure on the corresponding local system V .

The main relationship between all of these notions is the following first result.

Theorem 1. Suppose that ρ : π1(X,x) → SL(2,C) is a representation with quasiunipotent mon-
odromy at infinity, such that ρ does not projectively factor through an orbicurve or, equivalently,
ρ does not factor through a map to a DM-curve. Then ρ is rigid and integral. Rigidity implies that ρ
comes from a complex variation of Hodge structure.

This is already known in the case when X is projective from [Sim91] for rigidity, and for integral-
ity [GS92] and [Sim93], the latter of which was designed to support the original dormant version of
this paper. The variation of Hodge structure follows from [Cor88]; see also [Sim92]. In the present,
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we extend the result to the quasiprojective case for representations with quasiunipotent monodromy
at infinity. The various statements in Theorem 1 appear as Theorems 6.8, 7.3 and 8.1 below.

The underlying argument for both rigidity and integrality comes from Theorem 5.13 about har-
monic maps to Bruhat–Tits trees. This strategy is perhaps worth commenting on. It has its origins
in the work of Bass [Bas80], Serre [Ser80, Ser77], Culler–Shalen [CS83] and Gromov–Schoen [GS92].

It would certainly have been possible to treat the rigidity question using harmonic maps to
symmetric spaces [Cor88, DO85, Don87, ES64, Moc07]. For integrality, though, it is necessary to use
the theory of harmonic maps to Bruhat–Tits trees [GS92]. Furthermore, there is a sort of analogy
between the two notions: integrality means that a representation into SL(2,Qp) goes into a compact
subgroup, whereas rigidity may be thought of as saying that a representation into SL(2,C(t))
goes into a compact subgroup, much as in [CS83]. So, we thought it would be interesting to use
harmonic maps to trees to treat both cases at once. This reduces the volume of material about
harmonic maps. On the other hand it introduces an additional difficulty, because the Bruhat–
Tits tree for SL(2,C(t)) is not locally compact. We overcome this by making a reduction to the
case of representations in SL(2,Fq(t)), where Fq is a finite field. This reduction is fairly standard
but it requires a finiteness theorem for the number of possible maps to a hyperbolic DM-curve
(Proposition 2.8), see Theorem 6.8. Delzant has independently found this proof of the fact that non-
factorization implies rigidity. Some pieces of his proof, including the finiteness statement, appear
in [Del07], but that paper is oriented towards proving a similar statement for representations in a
solvable group. The classification for solvable representations in [Bea92] and [Del07] complements
the present paper because we restrict here to Zariski-dense representations, which are irreducible
over any finite covering.

Suppose now that ρ does not factor through a curve. From the above results we obtain that ρ is
rigid, integral, and comes from a complex variation of Hodge structure. Let A be a ring of algebraic
integers such that ρ is defined over A. Let σ : A→ C be an embedding (not necessarily the identity
one). Let ρσ be the composed representation

π1(X,x)
ρA−→ SL(2, A) σ−→ SL(2,C).

Then ρσ is rigid too. Hence, ρσ comes from a complex variation of Hodge structure for every σ.
We use this data to construct a factorization of ρ through a polydisk Shimura modular DM-stack
H. As before this means that there is a map f : X → H such that ρ is the pullback f∗ of one of
the tautological rank-two local systems on H. The main idea is that because the rank is two, the
Hodge types can be chosen to be (1, 0) and (0, 1); then, by integrality, we obtain a family of abelian
varieties. The construction of the map to H is straightforward but it has to take into account the
notion of polarization and the special structure of abelian varieties whose Hodge structures split into
rank-two pieces over a totally imaginary field. This gives the statement of our main classification
result, see § 11.

Theorem 2. Suppose that X is a smooth quasiprojective variety and ρ : π1(X,x) → SL(2,C) is
a Zariski-dense representation. Suppose that the monodromy transformations around components
of the divisor at infinity are quasiunipotent. Then either ρ comes from a map f : X → Y to a
DM-curve Y or otherwise ρ comes from pullback of one of the tautological representations by a map
f : X → H to a polydisk Shimura modular DM-stack H.

The two cases described in this theorem can overlap: there can be rigid local systems on an
orbicurve. For any rank such things are classified by Katz’s algorithm [Kat96], but in the rank-two
case they can be seen explicitly as hypergeometric systems (see § 7.1).

This paper is a project which we have been entertaining since around 1990. It was motivated by
Gromov’s paper [Gro89], and spurred on by a lecture by Schoen in Chicago about [GS92]. In the
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projective case the paper [Sim93] was done in the context of this program, in order to obtain the
proof of Theorem 1 and thus Theorem 2; in particular, [Sim93] should be considered as an integral
part of the present project.

An important element was Larsen’s explanation of how to obtain information on the field of
definition of the representation. His argument, first reported in [Sim92, Lemma 4.8], plays a crucial
role in starting off § 10 below.

As we have taken such a long time to write up the classification result, the ambient state
of technology has evolved in the meantime [Biq96, JZ00, Kat94, Moc07, Pan04] which makes it
reasonable to give statements for quasiprojective varieties. Another recent advance is that the notion
of a DM-stack has become standard and well understood, for example Behrend–Noohi [BN06] have
classified DM-curves in a way which is very useful for our considerations.

One of the reasons for getting back to this project is that recently there have been some explicit
constructions of rank-two local systems on quasiprojective varieties, which in some cases can be
seen as coming from projective varieties by passing to a finite ramified cover. The examples we
know of are those of Boalch [Boa05] and Panov [Pan04]. It would be interesting to determine the
factorizations for these examples explicitly, but we do not treat that question here. That question
seems to be answered in some cases by a recent paper of Ben Hamed and Gavrilov [BG05] which
gives an explicit geometric origin for solutions of Painlevé VI equations. Kontsevich has a number
of conjectures about local systems on curves [Kon07].

2. Local systems on DM stacks

In order to obtain optimal statements of the type we consider throughout this paper, it is convenient
to consider the notion of a local system over a DM stack.

Recall that a DM stack is a 1-stack X on the site of schemes over C with the étale topology,
such that there exists a surjective morphism of stacks f : Z → X from a scheme Z to X, with f
‘representable and étale’. These conditions mean that if Y is any scheme, then Z ×X Y → Y is an
étale morphism of schemes. We refer the reader to [AV02, BN06, Cam04, DM69, LM00, Noo04] for
general references about this notion. In practice, in the cases we consider in this paper, X will often
be the stack theoretical quotient of a smooth variety Z by an action of a finite group G. This is
the case when X is a Shimura modular stack, and almost always the case when X is an orbicurve
or DM-curve. In the Shimura modular case, X has many Galois coverings by Shimura modular
varieties obtained by imposing some level structure. In the one-dimensional case, aside from a small
number of degenerate situations, an orbicurve has a Galois covering which is a smooth curve (see
Lemmas 2.3 and 2.6).

IfX is a DM-stack, then we obtain its coarse moduli space Xcoarse which is the universal algebraic
space with a map from X. This exists, and the map X → Xcoarse is finite, by Keel–Mori [KM97].

Theorem 2.1. If X is a DM-stack, there is a Zariski open covering of Xcoarse such that the pullbacks
of the open sets are quotient stacks by finite group actions.

Proof. This is stated in [Toe99, Proposition 1.17], which gives a reference to [Vis89, 2.8] as the proof,
which should be taken in light of [KM97]. A sketch of proof is given in [AV02, Lemma 2.2.3.]

Owing to this theorem, the reader may without danger imagine that the words ‘DM-stack’,
and so forth, basically mean varieties modulo finite group actions. The irreducible components of a
DM-stack will by definition be the irreducible components of the coarse moduli space, which pull
back to closed substacks of X.
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Local properties of X are defined by requiring the same properties for the étale covering scheme
Z → X occuring in the above definition. In particular, a DM-stack X is smooth if for one (or,
equivalently, any) surjective étale map from a scheme Z → X, the scheme Z is smooth. We restrict
our attention in this paper to smooth DM-stacks. A point is a morphism x : Spec(C) → X, which
we denote (by abusive of notation) by x ∈ X. A point can have ‘automorphisms’, which is the
phenomenon new to stacks.

The notion of a DM-stack is a generalization and transfer to the algebraic category, of the
classical notion of ‘orbifold’ or V -manifold [Kaw78, Sat56, Sat57]. This notion adapts to the algebraic
category: an orbifold is a smooth DM-stack such that the general point of any irreducible component
has trivial automorphism group. The associated complex analytic stack in this case is exactly a
complex analytic V -manifold. Then there is a dense Zariski-open subset of the coarse moduli space
Xcoarse over which the projection is an isomorphism, thus an orbifold has a dense open substack
which is an algebraic space.

IfX = Z/G is a quotient stack by the action of a finite group (with the quotient being irreducible,
say), then X is an orbifold if and only if G acts faithfully. The coarse moduli space is the classical
quotient space of the action. Orthogonal to this case is the important example of the quotient of
a single point by a trivial action of a finite group G: this is a DM-stack denoted by BG . All of its
points are isomorphic and they all have automorphism group isomorphic to G.

These two examples permit us to form all possible smooth DM-stacks, as shown by the following
structure result.

Proposition 2.2. Suppose that X is a smooth DM-stack. There is a universal orbifold Xorb (that
is, a smooth DM-stack with trivial generic stabilizers) with a map φ : X → Xorb such that locally
in the étale topology over the base, the map φ is isomorphic to the projection of a product of the
base orbifold with a BG (this is usually called a gerb). The coarse moduli spaces of X and Xorb

coincide.

For a proof see Behrend and Noohi [BN06].

2.1 Fundamental group and local systems
If X is a DM-stack and x ∈ X is a point, then we obtain the fundamental group π1(X,x). See
Noohi [Noo04] for a general discussion. In the quotient case X = Z/G, the fundamental group may
be viewed more simply as an extension

1 → π1(Z, z) → π1(X,x) → G→ 1.

The group in the middle may be defined as the set of paths in Z starting at z and going to
any preimage of x. Paths are composed by first translating by an appropriate element of g, then
juxtaposing paths.

We also have the notion of a local system over X, which is by now a standard notion, see [LO06]
for example, or [Toe99] for the case of D-modules. The case of local systems on the moduli stack of
hyperelliptic curves was mentioned in a talk by Hain, see [Hai06, p. 12]. A local system is a collection
LZ,f of local systems over schemes Z for every section f : Z → X, together with functoriality maps: if

f : Z → X, f ′ : Z ′ → X

are two maps, and if g : Z ′ → Z is a map together with a natural transformation η from f ◦ g
to f ′, then we obtain a map from g∗(LZ,f ) to LZ′,f ′ . These satisfy some natural axioms. We obtain
a tensor category of local systems over X.

If L is a local system of rank r over X and if x ∈ X is a basepoint, then the fiber Lx is a
C-vector space of dimension r, and the monodromy is an action of π1(X,x) on it. If X is smooth
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and irreducible with fixed basepoint x, then the category of local systems over X is equivalent to
the category of representations of π1(X,x).

If X = Z/G is a quotient stack of a variety Z, a local system on X may be seen as a G-
equivariant local system on Z, that is, a pair (VZ , α) where VZ is a local system on Z and α is an
action associating to each g ∈ G an isomorphism α(g) : g∗VZ

∼= VZ . The action is required to satisfy
a cocycle condition: if g, h ∈ G, then α(g) ◦ g∗α(h) = α(gh).

The notion of a local system on a DM-stack beams back down to the world of varieties in the
following way: if Y is a variety and f : Y → X is a map to a DM-stack X, then for any local system
V on X the pullback f∗V is a local system on Y .

Something new here is that a map f can have automorphisms. Roughly speaking an automor-
phism of f is a section of the sheaf of stabilizer groups pulled back over f . More generally we
should speak of isomorphisms between maps f, g : Y → X. We have the following functoriality:
if a : f ⇒ g is an isomorphism from f to g, then we obtain an isomorphism of pullback local
systems a∗V : f∗V ∼= g∗V . This satisfies some usual functoriality and associativity identities. This
phenomenon will appear in our statements when we want to say that a map is unique.

2.2 DM-curves and orbicurves
We are particularly interested in the case of objects of dimension one. A DM-curve is a smooth
DM-stack of dimension one. An orbicurve is an orbifold of dimension one, so an orbifold is a DM-
curve with trivial generic stabilizer. In this case Proposition 2.2 says that a DM-curve is always a
gerb over a canonical orbicurve. If X is an orbicurve, then its coarse moduli space Xcoarse is again
a smooth curve (this is special to the case of orbicurves: in general the coarse moduli space of a
smooth orbifold will have finite quotient singularities).

An étale covering is a finite étale map; over the complex numbers this is the same thing as a
finite topological covering space. For DM-curves, étaleness is measured in terms of a local chart for
the stack. In practical terms this comes down to saying that the ramification index, the orbifold
indices taking correctly into account, is one.

The data of an orbicurve is determined by the smooth curve Xcoarse, together with a finite set of
points Pj and an integer nj � 2 attached to each point. A non-constant morphism from a connected
smooth curve to X is any non-constant map f : Z → Xcoarse such that for any z ∈ Z lying over
some Pj the ramification order of f at z is divisible by nj . The map is étale when the ramification
at Pj is exactly nj.

We denote an orbicurve by the notation (Y, n1, . . . , nk) with Y = Xcoarse a smooth curve and ni

the sequence of integers organized in decreasing order (we leave the choice of points P1, . . . , Pk ∈ X
out of this notation).

The paper of Behrend and Noohi [BN06] is a very complete description of the possibilities for
DM-curves and orbicurves, and the reader is referred there. Recall here the general outlines of their
classification which generalizes the classification of curves. An orbicurve is spherical, elliptic, or
hyperbolic. The spherical orbicurves are P1, the drops (P1, a), and footballs (P1, a, b) as well as the
finite list of cases

(P1, 2, 2, 2), (P1, 2, 3, 3), (P1, 2, 3, 4), (P1, 2, 3, 5).
The universal coverings of these orbicurves are P1, drops, or footballs with relatively prime indices.

Lemma 2.3. An orbicurve that is not spherical as listed above has an étale covering which is a regular
curve different from P1. In particular, the associated complex-analytic orbicurve has a contractible
universal covering.

See [BN06], for a proof.
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Now we can define the elliptic orbicurves to be those which have a covering by either A1 or
Gm, or an elliptic curve (thus, they are those whose universal covering is C); and the hyperbolic
orbicurves are the remaining ones—those whose universal covering is a disk.

Note also that an elliptic or hyperbolic orbicurve has infinite fundamental group except for the
elliptic case where the covering is A1. In all elliptic and hyperbolic cases, the homotopy type is a
K(π1, 1).

We say that a DM-curve X is spherical, elliptic, or hyperbolic according to the type of the
associated orbicurve Xorb.

Lemma 2.4. Suppose that X is a DM-curve and ρ : π1(X,x) → SL(2,K) is a Zariski-dense repre-
sentation for any infinite field K. Then X is hyperbolic.

Proof. Spherical orbicurves have finite fundamental groups, and elliptic orbicurves have fundamental
groups which are virtually abelian. Thus, the same holds for spherical and elliptic DM-curves. None
of these types of groups can have Zariski-dense representations to SL(2,K) for an infinite fieldK.

In view of this lemma, for factorization questions we will mainly be looking at hyperbolic orbi-
curves.

Lemma 2.5. Suppose that X is a DM-curve with basepoint x. Suppose that the underlying orbifold
Y := Xorb is either elliptic or hyperbolic. Then π2(Y ) = 0 and the gerb p : X → Y (locally a
product with BG) is completely determined by the induced extension

1 → G→ π1(X,x) → π1(Y, p(x)) → 1.

Thus, we may think of X as being given by the data of an orbicurve Y plus an extension of the
fundamental group by a group G. If Z is a scheme, then a submersive map from Z to X is the same
thing as a submersive map from Z to Y plus a lifting of the map on fundamental groups from
π1(Z, z) to π1(X,x).

Proof. This is basically the same as Behrend–Noohi [BN06, Proposition 4.7].
If X is already an orbicurve, then the generic stabilizer group G is trivial, BG = Spec(C)

and Y = X.
In general, let Z be the coarse moduli space for X. It is a normal (hence, smooth) curve. Let

Y be the orbicurve obtained by setting, for each point z ∈ Z, the orbifold structure at z to be
the ramification degree of the map X → Z over z (this is different from one for only a finite
number of points). There is a unique factorization to a map p : X → Y (note that there is no
question of natural transformations here because p is submersive and the generic stabilizers on Y
are trivial). The map p is étale by the choice of orbifold indices. An étale covering is a fibration
in the étale topology, and the fiber over a point (say a general point) is a one-point DM-stack,
hence of the form BG for a finite group G. We obtain a long exact sequence in homotopy. If X is
elliptic or hyperbolic, then by definition the same is true of Y . Thus, the universal covering of Y
is C or a disk [BN06], so π2(Y ) = 0. In particular, the long exact homotopy sequence of homotopy
groups gives an extension as in the statement of the lemma. The fact that this extension uniquely
determines the fibration p : X → Y , plus the statement about maps to X, will be left as exercises
in non-abelian cohomology [Bre94].

We will see below that the notion of DM-curve gives a handy way of dealing with the difference
between SL(2) and PSL(2) for factorization statements. In particular, since we are mainly using the
notion of DM-curve for that purpose, it mostly suffices to consider the case where the group G in
Lemma 2.5 is of order two.

Putting together the above information we obtain the following.
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Lemma 2.6. If X is an elliptic or hyperbolic DM-curve, then there is an étale Galois covering
Z → X with Z a smooth curve; in particular, X is a quotient of Z by the Galois group G—note
that the action of G on Z might not be faithful; this is how we obtain non-trivial generic stabilizers.
As described above we have an extension

1 → π1(Z) → π1(X) → G→ 1.

Proof. Use Lemma 2.5 to express X as a gerb over an orbicurve Y . From the long exact sequence
we see that Y has infinite fundamental group, so we are not in the degenerate cases of Lemma 2.3.
Thus, there is an étale covering map V → Y from a smooth curve to Y . Pulling back, we obtain a
gerb U := X ×Y V over V . The gerb corresponds to an extension

1 → H → π1(U) → π1(V ) → 1.

Let U ′ → U denote the covering corresponding to the map π1(U) → Aut(H). This is again a gerb
corresponding to a central extension

1 → Z(H) → π1(U ′) → π1(V ′) → 1.

The central extension is classified by an element of H2(V ′, Z(H)). There is a finite étale covering
space V ′′ → V ′ such that the pullback of the element is zero, that is the extension splits. This gives
an étale covering morphism from V ′′ back down to X. Galois completion yields the curve Z.

Owing to this lemma, and the fact that the other stacks we consider (Shimura modular stacks)
are, by construction, analytic quotients and are seen to be algebraic quotients by looking at moduli
spaces for objects with level structure, it is possible to restrict our attention to DM-stacks which
are quotients.

2.3 Finiteness
We prove a finiteness statement which is the key to our method of proof of the implication ‘non-
factoring implies rigid’ in § 6. It has also independently appeared in Delzant’s preprint [Del07] with
a more conceptual proof.

Lemma 2.7. Given g and b, there is an integer N giving the following bound. For any hyperbolic
orbicurve X, and any regular curve Y with a non-constant map f : Y → X, assume that the
projective compactification Y of Y has genus at most g, and the number of points in Y − Y is at
most b. Then for any point P in the image of f , the orbifold index of X at P is at most N .

Proof. We may assume that X is compact. Indeed, if not then we could add in orbifold structures
at the points at infinity of X −Xcoarse. Note that we are not asking in the hypothesis that the map
f be surjective, only that the point P in question be in the image. If we fix an orbifold index of at
least seven at these additional points, then the new orbifold will also be hyperbolic (see [BN06]), so
we may assume that X is compact.

Fix f : Y → X, and points Q ∈ Y and P = f(Q) ∈ X. Let n be the orbifold index of X at P .
Denote by f the extension of f to Y → X (where X denotes the usual curve which is the projective
completion of Xcoarse).

The ramification degree of f at Q is divisible by n, so the contribution to the Hurwitz formula
from Q is at least n− 1. If g(X) � 1, we have

2g(Y ) − 2 � d(2g(X) − 2) + (n− 1) � n− 1

which gives the bound in question.
The remaining problem is to treat the case X = P1. Since X is hyperbolic, there are at least two

other orbifold points P1 and P2 in addition to P0 := P . Let n1 and n2 denote their orbifold indices.
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Let d denote the degree of the map f . If Q′ is a point in f
−1(Pi), then either Q′ ∈ Y , in which

case the ramification degree rQ′ is divisible by ni (if i = 0 we are denoting n0 := n); or otherwise
Q′ ∈ Y − Y . There are at most d/ni points in the first case, and at most b points in the last case.

The Hurwitz contribution for the fiber over Pi is bounded:∑
f̄(Q′)=Pi

(rQ′ − 1) = d− #(f̄−1(Pi)) � d− b− d/ni.

Therefore, the Hurwitz formula gives

2g(Y ) − 2 � −2d+ 3d− 3b− d

(
1
n0

+
1
n1

+
1
n2

)
.

For n0 = n, and noting that at least one of n1 or n2 are at least three so 1/n1 + 1/n2 � 5/6, this
gives a bound

1
n

� 2 − 2g(Y ) − 3b
d

+
(

1 − 1
n1

− 1
n2

)
� 2 − 2g(Y ) − 3b

d
+

1
6
.

If n � 6, then we have our bound so we can assume that n � 7. Thus,

3b+ 2g(Y ) − 2
d

� 1
42
, that is, d � 42(3b + 2g(Y ) − 2).

This gives a bound for d, hence, for n � d.
Assume now that n1 = n2 = 2. In this case there must be a fourth orbifold point, because

the orbifolds with indices (2, 2, a) are spherical for any a. Adding in the fourth point to the above
calculations the bound becomes

1
n

� 2 − 2g(Y ) − 4b
d

+
(

2 − 1
n1

− 1
n2

− 1
n3

)
� 2 − 2g(Y ) − 4b

d
+

1
2
.

We can assume that n � 3, thus

4b+ 2g(Y ) − 2
d

� 1
6
, that is, d � 6(4b+ 2g(Y ) − 2).

Again this gives a bound for n � d.

We now obtain our finiteness result, cf. [Del07, Theorem 2].

Proposition 2.8. Suppose that X is a connected smooth quasiprojective variety. The set of iso-
morphism classes of pairs (Y, f), where Y is an hyperbolic orbicurve and f : X → Y is a surjective
algebraic morphism, is finite.

Proof. Let X be a compactification such that the complementary divisor has normal crossings. We
can find a projective embedding of X and choose a connected family of complete intersection curves
in X passing through any point. We may assume that through any point there is a smooth curve
in the family. Let g be the genus of the curves in the family, and let b be the maximal number
of intersection points of a curve with the divisor D := X − X. We may also assume that for any
point Q ∈ X there is a curve C in the family passing through Q and intersecting the divisor D
transversally. Let C := C ∩X, and note that π1(C) → π1(X) is surjective.

Suppose that f : X → Y is a surjective morphism to a hyperbolic orbicurve, and suppose that
P is a point in the base. Choose a point Q ∈ X with f(Q) = P and choose a curve C in the above
family passing through Q. The map f |C is non-constant since the map on fundamental groups is
non-trivial because π1(C) → π1(X) is surjective and π1(X) → π1(Y ) has image of finite index in an
infinite group. The point P is in the image of f |C , so Lemma 2.7 provides a bound for the orbifold
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index of Y at P in terms of the bounds g and b for the family of curves C. Thus, we obtain a bound
N depending only on X, for the orbifold indices of points in Y . Assume that N � 7.

Note also that the genus of Y is bounded by the genus g of the curves C in the family. The
number of points at infinity (that is, the cardinality of Y − Y coarse) is bounded by the bound b for
the curves C. Finally, an argument similar to that of Lemma 2.7 provides a bound for the number of
orbifold points in Y . Thus, there are only finitely many possible combinatorial types for the target
orbicurve Y .

For the remainder of the argument, we can fix a combinatorial type for a hyperbolic orbicurve Y .
There is an étale Galois covering Z → Y such that Z is a curve (without orbifold structure). We
may also assume that the projective completion Z has genus gZ � 2. Let G denote the Galois group
of Z/Y . The data of gZ and the group may be determined by the combinatorial type of Y up to
finitely many choices, so we can view them as being fixed.

Now if f : X → Y is any map, the pullback X ×Y Z is a Galois covering of X with group G.
There are only finitely many possibilities for this covering, so we may view it as being a fixed
covering V → X with Galois action of G. The map f corresponds to a G-equivariant map from V
to Z ⊂ Z where Z is a variable Riemann surface of genus gZ . Once the map V → Z is fixed, the
image open set Z and the action of G on Z are determined.

We are now reduced to a classical statement (see [KO75] and [Lan62, p. 137]): given a quasipro-
jective variety V there are only finitely many isomorphism classes of submersive maps to a compact
Riemann surface of genus gZ � 2.

3. Factorization

Superrigidity theory says that under certain circumstances, varieties with the same topology have
to be isomorphic. The notion of factorization, which extends this idea to maps that are not isomor-
phisms, is by now classical too [Bea92, Cam94, Cat96, Cor91, Del06, Eys04, Gro89, GS92, Kat94,
Kat97, KR98, Kli03, Kol93, Sim91, Siu80, Zuo94].

Suppose that X is a smooth quasiprojective variety and ρ : π1(X,x) → G is a representation
into some group G. A factorization is a triple (Y, f, ψ) where Y is a DM-stack, f : X → Y is an
algebraic map, and ψ : π1(Y, f(x)) → G is a representation such that ρ = ψ ◦ π1(f). In this case
we say that ρ factors through f : X → Y or just through Y . If π1(f) is not surjective, then the
representation ψ might not be unique.

We say that ρ projectively factors through f : X → Y if the composed representation

ρ̃ : π1(X) → G/Z(G)

to the quotient of G by its center factors through f . This terminology is intended for the case
G = SL(2,K) and G/Z(G) = PSL(2,K).

For example we say that a representation ρ factors through a DM-curve if there exists a map
f : X → Y to a smooth DM-curve and a factorization of ρ through f .

Recall that an orbicurve is a DM-curve such that the generic stabilizer is trivial. The following
lemmas say that it is equivalent to speak of projective factorization through maps to orbicurves, or
actual factorization through maps to DM-curves. In the remainder of the paper we use the language
of factorization through DM-curves since this is easier to handle notationally speaking.

Lemma 3.1. Suppose that X is a smooth quasiprojective variety and ρ : π1(X,x) → SL(2,K) a
representation with K a field. Suppose that ρ projectively factors through a map f : X → Y to an
orbicurve, that is, there is a factorization (Y, f, ψ) for the representation ρ̃ into PSL(2,K). Then
there is a structure of DM-curve Y ′ mapping to Y and a lifting f ′ : X → Y ′ such that ρ factors
through f ′.
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Proof. Recall from Lemma 2.4 that Y must be hyperbolic. Use ψ to pull back the central extension

1 → {±1} → SL(2,K) → PSL(2,K) → 1.

We obtain a central extension of π1(Y ) by a group of order two. By Lemma 2.5 this corresponds to
a structure of DM-curve Y ′ over Y and the representation ψ lifts to a representation ψ′ : π1(Y ′) →
SL(2,K). Note that the square

π1(Y ′)

��

�� π1(Y )

��
SL(2,K) �� PSL(2,K)

is cartesian. The projective factorization gives a map into the fiber product of the lower right angle
of this diagram, thus it gives a map π1(X) → π1(Y ′). Thus, by Lemma 2.5 the map f : X → Y lifts
to a map f ′ : X → Y ′ giving a factorization of the representation ρ.

In the above lemma, the structure of DM curve is not unique.

Lemma 3.2. Suppose that X is a smooth quasiprojective variety and ρ : π1(X,x) → SL(2,K) is
a Zariski-dense representation with K a field. If ρ factors through a map to a DM-curve f : X →
Y ′, then letting Y be the underlying orbicurve as defined above, ρ projectively factors through
f : X → Y .

Proof. Suppose that (Y ′, f ′, ψ′) is a factorization for ρ. Note that Y ′ is hyperbolic so it is classified
by the extension

1 → G→ π1(Y ′) → π1(Y ) → 1.
The group G is finite. The subgroup of SL(2,K) which normalizes the image ψ′(G) is an algebraic
subgroup containing the image of ρ. By the Zariski-density hypothesis, this group is the whole
of SL(2,K), that is, ψ′(G) is a finite normal subgroup, hence contained in the center. Thus, the
projection ρ̃ into PSL(2,K) is trivial on G so we obtain a factorizing representation ψ : π1(Y ) →
PSL(2,K).

Corollary 3.3. Suppose that X is a smooth quasiprojective variety and ρ : π1(X,x) → SL(2,K)
a Zariski-dense representation with K a field. Then ρ factors through a map to a DM-curve, if and
only if it projectively factors through a map to an orbicurve.

Lemma 3.4. If ρ : π1(X,x) → SL(2,K) is a Zariski-dense representation which factors through a
map f : X → Y to a DM-curve, then Y is a hyperbolic DM-curve.

Proof. This follows from Lemma 2.4.

3.1 Invariance under open sets and finite coverings
Lemma 3.5. Suppose that U ⊂ X is a Zariski-open set in a smooth quasiprojective variety. Suppose
that K is an infinite field and ρ : π1(X,x) → SL(2,K) is a Zariski-dense representation such that
the restriction ρ|U factors through a DM-curve. Then ρ itself factors through a DM-curve.

Proof. It is easier to use Corollary 3.3 to replace factorization through a DM-curve, by projective
factorization through an orbicurve in the statement. Thus, we look at the representation ρ̃ projected
into PSL(2,K).

Let f : U → Y be the factorization map to an orbicurve Y . We can restrict the open set U ,
so we can suppose that Y is a smooth curve. Let Y denote the smooth projective compactification
of Y . For P ∈ Y − Y consider the monodromy transformation for ρ̃Y around P . If it is of infinite
order, then leave out the point P . If it is of some finite order n, then add an orbifold point of order
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n at P . This gives us an orbicurve partial completion Y ′ of Y with a representation ρ̃Y ′ restricting
to ρ̃Y on Y .

Now we claim that the map f extends to a map f ′ : X → Y ′. For this, note that there is a
birational modification p : X ′′ → X containing U ⊂ X ′ as the complement of a divisor with normal
crossings, and a map f ′′ : X ′′ → Y . On the other hand, for any component of the complementary
divisor in X ′′, the monodromy around that component is trivial for the representation ρ̃. This
implies that any divisor component maps to a point of Y ′ (that is, maps to a point in Y where the
monodromy is not of infinite order). Thus, we obtain a map X ′′ → (Y ′)coarse.

By looking at the order of the monodromy around any complementary divisor component, we
obtain a lifting to a map X ′′ → Y ′. Suppose that P ∈ (Y ′)coarse is an orbifold point with index n.
The inverse image (f ′′)−1(P ) =

∑
i riBi is a divisor in X ′′. If Bi is a component with multiplicity ri,

then ri is divisible by n, because ρ̃Y has monodromy of order n around P and the pullback f∗(ρ̃Y )
extends to X so it extends across the component Bi. Now each ri is divisible by n so the divisor
(f ′′)−1(P ) is divisible by n, which says that X ′′ → (Y ′)coarse lifts to a map into Y ′ locally at P .

Finally, we can go to a model X(k) birational over X ′′ and with the property that X(k) is
obtained from X = X(0) by a sequence of blow-ups ϕi+1 : X(i+1) → X(i) with smooth centers
V (i+1). Working by downward induction on i, we descend the map X(k) → Y ′ to a map X → Y ′ as
follows. Suppose that we are given fi+1 : X(i+1) → Y ′. For any point on the center of the blow-up
P ∈ V (i+1) ⊂ X(i) the inverse image ϕ−1

i+1(P ) is a connected variety such that

f∗i+1(ρ̃Y ′)|ϕ−1
i+1(P ) = ρ|ϕ−1

i+1(P )

is trivial. Therefore, fi+1 maps ϕ−1
i+1(P ) to a single point in Y ′. Thus, fi+1 descends to a map

X(i) → (Y ′)coarse,

and looking again at the monodromy around orbifold points as in the previous paragraph, we find
that it lifts to

X(i) → Y ′.
Continuing by downward induction on i we eventually come to a map f ′ : X → Y ′ as required. This
constitutes a factorization of the representation ρ, indeed (f ′)∗(ρ̃Y ′) = ρ because this is true over
the Zariski-open dense set U .

Lemma 3.6. Suppose that p : Z → X is a quasifinite map of smooth quasiprojective varieties.
Suppose that K is an infinite field and ρ : π1(X,x) → SL(2,K) is a Zariski-dense representation
such that the pullback ρ|Z factors through a DM-curve. Then ρ itself factors through a DM-curve.

Proof. This is an easy special case of the Shafarevich factorization, see [Kol93] as well as [Cam94,
Eys04, Kat97]. We handle it explicitly here.

For constructing the factorization, we may pass to a Zariski-open set of X and then invoke
Lemma 3.5. In particular, we may assume that p is a finite map.

Let f : Z → Y be the factorization map. By Lemma 3.4, Y is an hyperbolic DM-curve. Therefore,
there exists a finite covering Y ′ → Y by a smooth curve. Replacing Z by its fiber product with Y ′,
we find that we may, in fact, assume that ρ|Z factors through a smooth curve. Thus, take now this
situation and assume that f : Z → Y is the factorization map to a smooth curve. We may also
take the Stein factorization so we can assume that the general fiber of f is connected. Remove from
X the closure of the image of all of the non-smooth or reducible fibers. Thus, we may assume that
all of the fibers of f are irreducible and smooth.

We can assume that Z is Galois over X with group G. We claim that G permutes the fibers
of f . This is because a fiber is characterized as a maximal connected smooth curve such that the
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restriction of ρ is trivial. Therefore, the action of G extends to an action on Y compatible with the
map f . Let V := Y/G be the DM-curve quotient. We obtain a factorization map X → V for ρ.

The fact that the action of G on Z preserves ρ (because ρ is a pullback from X) allows us to
define an action on ρY covering the action on Y , so ρY descends to a representation ρV on V whose
pullback to X is ρ.

3.2 Invariance under field extension
Suppose that f : X → Y is a map. Let K denote the kernel of the induced map π1(X,x) →
π1(Y, f(x)). A representation ρ : π1(X,x) → G factors through f if and only if the restriction of ρ
to K is trivial. This immediately gives the following statement.

Lemma 3.7. Suppose that α : G ↪→ H is an injection of groups. A representation ρ : π1(X,x) → G
factors through a map f : X → Y , if and only if the composed representation α ◦ ρ : π1(X,x) → H
factors through f .

We have the following independence of factorization with respect to change of coefficient field,
as a corollary.

Corollary 3.8. Suppose that K ⊂ L is a field extension. Then a representation ρ : π1(X,x) →
SL(r,K) factors (respectively projectively factors) through a map f : X → Y if and only if the
representation obtained by extension of coefficients ρL : π1(X,x) → SL(r, L) factors (respectively
projectively factors) through f .

4. Construction of a pluriharmonic mapping to the Bruhat–Tits tree

An element A ∈ PSL(2,K) is said to be unipotent if its representatives in SL(2,K) are conjugate
to upper-triangular matrices with ±1 on the diagonal. An element is quasiunipotent if there is some
n such that An is unipotent. We consider the following situation, stated as a hypothesis for future
reference.

Hypothesis 4.1. Fix a quasiprojective variety X with compactification X whose complementary
divisor D is a union of smooth irreducible components Di intersecting at normal crossings. Let x
denote a basepoint in X.

Let OK be a complete local ring with fraction field K and residue field F ; we assume that F is
finite. Suppose that we have a representation ρ : π1(X,x) → PSL(2,K) such that the monodromy
transformations around the Di are quasiunipotent. We also assume that the monodromy transfor-
mations around the Di are not the identity (that is, that X is a maximal open subset of X of
definition for the representation ρ). We assume that the Zariski closure of the image of ρ is all of
PSL(2,K), and we assume that the image is not contained in any compact subgroup.

In the next section, we prove Theorem 5.13 saying that under the above hypothesis the repre-
sentation ρ factors through a DM-curve. In general Hypothesis 4.1 will be in effect throughout this
section and the next.

The basic technique is to let PSL(2,K) act on the Bruhat–Tits tree T , and to choose an equiv-
ariant pluriharmonic map X̃ → T via the theory of Gromov and Schoen [GS92]. The first step, not
totally trivial in the quasiprojective case, is to choose an initial map having finite energy on the
fundamental region Reg(X̃/X). By [GS92] this deforms to a pluriharmonic map which is studied
in § 5.

This theory has already been treated by Jost and Zuo in [JZ00]. They treated the case of
harmonic maps to buildings of arbitrary rank. In the case of trees which was treated specifically
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in [GS92], and which is by now pretty well known, many parts of the argument are easier to
understand so it seems worthwhile to recall them here. Also, we feel that the discussion of the
choice of initial map on [JZ00, p. 12] needs some amplification.

Looking at harmonic mappings to trees or more generally buildings, mirrors much of the study
of harmonic bundles which has been extended to the quasiprojective case [Biq96, Car92, JZ96, Li00,
LN99, LN01, Moc02, Moc07, NR01b, Sim90]. Other related techniques are also available [Del07,
Gro89, NR01a, NR08, NR06].

4.1 The Bruhat–Tits tree
Recall the construction of the Bruhat–Tits tree associated to K, extensively studied by Bass [Bas80]
and Serre [Ser80, Ser77]. There is a uniformizing parameter t ∈ OK which generates the maximal
ideal. The residue field F := OK/(t) is assumed to be finite, with q = pk elements. A lattice is a
finitely generated OK-submodule M ⊂ K2 which spans K2 over K. It follows that M ∼= O2

K .
Say that two lattices M1 and M2 are equivalent if one is a scalar multiple of the other by an

element of K∗. The vertices of the Bruhat–Tits tree are defined to be the equivalence classes of
lattices. Two lattices are adjacent if after choosing appropriate representatives up to equivalence,
one is contained in the other and if the quotient is an OK -module of length one isomorphic to F .
The edges of the Bruhat–Tits tree are defined as connecting lattices which are adjacent in the above
sense. See [Ser77]. There are q + 1 edges at each vertex.

Metrize the tree by assigning a linear metric of length one to each edge.
The group SL(2,K) acts isometrically on T via its action onK2, thus g ∈ SL(2,K) sends a lattice

M to gM . The center {±1} acts trivially on T , so the action factors through the group PSL(2,K).
Choosing a basis for a lattice M gives an isomorphism between PSL(2,OK) and the subgroup

of elements which fix M , in particular the latter group is compact.
Conversely any compact subgroup H ⊂ PSL(2,K) fixes a lattice. Indeed, the action on the tree

is continuous, so the orbit of a point under the action of H is compact. The convex subset spanned
by this orbit is H-invariant and compact, so the set of endpoints is finite and the barycenter of this
finite set is a fixed point for H.

Recall that an end of T is an equivalence class of injective isometric paths R�0 → T , under
the equivalence relation that two paths are said to be equivalent if they remain a bounded distance
apart or, equivalently, if their image subsets coincide after a finite time. Recall also that a parabolic
subgroup of PSL(2,K) is a subgroup conjugate to the group of upper-triangular matrices. Such a
subgroup is uniquely determined by its corresponding rank-one subspace L ⊂ K2.

Lemma 4.2. The subgroup of elements fixing an end is a parabolic subgroup, and a parabolic
subgroup fixes a unique end. In this way the set of ends of T is naturally in one-to-one correspondence
with the set of parabolic subgroups of PSL(2,K).

See [Bas80, Ser80, Ser77] for the proof.

4.2 Quasiunipotent matrices
Let K denote the algebraic closure of K. A matrix A ∈ PSL(2,K) is quasiunipotent if and only if
the image in PSL(2,K) is conjugate to an upper-triangular matrix whose diagonal entries are roots
of unity. The diagonal entries are α,α−1 with αn = 1 for some n.

Let Z(A) ⊂ PSL(2,K) be the centralizer of A, that is the group of matrices in PSL(2,K) which
commute with A. It is an algebraic group and its extension of scalars to K is the same as the
centralizer of A in PSL(2,K). The centralizer will play an important role in our construction below.
We divide into three cases according to the type of Z(A) up to conjugacy.

1284

https://doi.org/10.1112/S0010437X08003618 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003618


Rank-two representations

Lemma 4.3. Suppose that A ∈ PSL(2,K) is a non-trivial quasiunipotent matrix. Then one of three
possibilities holds.

(i) Unipotent: the matrix A is conjugate to an upper-triangular matrix with ±1 on the diagonal,
and the centralizer Z(A) is conjugate to the unipotent group of all such matrices.

(ii) Split torus: the matrix A is conjugate to a diagonal matrix with entries α±1 where α �= ±1
is a non-trivial root of unity, and the centralizer Z(A) is conjugate to the split torus Gm of
diagonal matrices.

(ii) Non-split torus: the matrix A has eigenvalues α±1 which are not in K, and the centralizer Z(A)
is a non-split torus which becomes conjugate in PSL(2,K) to the group of diagonal matrices.

Proof. Over K the matrix can be put in Jordan normal form. If it has distinct eigenvalues, then
they are either in K, which gives the split torus case, or not in K, giving the non-split torus case. If
both eigenvalues are the same, that is to say ±1, and if the matrix is non-trivial in PSL(2,K) then
it is conjugate to ( 1 1

0 1 ). In this case, there is a unique eigenvector, and the dimension of ker(A− 1)
is invariant under field extension. Thus, A has an eigenvector over K so it can be conjugated to a
unipotent upper-triangular matrix in PSL(2,K). This gives the unipotent case.

Lemma 4.4. Suppose that A and B are commuting quasiunipotent matrices, both non-trivial in
PSL(2,K). Then Z(A) = Z(B).

Proof. It suffices to do this in PSL(2,K). Thus, we may assume that A is either diagonal with
distinct eigenvalues, or ±1 times an upper-triangular matrix. Respectively, we see that B has to be
diagonal or ±1 times an upper-triangular matrix. Again, in these cases the centralizers in PSL(2,K)
are either the group of diagonal matrices or the group of projectively upper-triangular matrices,
respectively. The centralizers of A and B in PSL(2,K) are the same in either case. Formation of
the centralizer commutes with field extension, so this shows that Z(A) = Z(B) in PSL(2,K).

4.3 Local study at infinity

Recall that part of our assumption is that the monodromy around all components of the divisor D is
non-trivial in PSL(2,K) Thus, the connected components of D form well-defined subsets depending
on ρ. The choice of initial map is a local problem near connected components of D. In view of this,
for simplicity we assume that D is connected for most of the remainder of this section.

Let Dj denote the irreducible components of D, which we are assuming are smooth. Let Nj

denote a tubular neighborhood of Dj in X and let N∗
j denote the complement of D, that is N∗

j =
Nj ∩X. Let Dij := Di∩Dj, etc., and let Nij := Ni∩Nj which we assume is a tubular neighborhood
of Dij (with polydisk transversal section). Let N :=

⋃
j Nj be the tubular neighborhood of D and

N∗ := N ∩X.
For now, assume that we have chosen a basepoint x ∈ N∗. Let Ñ∗ denote the resulting universal

covering of N∗. Let Reg(Ñ∗/N∗) ⊂ Ñ∗ denote a closed fundamental region for N∗, as will be chosen
more specifically further along (Lemma 4.8). Let π1(N∗) denote the fundamental group of N∗ based
at x, also viewed as the group of deck transformations of Ñ∗.

Let γj be a path going around the divisor component Dj . Recall that we are assuming that ρ(γj)
is quasiunipotent and non-trivial in PSL(2,K). We assume that the basepoint x is near D and that
the paths used to define the γj stay within the tubular neighborhood N of D.

Lemma 4.5. Assuming that Hypothesis 4.1 as well as connectedness of D hold and with the above
notation, let Z(ρ(γj)) be the centralizer in PSL(2,K) of the matrix ρ(γj). Then the Z(ρ(γj)) are
all the same group for different j.
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Proof. We may assume that the basepoint x is near one of the components D0. Write

γj = ηξjη
−1

where ξj is a path going around Dj from a nearby basepoint xj, and η is a path going from x to xj.
Decompose η into paths

η = η1 · · · ηk

where for any a = 1, . . . , k, the piece ηa is a path staying in Nia . Let ζa be a loop going from the
endpoint of ηa around the divisor component Dia and let ζ ′a be a loop going around the divisor
component Dia+1 . Note that the endpoint of ηa is in Niaia+1 so we can look at both of these loops.

Commutativity of the fundamental group of the product of punctured polydisks says that ζa and
ζ ′a commute. This step corresponds to the phrase on lines 4–7 of page 12 of [JZ00] and in a certain
sense the rest of our discussion above and below consists of filling in the surrounding details.

For any i the loop around the divisorDi is in the center of π1(N∗
i ), as can be seen by restricting to

a Zariski-open set ofDi over which the normal bundle is trivialized, and noting that the fundamental
group of the open set surjects to the original one. This implies that

ζ ′a = ηa+1ζa+1η
−1
a+1.

Set

τa := η1 · · · ηaζaη
−1
a · · · η−1

1 .

Combining with commutativity of ζa and ζ ′a from the previous paragraph we conclude that τa and
τa+1 commute. By our hypothesis on D, all of the ρ(τa) are non-trivial quasiunipotent matrices in
PSL(2,K). By Lemma 4.4 we find

Z(ρ(τa)) = Z(ρ(τa+1)).

It follows by induction on a that the centralizers Z(ρ(τa)) are the same for all a. We can extend
some of our notation to the boundary cases a = 0 and a = k as is left to the reader. With this,
τ0 = γ0 whereas τk = γj, and we obtain

Z(ρ(γ0)) = Z(ρ(γj)).

This proves the lemma.

In view of this lemma, let Z ⊂ PSL(2,K) denote the centralizer. We can assume by an appropri-
ate change of basis that it is either the group of unipotent upper-triangular matrices, the group of
diagonal matrices, or a non-split torus, see Lemma 4.3. Let NZ ⊂ PSL(2,K) denote its normalizer.
In the unipotent case, NZ is the parabolic subgroup P of upper-triangular matrices; in the split
torus case, NZ/Z is the Weyl group of order two transposing the two standard basis elements of
K2, and in the non-split torus case, NZ/Z has order one or two by mapping it into the Weyl group
over the algebraic closure.

Lemma 4.6. Let NZ denote the normalizer of the subgroup Z which is the centralizer of any
ρ(γj). Then the image by ρ of the fundamental group π1(N∗) lies inside NZ . Furthermore, the
representation gives a map of exact sequences.

1 �� π1(N∗ ×D D̃)

��

�� π1(N∗)

��

�� π1(D)

��

�� 1

1 �� Z �� NZ �� NZ/Z �� 1
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Proof. Let D0 be the irreducible component of D near the basepoint x, and let γ0 be the loop going
from x around D0. We claim that for any η ∈ π1(N∗, x) then

Z(ρ(ηγ0η
−1)) = Z(ρ(γ0)).

The proof of this claim is exactly the same as the proof of Lemma 4.5: decompose

η = η1 · · · ηk,

fix the loops ζa as previously and set

τa := η1 · · · ηaζaη
−1
a · · · η−1

1 .

This time we choose ζk := γ0 which gives for endpoints τ0 = γ0 and τk = ηγ0η
−1. As before τa and

τa+1 commute, so Z(ρ(τa)) = Z(ρ(τa+1)) by Lemma 4.4. Thus, Z(ρ(τk)) = Z(ρ(τ0)) which gives the
claim.

On the other hand, the centralizers of conjugate matrices are conjugate, that is

Z(ρ(ηγ0η
−1)) = ρ(η)Z(ρ(γ0))ρ(η)−1.

Putting this together with the claim and the notation Z = Z(ρ(γj)) for any j, we find that

ρ(η)Zρ(η)−1 = Z.

Thus, ρ(η) ∈ NZ is in the normalizer of Z.
We finish by showing the map of exact sequences. The fact that the image of ρ on π1(N∗) is

contained in the normalizer of Z implies that the normal subgroup of π1(N∗) generated by the γj

maps into Z. However, this normal subgroup is the kernel of the map

π1(N∗) → π1(N) = π1(D),

as may be seen by noting that N is obtained homotopically from N∗ by adding some 2-cells whose
boundaries are the loops γj, and then adding only cells of dimensions at least three. Thus, the kernel
of the upper exact sequence maps into Z, so ρ induces the map of exact sequences as claimed.

Corollary 4.7. The matrices ρ(γj) all commute with each other.

Proof. They are all inside the group Z, which in the case of PSL(2,K) is commutative.

Remark 1. Let Σ denote the incidence simplicial complex of the divisor D. This has appeared in the
works of Stepanov [Ste06] and Thuillier [Thu07]. There is a vertex for each divisor component Dj ,
an edge for each irreducible component of Dij , and higher simplices for the multiple intersections.
We have a map N → Σ inducing π1(N∗) → π1(Σ). In Lemma 4.6, we could have replaced D by
Σ, that is to say the representation sends the kernel of π1(N∗) → π1(Σ) into the center Z. We
do not need this for our proof, and the end theorem of the paper shows that the situation we are
considering here does not really arrive in practice; however, this remark might be interesting from
a geometrical point of view in related situations such as [Del07].

4.4 Local construction of an initial map: generalities
Fix a complete finite-volume Kähler metric of Poincaré type on X, see [CKS87, JY86, JZ00, SY82].
Our first problem will be to choose an initial finite-energy equivariant map to the Bruhat–Tits tree
under the action of PSL(2,K).

Composing our representation ρ with the inclusion π1(N∗) → π1(X) we obtain an action denoted
again by ρ of π1(N∗) on the tree T . We would like to construct an initial map φ : Ñ∗ → T , which
is ρ-equivariant and whose restriction to the fundamental region Reg(Ñ∗/N∗) has finite energy.

We assume that we have chosen projections pj : Nj → Dj such that on Nij the different projec-
tions commute and give a projection pij to Dij , and similarly for higher intersections.
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In order to insure the finite-energy condition, we try to construct a map which is constant in
the direction of the fibers of Nj → Dj . This would mean in particular that it is constant on the
fibers of Nij → Dij and similarly for multiple intersections. The discussion by Jost and Zuo in
[JZ00, pp. 8–12] serves to explain why this condition yields a finite-energy map. To be more precise
about this, say that two points in Ñ∗ (or, equally well, N∗ or N) are projection-equivalent if they
are joined by a path which projects into N∗ to a path which stays in any fiber of any projection
pj which it meets. We refer to [JZ00] for the fact that any Lipschitz and piecewise smooth map
φ : Ñ∗ → T which sends projection-equivalent points to the same point in T , has finite energy on
the fundamental region.

If we take the quotient of N by the equivalence relation of projection-equivalence we obtain a
space which is homotopy-equivalent to D. Thus, by modifying the projections pj near the multiple
intersections, we can define a map σ : N → D with the property that all fibers of the projections pj

go to single points in Dj . The restriction σ|D will no longer be the identity, for example, points in
Nij∩D have to be mapped toDij . However, σ|D will be homotopic to the identity. The map σ induces

σ∗ : π1(N∗) → π1(D), σ̃ : Ñ∗ → D̃,

where D̃ → D is the universal cover corresponding to σ(x) as a basepoint for D.
We assume that the choice of fundamental region Reg(Ñ∗/N∗) is made compatibly with a

choice of Reg(D̃/D) via the map σ. More precisely, proceed as follows. Let N+ denote the real blow-
up of the divisor D in N . It consists of adding a boundary to N∗, the boundary being homeomorphic
to the boundary of a tubular neighborhood of D. The inclusion of an open dense subset N∗ ↪→ N+

is a homotopy equivalence. We assume that our map extends to a map

σ+ : N+ → D

and the homotopy equivalence between N∗ and N+ commutes with σ+. Let Ñ+ denote the universal
cover of N+ corresponding to the same basepoint x, so again we have an open dense inclusion
Ñ∗ ↪→ Ñ+ on which the homotopy equivalence lifts.

Choose a fundamental region
Reg(D̃/D) ⊂ D̃.

Now σ+ induces σ̃+ : Ñ+ → D̃. Consider the region

Q+ := (σ̃+)−1(Reg(D̃/D)) ⊂ Ñ+,

and let Q∗ = Q+ ∩ Ñ∗.
Note that π1(N+) = π1(N∗) and σ∗ = (σ+)∗ maps this group to π1(D). The group ker(σ∗) ⊂

π1(N∗) acts freely on Q+, and the quotient is

Q+/ ker(σ∗) = N+ ×D Reg(D̃/D).

Let Reg(Ñ+/N+) ⊂ Q+ be a fundamental region for the action of ker(σ∗).
In general ker(σ∗) will not be finitely generated. However, N+×DReg(D̃/D) is homeomorphic to

a finite simplicial complex, so its fundamental group is finitely generated. Thus, Q+ will usually be
disconnected, a disjoint union of coverings of N+×D Reg(D̃/D) corresponding to finitely generated
groups.

The fact that the quotient is a finite complex means we can choose a compact fundamental
region in Q+, indeed in one of the connected components. Thus, Reg(Ñ+/N+) is compact and is a
finite simplicial complex.

Now let Reg(Ñ∗/N∗) := Reg(Ñ+/N+)∩N∗. Note that it is a fundamental region in Q∗ for the
action of ker(σ∗), surjecting to the quotient

Q∗/ ker(σ∗) = N∗ ×D Reg(D̃/D).
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Lemma 4.8. The region Reg(Ñ∗/N∗) constructed in this way is fundamental, that is any point of
Ñ∗ is a π1(N∗)-translate of a point in the region; also the subset A ⊂ π1(N∗) of elements α such
that

Reg(Ñ∗/N∗) ∩ α · Reg(Ñ∗/N∗) �= ∅
is finite.

Proof. It suffices to do this for Reg(Ñ+/N+) because

Reg(Ñ∗/N∗) = Reg(Ñ+/N+) ×N+ N∗,

and Ñ∗ = Ñ∗ ×N+ N∗ too.
The map σ∗ : π1(N∗) → π1(D) is surjective. This implies that any point in Ñ+ is a translate

of a point in Q+. On the other hand, any point in Q+ is a translate of a point in Reg(Ñ+/N+) by
choice of the latter.

The set of points A is a subset of the set A+ defined in the same way for Reg(Ñ+/N+) so for
the second statement it suffices to prove that A+ is finite. For this, note that Ñ∗ is the universal
covering of a finite complex, and Reg(Ñ+/N+) is a subset bounded with respect to any π1(N+)-
invariant metric. There are only finitely many group elements corresponding to paths of bounded
length, so A+ is finite.

By construction we now have a map between fundamental regions denoted by

σReg : Reg(Ñ∗/N∗) → Reg(D̃/D).

Lemma 4.9. In order to define an equivariant map φ on Ñ∗ with finite energy on the fundamental
region, it suffices to construct a Lipschitz piecewise C1 map

φReg : Reg(Ñ∗/N∗) → T
sending projection-equivalent points to the same point in T , and with the property that for any
x, y ∈ Reg(Ñ∗/N∗) and any α ∈ π1(N∗) such that αx = y, we should have

φReg(y) = ρ(α)φReg(x).

Proof. Suppose that we are given φReg. Then define φ : Ñ∗ → T as follows. For u ∈ Ñ∗ choose a
group element g ∈ π1(N∗) such that gu ∈ Reg(Ñ∗/N∗). Put

φ(u) := ρ(g)−1φReg(gu).

If g′ is another element with g′u ∈ Reg(Ñ∗/N∗), then putting α = g′g−1, x = gu and y = g′u we
have αx = y so this is data such as in the hypothesis of the lemma. In this case,

ρ(g)−1φReg(gu) = ρ(g′)−1ρ(α)−1φReg(x) = ρ(g′)−1φReg(αx) = ρ(g′)−1φReg(g′u),

which shows that φ is well defined. If φReg is Lipschitz piecewise C1, then the same is true of φ. As
stated above, by [JZ00], if φReg sends projection-equivalent points to the same point in T , then it
will have finite energy.

Our strategy will be to use this lemma and try to construct a map which in a certain sense
factors through the projection σ. In the most delicate case of unipotent monodromy, this is not
exactly possible; however, it will be possible to construct a map which factors over the fundamental
region.

According to Lemma 4.4, the centralizer Z is an invariant. Since the centralizers are different in
the three cases of Lemma 4.3, it means that the matrices ρ(γj) all fall into the same case of that
classification. Thus, for our construction of an initial map we can treat these three cases separately,
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as we shall do in the following sections, in increasing order of difficulty: the non-split torus, the split
torus, and the unipotent case.

4.5 The non-split torus case

In both torus cases, the ρ(γj) are commuting matrices of finite order. In particular, there exists a
matrix A which also has finite order, and such that for each j there is mj with ρ(γj) = Amj . In
fact, A can be taken as an appropriate product of powers of the ρ(γj).

Let R ⊂ T be the set of fixed points of A. The action of A fixes the ends of R. This implies that
A is contained in the parabolic subgroup associated to any end. However, since the eigenvalue of A
is not defined over K, this is impossible: the parabolic subgroups are conjugate to groups of upper-
triangular matrices, in particular the eigenvalues of elements of a parabolic subgroup are defined
over K. Thus, R has no ends, in other words it is compact.

Now, the group Z(A) fixes R: if β ∈ Z(A) and x ∈ R, then

A(βx) = β(Ax) = βx ⇒ βx ∈ R.

It follows that Z(A) fixes the barycenter of R. Let R′ ⊂ T be the set of fixed points of Z. By what
we have just said, it is non-empty. Note also that A ∈ Z so R′ ⊂ R, in particular R′ is compact too.

If β ∈ NZ and x ∈ R′, then for any ξ ∈ Z we have

ξ(βx) = β(β−1ξβx) = βx since β−1ξβ ∈ Z,

thus βx ∈ R′. In other words, NZ sends R′ into itself. Again, this implies that the barycenter of R′

is a fixed point of NZ .
By Lemma 4.6, the representation ρ sends π1(N∗) into NZ , thus T admits a fixed point for the

action of π1(N∗). We can take as the initial finite-energy map the constant map sending all of N∗

to this fixed point.

4.6 The split torus case

As above, there is a matrix A ∈ Z of finite order such that the ρ(γj) are powers of A. In the split
case, A may be conjugated to a diagonal matrix with roots of unity on the diagonal. The subset
R ⊂ T of points fixed by A is a real line connecting two ends of T . The two ends correspond to the
parabolic subgroups of upper and lower triangular matrices. By direct calculation, the centralizer
Z, which is the diagonal torus Gm ⊂ PSL(2,K), preserves R. The normalizer NZ is the extension
of Z by the Weyl group of transpositions, and again we see directly that NZ preserves R, with the
non-trivial irreducible component acting by interchanging the two ends, reversing the orientation
of R. By Lemma 4.6, the action of π1(N∗) via ρ goes through NZ , hence it preserves R ⊂ T .

The morphism NZ → Aut(R) sends A to the identity. Hence, it sends the normal subgroup
generated by the ρ(γj) to the identity. This normal subgroup is the kernel of the map π1(N∗) →
π1(N). This map is the same as σ∗ : π1(N∗) → π1(D). Therefore, the action of π1(N∗) on R ⊂ T
factors through an action of π1(D).

Now D is a usual compact variety and we can choose an equivariant map D̃ → R. Composing
with the projection σ this gives an equivariant map Ñ∗ → R which sends projection-equivalent
points to the same point in R, in particular it has finite energy on the fundamental region.

4.7 The unipotent case

We would like to mimic the preceding construction. However, Z is now the unipotent subgroup
of upper-triangular matrices with ±1 on the diagonal. The fixed-point sets of finitely generated
subgroups of Z are non-empty: they are contractible rays. The action of NZ will not preserve
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these rays. Basically, a diagonal matrix with non-trivial valuations of its diagonal elements will
change the fixed ray. If we think of Z as isomorphic to the additive group of the field K, then
any finitely generated subgroup goes into a subgroup of the form tqOK where t is the uniformizing
parameter. The ray of fixed points depends on q and conjugating with a diagonal matrix can
change q.

We get around this problem by noting that we really only need to choose a map on the funda-
mental region, equivariant with respect to the set of group elements which serve to identify different
points of this region. This set is finite, so we can start far enough out along the fixed ray so that
the finite set of translations involved does not take us out of the set of fixed points. We obtain a
map from Reg(Ñ∗/N∗) to T which factors through Reg(D̃/D), even though the resulting equiv-
ariant map on the whole universal covering Ñ∗ will not factor through D̃. The different copies of
Reg(Ñ∗/N∗) which make up Ñ∗ are related by paths which, even if they project to the same path
in π1(D), act differently on T and this serves to create a divergence in the equivariant map.

We now explain the argument more carefully.

Corollary 4.10. Suppose that we can construct a Lipschitz piecewise C1 map ϕ : Reg(D̃/D) → T
with the property that for any x, y ∈ Reg(Ñ∗/N∗) and any α ∈ π1(N∗/N) with αx = y, then

ϕ(σRegy) = ρ(α)ϕ(σRegx).

With this, posing φReg(y) := ϕ(σReg(y)) leads to an equivariant map φ : Ñ∗ → T which has finite
energy on the fundamental region.

Proof. Use Lemma 4.9. The criterion of that lemma is exactly the same as the hypothesis here.
Note that if φReg, factors through σReg, then it automatically sends projection-equivalent points to
the same point, since σ has this property.

Define the subsets of group elements corresponding to boundary identifications of the funda-
mental regions:

A := {α ∈ π1(N∗),∃x, y ∈ Reg(Ñ∗/N∗), αx = y},
and

B := {β ∈ π1(D),∃x, y ∈ Reg(D̃/D), βx = y}.
Both of these subsets are finite, and we have a map A → B.

Let A×π1(D) A be the set of pairs (α, β) ∈ A×A with σ∗(α) = σ∗(β) in π1(D).

Lemma 4.11. The map A → B is surjective, in other words B is the image of A in π1(D) and it is
the quotient of A by the equivalence relation A×π1(D) A.

Proof. Look at the choice of Reg(Ñ∗/N∗) described above Lemma 4.8. We first claim that the map
σReg : Reg(Ñ∗/N∗) → Reg(D̃/D) is surjective. To see this, note that N∗ → D is surjective, so

N∗ ×D Reg(D̃/D) → Reg(D̃/D)

is surjective. On the other hand, any point N∗ ×D Reg(D̃/D) lifts to a point of Reg(Ñ∗/N∗) by
construction of this latter. This proves the claim.

Now we continue with the proof of the lemma. Suppose that β ∈ B with u, v ∈ Reg(D̃/D) such
that βu = v. Choose x ∈ Reg(Ñ∗/N∗) such that σReg(x) = u. Choose β′ ∈ π1(N∗) mapping to β,
and put y′ := β′x. We have σ̃(y′) = βu = v. Thus,

y′ ∈ σ̃−1(Reg(D̃/D)) = Q∗.

By the choice of Reg(Ñ∗/N∗) as a fundamental region for the action of ker(σ∗) on Q∗, there is a
group element g ∈ ker(σ∗) such that y := g · y′ ∈ Reg(Ñ∗/N∗). Now, putting α := gβ′ we obtain
αx = gβ′x = gy ′ = y, so α ∈ A and it maps to β.
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Lemma 4.12. Suppose that we can construct a map ϕ : Reg(D̃/D) → T with the property that for
any u, v ∈ Reg(D̃/D) and any α ∈ A such that σ∗(α)u = v, then ϕ(v) = ρ(α)ϕ(u). Then ϕ satisfies
the criterion of Corollary 4.10.

Proof. Suppose that x, y ∈ Reg(Ñ∗/N∗) and α ∈ π1(N∗/N) with αx = y. Note that, by definition,
α ∈ A. Put u := σReg(x) and v := σReg(y). We have σ∗(α)u = v. By the hypothesis of this lemma,
ϕ(v) = ρ(α)ϕ(u), and in view of the definition of u and v that gives exactly the condition of
Corollary 4.10.

Note that D is obtained from Reg(D̃/D) by glueing together points u, v whenever there is β ∈ B
such that βu = v.

Corollary 4.13. In order to apply Corollary 4.10 to construct a finite-energy initial map, it suffices
to construct a map ϕ : Reg(D̃/D) → T with the property that for any two points u, v ∈ Reg(D̃/D)
which are equivalent by a group element β ∈ B ⊂ π1(D), then for any lifting α ∈ A with σ∗(α) = β
we should have ϕ(v) = ρ(α)ϕ(u).

Proof. Given that the condition here makes sense by Lemma 4.11, the statement is the same as
that of Lemma 4.12.

We have to look carefully at the standard procedure for creating an initial equivariant map into
a contractible space, because π1(D) does not actually act naturally on T .

Proposition 4.14. Suppose that we have a nested sequence of subsets

R−1 ⊂ R0 ⊂ R1 ⊂ · · · ⊂ Rd ⊂ T

where d = dimR(D), such that each Rk is contractible, such that ρ(A×Rk) ⊂ Rk+1 and such that

ρ(α)t = ρ(β)t, for all t ∈ Rk and all (α, β) ∈ A×π1(D) A.

Then we can construct an initial map ϕ as required by the previous Corollary 4.13.

Proof. Let Regk(D̃/D) be the k-skeleton of the fundamental region. Define inductively maps ϕk :
Regk(D̃/D) → Rk as follows. For k = −1 the domain is empty and the map is trivially defined. For
any k, assuming that the map is defined on the k − 1-skeleton, then choose a subset of k-simplices
of Regk(D̃/D) mapping isomorphically to the set of k-simplices of D. By contractibility of Rk−1 we
can map these simplices into Rk−1 arbitrarily, given the map ϕk−1 which we already know on their
boundaries. The remaining k-simplices of Regk(D̃/D) are mapped into T in a unique and well-
defined way using the group translation condition for ϕ. Note that any k-simplex of Regk(D̃/D) is
related to one in the original set by a unique group element because the group π1(D) acts freely on
D̃, and furthermore this group element is in B by the definition of the latter. It lifts to an element
of A by Lemma 4.11. Thus, with our condition that ρ(A×Rk−1) ⊂ Rk we get that these maps send
all of Regk(D̃/D) into Rk. This completes the inductive construction of ϕ.

We have now reduced to a purely algebraic problem. Recall that the centralizer Z is the subgroup
of unipotent upper-triangular matrices, its normalizer is NZ = P the group of upper-triangular
matrices in PSL(2,K), and NZ/Z ∼= Gm is the diagonal torus.

Lemma 4.15. Let P be the group of upper-triangular matrices in PSL(2,K), with projection ξ :
P → Gm to the diagonal torus. Suppose that we have a finite subset A ⊂ P . For any d there is a
sequence of contractible real rays R−1 ⊂ · · · ⊂ Rd ⊂ T , such that A ·Rk ⊂ Rk+1 and

for all α, β ∈ A, ξ(α) = ξ(β) ⇒ for all t ∈ Rk, α · t = β · t.
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Proof. Let
D := {(αβ−1) ∈ Z, for α, β ∈ A with ξ(α) = ξ(β)}.

This is a finite subset of Z. We can rewrite the conditions of the lemma by saying that we want
rays Rk for −1 � k � d such that Rk are fixed by elements of D, and A ·Rk ⊂ Rk+1.

If we consider the standard basis {e1, e2} for K2, it corresponds to two ends of T which are
the two parabolic subgroups of upper- and lower-triangular matrices. The real line joining these
two ends consists of the segments joining together all adjacent lattices of the form Mq := 〈tqe1, e2}
where t ∈ K is the uniformizing parameter. The group of points of Z is just K, and an element
a ∈ K acts on the basis elements by e1 �→ e1, e2 �→ ae1 + e2. There is an upper bound on the
valuation of elements of the finite subset D ⊂ K. This leads to q′ such that the lattice Mq is fixed
by D for any q � q′. We may consider any qk � q0 and define Rk to be the ray of segments joining
the lattices Mq for q � qk. With this choice we obtain the first condition that Rk consists of fixed
points of D.

To obtain the second condition, note that the diagonal group Gm
∼= K∗ acts on our real line

by translations through the valuation map ν : K∗ → Z. An element b ∈ K∗ sends Mq to Mq+ν(b).
Again, since ξ(A) ⊂ K∗ is a finite subset, there is a bound on the valuations of elements. Thus,
there is n such that ν(b) � n for b ∈ ξ(A). If we choose qk+1 = qk +n, for example, then the second
condition A · Rk ⊂ Rk+1 will hold.

To complete the proof, just choose q−1 � q′ − (d+ 1)n, then qk = q−1 + (k + 1)n � q′ for every
k = −1, . . . , d and we obtain the required choice of rays.

This suffices for our construction of ϕ.

Corollary 4.16. In the unipotent case, putting A := ρ(A) ⊂ P ⊂ PSL(2,K) and Rk := Rd−k we
obtain regions satisfying the criterion of Proposition 4.14, hence going back to Corollary 4.10 we
obtain the desired finite-energy initial map.

Proof. By the map of exact sequences in Lemma 4.6, the points of A ×π1(D) A map to A ×Gm A.
Thus, the subsets provided by Lemma 4.15 serve to satisfy the criterion of Proposition 4.14.

Remark 2. In the above construction for the unipotent case, we could have replaced the divisor
D by its incidence complex Σ, cf. Remark 1. There is a projection D → Σ and composing gives a
projection N∗ → Σ. We could have constructed the initial map in a way which factors through this
projection over the fundamental region. This is special to the unipotent case: in the split torus case
it looks like we need to consider the projection to D.

4.8 The pluriharmonic map
We sum up the above constructions and apply Gromov–Schoen theory to deduce the existence of an
equivariant harmonic map of finite energy on the fundamental region. In this section, we no longer
assume that D is connected.

Our now arbitrary basepoint x ∈ X corresponds to a universal covering f : X̃ → X.
Let D(i) denote a connected component of the divisor D. It may be a union of several irreducible

components. Let N(i) denote a tubular neighborhood of D(i) in X and let N∗
(i) := N(i) ∩X denote

the ‘punctured’ tubular neighborhood. Define the fundamental group of N∗
(i) inside π1(X,x) by

choosing a basepoint x(i) in N∗
(i) and joining it to x by a path. Denote the subgroup of paths which

consist of going from x to x(i) along our path, then arbitrarily inside N∗
(i), and again along our path

back to x, by π1(N∗
(i)) ⊂ π1(X,x).

Let Ñ∗
(i) denote the universal covering determined by the basepoint x(i). The inverse image

f−1N∗
(i) inside X̃ is a disjoint union of copies of Ñ∗

(i). In order to define a π1(X,x)-equivariant map
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starting from this disjoint union, it is equivalent to defining a π1(N∗
(i), x(i))-equivariant map starting

from Ñ∗
(i).

Our preceding discussion where we focalized on a single connected component of D, allows us to
choose a π1(N∗

(i), x(i))-equivariant map Ñ∗
(i) → T which has finite energy on a fundamental region.

This gives a π1(X,x)-equivariant map X̃ ⊃ f−1N∗
(i) → T . Do this for each connected component

D(i). By contractibility of T we can extend these maps to a π1(X,x)-equivariant map φ : X̃ → T .
The procedure was recalled in detail in the proof of Proposition 4.14. The complement of the union of
translates of the fundamental regions for the Ñ∗

(i) is relatively compact in the fundamental region

of X̃ , so the map φ has finite energy on the fundamental region.
The action of π1(X) on T is reductive in the sense of [JZ00], because of our hypothesis that the

Zariski closure of the image of ρ is SL(2,K).
By the general theory of Gromov–Schoen [GS92] our initial map can be replaced by a harmonic

ρ-equivariant map Φ : X̃ → T .
The harmonic map is, in fact, pluriharmonic, by [GS92, Theorem 7.3].
The hypothesis that the image of ρ is not contained in a compact subgroup, implies that the

pluriharmonic map is not constant, because if it were constant, then its image point would be fixed
by ρ and the subgroup of elements fixing a point of T is compact. We obtain the following result.

Proposition 4.17. Under Hypothesis 4.1, there exists a non-constant pluriharmonic ρ-equivariant
map from the universal cover of X to the Bruhat–Tits tree T . With respect to the Poincaré-like
complete finite-volume metric on X, the pluriharmonic map has finite energy.

4.9 Fixed points of normal subgroups
We close out this section with a study of the following situation. Suppose that a finitely presented
group Γ acts on T by a representation ρ : Γ → PSL(2,K), and suppose that Υ ⊂ Γ is a normal
subgroup. Let R ⊂ T be the set of fixed points of Υ, that is the set of points y ∈ T such that uy = y
for all u ∈ Υ. Note that R is convex in the sense that if y, z ∈ R, then the unique path joining y to
z is contained in R. Thus, R is a subtree of T .

The fact that Υ is a normal subgroup implies that ΓR ⊂ R, indeed

for all u ∈ Υ, all γ ∈ Γ for all y ∈ R, u(γy) = γ((γ−1uγ)y) = γy.

In particular, we obtain an action of the quotient Γ/Υ on R.
The subgroup Υ fixes the set of ends of R (which are also ends of T ).
If R has at least three distinct ends, this implies that the image of Υ in T is contained in

the intersection of at least three distinct normal subgroups. These normal subgroups correspond to
distinct one-dimensional subspaces Li ⊂ K2 preserved by Υ. Up to conjugation we may assume that
three of these subspaces are the two coordinate lines plus the diagonal. The subgroup of elements
preserving these subspaces is the center {±1} ⊂ SL(2,K), that is the trivial subgroup of PSL(2,K).
Thus, if R has at least three ends, then the image of Υ is trivial.

On the other hand, the set of ends of R remains invariant, although it may be acted upon, by
the action of Γ. A subset consisting of one or two ends corresponds to a subgroup (either a parabolic
subgroup or a torus), so in either of these cases the image of Γ cannot be Zariski-dense in PSL(2,K).

Finally, if R has no ends, thus it is compact, then Γ fixes its barycenter so Γ is contained in a
compact subgroup. We can sum this up in the following lemma.

Lemma 4.18. Suppose that ρ : Γ → PSL(2,K) is a representation, and suppose that Υ ⊂ Γ is
a normal subgroup acting with a non-empty set of fixed points. Suppose that the image ρ(Γ)
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is Zariski-dense and not contained in a compact subgroup of PSL(2,K). Then the image of Υ is
trivial.

It will also be useful to have the invariance of our hypothesis under generically finite coverings.

Lemma 4.19. Suppose that (X,X, ρ) satisfies Hypothesis 4.1. Then for any generically surjective
map Z → X and any smooth normal crossings compactification Z ⊂ Z, if we let ρZ denote the
pullback of ρ to Z and Y the maximal open subset of Z on which ρZ extends to ρY , then (Y,Z, ρY )
satisfies Hypothesis 4.1.

Proof. Note first that Y is still the complement of a divisor with normal crossings, which is the
divisor Z − Z with possibly some components removed.

The local monodromy transformations on Y come from those of X. If we have a small loop
around a component of the divisor at infinity in Y , then it goes to a loop in one of the neighbor-
hoods of a multiple intersection point on D. In such a neighborhood, the monodromy is an abelian
representation whose generators are quasiunipotent. A commuting family of quasiunipotent matri-
ces can be simultaneously upper-triangularized, so any matrix in the group they generate is also
quasiunipotent. This shows that the monodromy of ρY is quasiunipotent at infinity.

The image of π1(Z) is of finite index in π1(X), call this subgroup Υ. Furthermore, ρY (π1(Y )) =
ρZ(π1(Z)) = ρ(Υ). Let Υ′ be the intersection of the conjugates of Υ. It is a normal subgroup.
Let H be the Zariski closure of ρ(Υ′). It is a normal subgroup of SL(2,K) since the image of ρ is
Zariski-dense, so H is either the whole group or the center. If it were the center, then the image of
π1(X) in PSL(2,K) would be finite, contradicting the Zariski-density of ρ. Thus, H = PSL(2,K),
which shows that ρY is Zariski-dense.

Suppose now that ρY (π1(Y )) were contained in a compact subgroup. Using the same group Υ′ as
in the previous paragraph, we would obtain ρ(Υ′) contained in a compact subgroup. By Lemma 4.18
the image ρ(Υ′) would have to be contained in the center, again contradicting Zariski-density of ρ.
This completes the verification of the conditions of Hypothesis 4.1.

5. Properties of the pluriharmonic map

In this section, we look further at the properties of the pluriharmonic mapping constructed above.
The case of trees was discussed explicitly in [GS92], when X is compact. For the quasiprojective
case, our situation is subsumed under the more general case of maps to buildings considered by Jost
and Zuo [JZ00]. Since the case of maps to trees is considerably simpler in that there is only a single
spectral form to consider, it seems opportune to look at the details here.

We keep Hypothesis 4.1 and look at the pluriharmonic map given by Proposition 4.17. Our goal
is to obtain the factorization result Theorem 5.13 given at the end.

5.1 The spectral form

The pluriharmonic map yields spectral data which is a two-valued one-form θ on X. This is easy to
describe in the case of a map to a tree: the edges of T have a linear structure and also metrics so
we can identify them with intervals in R. This identification is well defined up to translation and
inversion, so the differential df is well defined up to ±1. The differential is pluriharmonic, so it is
the real part of a holomorphic differential form θ. It turns out, due to the regularity statements of
Gromov and Schoen [GS92] which are local so they work equally well in the quasiprojective case,
that the symmetric square Sym2(θ) is a well-defined and holomorphic section of Sym2(Ω1

X).
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Near a smooth point of the divisor at infinity, choose a coordinate system (z1, . . . , zn) such that
D is given by z1 = 0. Then we can write

Sym2(θ) =
∑
i�j

aij (z) dzi dzj

with the functions aij (z) holomorphic on the complement of z1 = 0.
At any point z ∈ X, Sym2(θ) is the square of a one-form θ(z) well defined up to sign. Further-

more, the energy is the integral of the square norm of θ(z), which in turn is the same as |Sym2(θ)|.
We conclude that the integral (over our coordinate neighborhood) is finite:∫ ∣∣∣∣ ∑

i�j

aij (z) dzi dzj

∣∣∣∣ dµ <∞.

Up to a bounded change in the metric on the base, we may assume that the metric is the product
of the Poincaré metric in z1 with the euclidean metric on the zi for i > 1. In particular, the dzi dzj
are orthogonal and we obtain ∫

|aij (z) dzi dzj | dµ <∞

for all i � j. Recall that |dzi| = 1 for i > 1 and if we set r := |z1|

|dz1| = r|log r|

and

dµ =
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

r2|log r|2 .

To show the meromorphy of aij along D and to calculate their maximum order of poles, it suffices
to restrict to curves given by zi = pi fixed for i > 1. This is because if the integral is finite, then
it is finite for almost all curves, and we have a Hartogs principle for separately almost everywhere
meromorphic functions [Shi86, Shi94, Sic69]. The slices in the other directions are automatically
almost everywhere holomorphic, indeed for any z1 �= 0.

Thus, we are reduced to considering a function ap
ij (z1) := aij (z1, p2, . . . , pn) of one variable,

holomorphic on a punctured neighborhood of the origin, with the hypothesis that∫
|ap

ij (u)|(r|log r|)m−2 du du <∞,

where m = 2 if i = j = 1 or m = 1 if i = 1 < j and m = 0 if i, j > 1. Here r = |u|.
We are in a situation similar to Bell’s removable singularities theorem [Bel82, p. 687].
An argument using Cauchy’s theorem on disks not meeting the origin shows that ap

ij is mero-
morphic at the origin. To obtain the maximum order of poles, suppose that

ap
ij = bu−n + · · ·

is the Laurent expansion with first coefficient b �= 0. Then for u near the origin

|ap
ij (u)| ∼ r−n,

so we have ∫ 1

0
rm−n−1|log r|m−2 dr <∞.

Making the change of variables u = − log r we obtain∫ ∞

0
e(n−m)uum−2 du <∞.
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We conclude that in the case m = 0 we obtain n � 0, whereas for m � 1 we obtain n < m. Thus,
for m = 0, 1 we have n � 0 and for m = 2 we have n � 1. In view of the definition of m this means
that the ap

ij are holomorphic on X if either of i or j is different from one, whereas ap
11 has a pole of

order at most one.
Going back to all of X , we conclude by Hartogs principle [Shi86, Shi94, Sic69] that the aij are

meromorphic along smooth components of the divisor. By the more classical Hartogs principle, they
are meromorphic everywhere. Their orders of poles are bounded as described previously.

We can say what this bound means in invariant terms. Define the half-logarithmic symmetric
square to be the subsheaf denoted, for lack of better notation, by

Sym2(Ω1
X

; 1
2 logD) ⊂ j∗(Sym2(Ω1

X))

as the subsheaf which is generated along smooth points of Di by Sym2(Ω1
X

) plus dz2/z where z
is a coordinate of Di. One can check that the subsheaf Sym2(Ω1

X
; 1

2 logD) is independent of the
choice of coordinate. This defines the subsheaf at points of X which are not normal crossing points
of D. This defines a unique reflexive coherent sheaf on X . By choosing local coordinates at a normal
crossing point and noting that the generators of F have a simple monomial form, we can see that
F is actually locally free.

Our estimate can be stated as follows.

Lemma 5.1. With the above notation, for the finite energy pluriharmonic map the differential
Sym2(θ) extends to a holomorphic section of the bundle Sym2(Ω1

X
; 1

2 logD) over X defined in the
previous paragraph.

Lemma 5.2. Suppose that p : Z → X is a morphism from a smooth projective variety to X, and
suppose that we have a divisor DZ ⊂ Z which is assumed to have normal crossings. Suppose that the
inverse image of D is contained in DZ . Thus, if Z := Z − DZ , then p : Z → X. Define as above
the half-logarithmic symmetric squares for (X,D) and (Z,DZ). Then the natural map

p∗Sym2(Ω1
X) → Sym2(Ω1

Z)

extends to a map

p∗Sym2(Ω1
X

; 1
2 logD) → Sym2(Ω1

Z
; 1

2 logDZ).

Proof. The sheaves on both sides of the desired map are vector bundles. Thus, to obtain the map
we just need to construct it in codimension one. In particular, we can look near to a point on a
smooth point P ∈ DZ , where we have coordinates z1, . . . , zn such that the divisor DZ is given by
z1 = 0 (with P corresponding to zi = 0). The image Q = p(P ) in X is a point which we may assume
is on D, because if it were not then the statement would be immediate. Thus, we have coordinates
x1, . . . , xm on X again centered at Q and with D given by x1 · · · xk = 0. Write

xi ◦ p = ui(z)z
ai
1 ,

with ui non-vanishing along DZ at the point P . The inverse image of D is given by the equation

0 = (x1 · · · xk) ◦ p = u1(z) · · · uk(z)z
a1+···+ak
1 .

By hypothesis, the zero set of this equation is contained in DZ , which near P is just the smooth
divisor z1 = 0. This implies that the zero sets of the ui(z) do not contain any other irreducible
components for i = 1, . . . , k. Therefore, ui(P ) �= 0 for i = 1, . . . , k. This implies that ai > 0 for
i = 1, . . . , k because our coordinates xi are centered at Q so xi ◦p(P ) = 0. Of course, we cannot say
anything for the uk+1 · · · un but these will not enter into the subsequent argument.

Now
Sym2(Ω1

X
; 1

2 logD)
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is locally free, with generators near Q of the form

dx2
i

xi
, 1 � i � k,

dx2
j , j > k,

and

dxi dxj, 1 � i < j � n.

Note that the pullback of dxi is

p∗ dxi = aiui(z)z
ai−1
1 dz1 +

∑ ∂ui

∂zj
zai
1 dzj .

This is a section of Ω1
Z
, so the pullbacks of the generators dx2

j and dxi dxj are in Sym2Ω1
Z
. We just

have to check the pullback of the fractional generator for i = 1, . . . , k. We have

p∗
(
dx2

i

xi

)
= z2ai−3

1 a2
iui(z)2 dz2

1 + z2ai−2
1 A

where A is a section of Sym2Ω1
Z
. The fact that ai � 1 means that the term with A is a section of

Sym2Ω1
Z
. Similarly, the first term is a holomorphic multiple of dz2

1/z1. Thus, p∗(dx2
i /xi) is a section

of Sym2(Ω1
Z
; 1

2 logDZ) as required.

Corollary 5.3. Suppose that Φ is a finite-energy pluriharmonic map on X corresponding to a
representation satisfying Hypothesis 4.1. Suppose that p : Z → X is as in Lemma 5.2. Then the
pullback Φ◦p is a pluriharmonic map on Z satisfying the condition of Lemma 5.1, that the symmetric
square of its differential is a section of Sym2(Ω1

Z
; 1

2 logDZ).

Proof. Combine Lemmas 5.1 and 5.2.

5.2 Uniqueness
The pluriharmonic map itself may not be unique. However, its differential is unique, and different
pluriharmonic maps are related by a geodesic homotopy which preserves the differential.

Suppose that Φ0 and Φ1 are two different pluriharmonic maps of finite energy equivariant for
ρ. Define the geodesic homotopy {Φt}t∈[0,1] as follows. For any point x ∈ X̃ , let Φt(x) denote the
geodesic path joining Φ0(x) and Φ1(x).

Lemma 5.4. The geodesic homotopy is a continuous, piecewise differentiable map

Φ : [0, 1] × X̃ → T .
There is a dense open set U ∈ X̃ such that on [0, 1] × U the map Φ is harmonic in the second
variable and linear in the first variable. On each connected component of U there is a choice of
chart in T containing the images of all Φt(x), and in this chart the differential with respect to the
second variable satisfies

dΦt(x) = t dΦ1(x) + (1 − t) dΦ0(x).

Proof. Consider the function G(x, y, t) which to points x, y ∈ T and t ∈ [0, 1] associates the point
in T on the geodesic from x to y, with coordinate t. Thus, G(x, y, 0) = x and G(x, y, 1) = y. A
geometric picture shows that it is Lipschitz, hence continuous. Furthermore, if x and y are not
vertices of T then near (x, y) the function is bilinear onto the flat of T joining x to y. In terms of
a real coordinate r on this flat, G has the form

rG(x, y, t) = (1 − t)r(x) + tr(y).
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Our function Φ is defined by

Φ(t, x) := G(Φ0(x),Φ1(x), t).

The open set U is the set of points x such that Φ0(x) and Φ1(x) are not vertices of T . This is the
complement of a one-dimensional real analytic subvariety, in particular it is dense. On U , the map
Φ is linear in t and harmonic in x because it is a linear combination of harmonic functions. In terms
of a real coordinate r on the flat joining Φ0(x) to Φ1(x), we have

rΦt(x) = (1 − t)rΦ0(x) + trΦ1(x).

This gives the formula for the differential.

Corollary 5.5. The energy of Φt satisfies∫
X
|dΦt|2 = e0 + e1t+ e2t

2

with

e2 =
∫

X
|dΦ0 − dΦ1|2.

Here the dΦ0 and dΦ1 are taken using the charts of T as in the previous lemma, well defined on
connected components of U .

Proof. Plug in the formula

dΦt(x) = t dΦ1(x) + (1 − t) dΦ0(x)

to obtain

|dΦt|2 = |t dΦ1(x) + (1 − t) dΦ0(x)|2

= t2|dΦ1(x)|2 + (1 − t)2|dΦ0(x)|2 + 2t(1 − t) dΦ0(x) dΦ1(x)

= E0(x) + tE1(x) + t2(|dΦ1(x)|2 + |dΦ0(x)|2 − 2 dΦ0(x) dΦ1(x)).

This gives ∫
X
|dΦt|2 = e0 + e1t+ t2

∫
X
|dΦ0 − dΦ1|2.

We obtain the following uniqueness statement for the differential of the pluriharmonic map.
While the methods do not seem to be related at all, there is a uniqueness statement for harmonic
maps which has a somewhat similar form to the recent preprint [GKM08, Lemma 3.1].

Theorem 5.6. If Φ0 and Φ1 are two pluriharmonic maps of finite energy equivariant for the same
representation ρ, then with appropriate determinations of charts of T , we have dΦ0 = dΦ1. The
continuous maps Φt in the geodesic homotopy relating Φ0 and Φ1 are, in fact, differentiable and
pluriharmonic and their differentials are all the same.

Proof. The condition that Φ0 and Φ1 are pluriharmonic implies that e2 = 0 in the previous corollary.
This is because the pluriharmonic condition means that the maps are critical points of the energy
functional, so the quadratic polynomial e0 + e1t+ e2t

2 has critical points at t = 0 and t = 1. This
implies that e2 = e1 = 0. In particular, with the determinations of charts as in the lemma, we have
dΦ0 = dΦ1, hence Sym2(θ0) = Sym2(θ1). Over the open set U then, the differentials of Φt are all
the same.

We do not have a fully worked-out example, but it seems clear that the maps themselves need
not be unique, rather there can be the latitude for a small interval of linear translations within T .
This is related to the fact that critical points of θ need not go to vertices of T .
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Lemma 5.7. Suppose that f : Y → X is a generically surjective map, suppose that ρ : π1(X,x) →
SL(2,K) is a representation satisfying Hypothesis 4.1, and suppose that Φ : X̃ → T is a plurihar-
monic map of finite energy equivariant for ρ. Then Φ ◦ f̃ is a pluriharmonic map of finite energy
equivariant for f∗(ρ).

Proof. The hypothesis of quasiunipotence at infinity is satisfied by f∗(ρ), and the condition that
f be generically surjective implies that f∗(ρ) is still Zariski-dense. Thus, from Proposition 4.17 we
obtain the existence of an equivariant pluriharmonic map of finite energy Φ′ : Z̃ → T . Choose a
generically finite covering Z → Y such that the pullbacks of the differentials Sym2(θ) for Φ and
Sym2(θ′) for Φ′ become single-valued on Z.

We may assume that Z is smooth and has a normal crossings compactification.
Let Φ0 and Φ1 denote respectively the pullbacks of Φ and Φ′ to Z. We claim that they are of finite

energy. Let Sym2(θ0) and Sym2(θ1) denote the squares of their differentials. By our assumption on
Z these are both squares of differential forms α0 and α1, respectively, on Z. By Lemma 5.3,

α2
0, α

2
1 ∈ H0(Sym2(Ω1

Z
; 1

2 logDZ)).

This implies by a local calculation that α0, α1 extend to holomorphic forms on the compactification
of Z. In turn this means that Φ0 and Φ1 have finite energy.

Now, Theorem 5.6 says that the squares of their differentials are the same, in other words
Sym2(θ0) = Sym2(θ1). This implies that Sym2(θ′) = f∗Sym2(θ) on Y . As |Sym2(θ′)| is integrable
on Y , the same holds for |f∗Sym2(θ)| which means that Φ ◦ f̃ has finite energy.

Corollary 5.8. There is a finite quasiprojective ramified covering Z → X such that over Z, the
pullback of Φ is a finite-energy pluriharmonic map, and the determination of a direction of the edges
of the tree can be made and the differential becomes a holomorphic section α ∈ H0(Z,Ω1

Z
). The

pluriharmonic map is constant on the leaves of the foliation defined by the real one-form �α.

The fact that the pluriharmonic map is not constant implies that the differential is not identically
zero, so Sym2(θ) is not identically zero, and on the covering Z the form α is non-zero.

5.3 Geometry of the pluriharmonic map
We now discuss in a preliminary way some of the real geometry of this picture. This section is
optional.

Lemma 5.9. In the situation of Corollary 5.8, the periods of the real one-form �α are integers. The
associated class [�α] ∈ H1(Z,Z) corresponds to the map

ϕ : Z → S1 = T ′/SL(2,K)′,

where T ′ is the subtree of T consisting of edges whose interior is touched by Φ, and we denote by
SL(2,K)′ ⊂ SL(2,K) the subgroup of transformations preserving T ′ and preserving the orientations
of all edges of T ′. This restricts to a map on the open set Z and the representation ρ on π1(Z)
factors through the subgroup SL(2,K)′.

Proof. The choice of a determination of α corresponds to a choice of direction for the edges of T ′,
so ρ : π1(Z) → SL(2,K)′. Now we can form the quotient metric space S1 = T ′/SL(2,K)′ and the
pluriharmonic map descends to give a map ϕ that is well defined on Z. The periods of �α correspond
to signed lengths of images of loops by ϕ so they are clearly integers. In particular, the periods of �α
on Z are integers so the Albanese map projects to a map ϕ defined on the compactification Z.

In the situation of the lemma, the map ϕ factors as the composition of the Albanese map of Z
with the linear map whose differential is �α:

Z → Alb(Z) → S1.
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We can also perform a ‘real Stein factorization’ of the map ϕ through a map

Z → G→ S1,

where G is a graph. Note in the case when Z is non-compact, the graph G may be non-Hausdorff,
which is what leads to monodromy around the points at infinity.

The graph G is a version of the Reeb graph of a Morse function [Ree46]. This notion came to our
attention in a talk given by B. Falcidieno. It has been cited recently in [CSSB04, CEHNP04, EP03].

There is a distinguished point on S1 corresponding to the image of the vertices of T ′. However, the
vertices of G might not go to this point. In the case where no vertex of G goes to the distinguished
point, then one can compose with small rotations of S1 which then lift, and obtain a family of
translations of the pluriharmonic map Φ. This is why we said above that it looked like the map was
not necessarily unique. To get an example, one would have to get an example where the graph G
can map to S1 sending vertices to points other than the distinguished one.

It would be good to have more information on how the representation ρ determines the covering
Z, the cohomology class [�α], the map ϕ and its factorization through the graph G, and the lifting
of ϕ to the pluriharmonic map Φ. Ideally one would like to be able to calculate everything explicitly,
whenever we are given ρ by matrices.

5.4 Lefschetz theory for the spectral foliation
After pulling back to the covering Z given by Corollary 5.8, we have the following situation. We
have an irreducible smooth quasiprojective variety Z with smooth normal-crossings compactification
Z. The lift to Z of the multivalued spectral form α ∈ H0(Z,Ω1

Z
) is a non-zero holomorphic one-

form on the compactification. Let A be the minimal abelian variety from which α comes (that is,
A = Alb(Z)/B, where B is the maximal sub-abelian variety on which α vanishes). Let Z ′ and Z

′

be the coverings of Z and Z defined by fiber product with the universal covering V → A′.
Let F be the foliation defined by α on Z ′. We have a map Z ′ → V , and α corresponds to a

linear form on V , which we denote by g : V → C. For t ∈ C we obtain a linear subspace Pt ⊂ V
and g−1(t) ⊂ Z

′ is its pullback to Z ′. Let

D′ := Z
′ − Z ′

be the covering of the complementary divisor.

Lemma 5.10. In the above situation, the coverings Z
′
and Z ′ are connected, and π1(Z ′) contains

the commutator subgroup of π1(Z).

Proof. The covering Z ′ → Z is an infinite Galois covering whose Galois group is the quotient of
π1(Z) given by the surjective morphism π1(Z) → π1(A). In particular, Z ′ is connected and the
Galois group of Z ′/Z is abelian, hence π1(Z ′) contains the commutator subgroup of π1(Z).

The following is the basic Lefschetz theorem which we need. It is a generalization to the quasipro-
jective case of the statement of [Sim93] which was done for the projective case of the present project.

Theorem 5.11. Suppose that the complex dimension of the image of Z in A is at least two. Then
if t ∈ C is a general value (that is, not one of a countable number of singular values), the inverse
images g−1(t) are connected and their fundamental groups surject onto π1(Z ′).

Proof. We first treat a simplified special case which is then easily seen to give the general case.

Special case. Suppose that the following additional conditions hold: dim(Z) = 2; the morphism from
Z onto its image ZA ⊂ A is a resolution of singularities; there is a Weil divisor DA ⊂ ZA containing
the singular set of ZA, such that D is the inverse image of DA in Z; and the map Z → ZA −DA is
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an isomorphism. In particular, we may consider this last isomorphism as an equality and view Z as
an open subset of the smooth points of ZA ⊂ A.

Now as explained in [Sim93], in this situation the only zeros of α on Z lie over points in A. We
can also look at zeros of the restriction of α to D. Since D is a curve, there are two cases: a zero of
α|D is either a point or it is a union of components of D. However, if Di is a component of D such
that α|Di = 0, then the albanese variety of Di would be an abelian subvariety on which α vanishes.
By the construction of B and A, this means that Di maps to a point in A. We conclude that there
is a finite set of points pj ∈ ZA containing the zeros α|Z and the images of the zeros of α|D.

We can now apply the same argument as in [Sim93]. We do not give the details of the choice
of nested neighborhoods and so forth necessary to make things rigorous: this follows the same
principles as in [Sim93].

Fix a collection of relatively compact neighborhoods of these points NA(pj) ⊂ ZA.
Away from these neighborhoods we can choose vector fields of bounded length on Z, preserving

Z that is, tangent to D, whose images by α are constant (real and imaginary fields on C).
Following these vector fields outside of the given neighborhoods, we can lift a given homotopy

in C in a way which takes us only within a bounded region of the non-compact Z ′. This allows us
to solve the Lefschetz problem outside of the neighborhoods, see [Sim93].

Thus, we can restrict our attention to one of the neighborhoods NA = NA(pj). Let N1 denote
its inverse image in Z, and let N1 = N1 ∩Z = N1 −N1 ∩D be its intersection with Z. This might
be disconnected because the image ZA is not necessarily normal. Let N be a connected component
of N1 and N the closure of N in N1.

The inverse image of N in Z
′ is a disjoint union of isomorphic copies of the neighborhood N

itself, and each copy denoted N
′ is relatively compact in Z

′ (that is, the covering Z ′/Z does not
induce any non-trivial coverings of the neighborhoods). Since we are in a bounded region of Z ′, only
a finite number of these come into play. We just have to solve the Lefschetz problem in one of the
connected neighborhoods N ′ ⊂ N

′.
Note that the map N

′ → NA(pj) is a resolution of singularities of one of the irreducible com-
ponents of the target. Any positive-dimensional exceptional fiber is contained in the interior of N ′,
in other words does not go near the boundary; this is because the exceptional components map to
the point pj ∈ NA(pj).

Here the situation becomes classical. We can look at integration of α as defining a holomorphic
map g to a disk which is a fibration over the punctured disk. In fact this comes from a function gA :
NA(pj) → ∆ which we normalize so that g(pj) = 0. Over the punctured disk ∆∗ the map of triples

(N ′
,D ∩N ′

, N ′)∆∗ → ∆∗

is topologically locally trivial (we arrange the boundary of the neighborhood in a good way so that
this holds).

Note furthermore that D intersects the fiber g−1(0) only in points lying over pj. This is because
any component of D upon which the differential dg = α restricts to zero, maps to an isolated point in
A (which in the present case must be pj). Given our hypothesis that DA contains the singular points
of ZA, this means in particular that the fiber g−1

A (0) intersects the singular set of NA(pj) only at pj.
The Lefschetz question is now localized as follows: given p and q in one fiber g−1(t) of the map

g : N ′ → ∆ with t �= 0, and a path γ from p to q inside the total space of the neighborhood N ′, is
γ homotopic to a path which stays in the fiber?

The main tool for doing this is the observation that there is at least one component of the
central fiber g−1(0) which is not contained in D, and is not a multiple fiber. Indeed, the fiber g−1

A (0)
contains a positive-dimensional component in each irreducible component of NA(pj), by purity of
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the dimension of a subset defined by one equation. As noted above, away from pj this corresponds
to a curve in our open subset N ′ ∼= N . As g−1(0) is the inverse image in N

′ of g−1
A (0) ⊂ NA(pj),

this means that g−1(0) contains a component which is not contained in D as claimed.
Using this fact we can treat the local Lefschetz question. Let ξ be a path starting from p and

going around a non-multiple component of the central fiber. Let N∗ denote the complement of
g−1(0) in N ′. Then Path(N ′; p, q) is obtained from Path(N∗; p, q) by adjoining at least the relation
that ξ becomes trivial. Now the fibration

g : N∗ → ∆∗

yields an exact sequence

1 → Path(g−1(t); p, q) → Path(N∗; p, q) → Z → 0,

and multiplication by ξ via the action of π1(N∗, p) on Path(N∗; p, q) projects to translation by one
in Z (this is exactly the statement that ξ is a loop around a non-multiple component; if it had
gone around a component of multiplicity r then it would have projected to translation by r). We
can now prove the Lefschetz property. The path γ can be moved away from the central fiber so it
comes from an element of Path(N∗; p, q); multiplying by an appropriate power of ξ yields a path in
Path(g−1(t); p, q), and since ξ is homotopically trivial in N ′ this means that γ was homotopic in N ′

to an element of Path(g−1(t); p, q).
Adorning the argument with the niceties of [Sim93], we are done in the special case dim(Z) = 2.

General case. We now return to the general situation of the statement of the theorem and show how
to obtain the conclusion, once we know the special case of dimension two which has been treated
already.

Suppose that x′, y′ ∈ g−1(t) ⊂ Z ′ are two points, and suppose that γ is a path from x′ to
y′ in Z ′. We want to show that γ is homotopic to a path inside g−1(t). Let x and y denote the
images of x′ and y′ in Z. Choose a complete intersection of hyperplane sections Y ⊂ Z, such that
x, y ∈ Y := Y ∩Z, with dim(Y ) = 2. Choose Y of sufficiently high multidegree and general subject
to these conditions (although in the case dim(Z) = 2 we just have Y = Z). In particular, the image
of Y in A has dimension two because by hypothesis the image of Z has dimension at least two. The
map π1(Y ) → π1(A) is still surjective so the covering Y ′ := Y ×Z Z

′ is connected as in Lemma 5.10.
Also, the fundamental group of Y surjects onto that of Z, so π1(Y ′) → π1(Z ′) is surjective. Now
x′, y′ ∈ Y ′, and γ is homotopic to a path in Y ′. Thus, it suffices to prove that g−1(t)∩Y ′ is connected
and has fundamental group surjecting to π1(Y ′), for then we will be able to make γ homotopic to
a path from x′ to y′ in g−1(t) ∩ Y ′.

For the proof for Y ′, we can replace Y by a smaller open subset without loss of generality, even
if x′ or y′ is no longer in this smaller open subset. This is because connectedness and surjectivity
of the map on fundamental groups are properties which are stable under passing between Zariski-
open subsets and supersets. Finally, we can also change the compactification Y without changing
the statement. Now by going to a small enough open subset Y and choosing a normal crossings
compactification Y , we can obtain the special case which was treated in the first part of the proof.
This completes the proof in the general case.

We now apply the above result to the spectral data for our pluriharmonic map. Look first over Z.
The differential of the pluriharmonic map is ±α for a well-defined one-form α. The restriction of
the harmonic map to any of the leaves g−1(t) of the resulting foliation, is constant. Therefore, if
γ ∈ π1(Z) is a path which has a representative whose lift to the universal covering stays within a
leaf, then the action of γ fixes the image point of the leaf.

Lemma 5.12. The dimension of the image of Z in A is one.
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Proof. Suppose to the contrary that the dimension of the image of Z in A is at least two. Then by
the Theorem 5.11, for a generic value of t we have the fiber g−1(t) ⊂ Z ′ which is connected and has
fundamental group surjecting to π1(Z ′). Consider the pullback

Z̃t := g−1(t) ×Z′ Z̃.

It is a union of possibly infinitely many connected components denoted by Z̃t,k.

Let Φ : Z̃ → T be the pluriharmonic map. The differential of Φ is constant along the components
Z̃t,k by construction of g as the integral of α = ±dΦ. Choose a component Z̃t,k, which therefore
maps to a single point q ∈ T under Φ. If x ∈ Z̃t,k is a point, and if γ ∈ π1(Z ′), then the translate
is again in the same component:

γ · x ∈ Z̃t,k.

In particular, Φ(γ ·x) = q = Φ(x). The equivariance property of Φ tells us that Φ(γ ·x) = ρ(γ)Φ(x),
so we obtain ρ(γ)q = q. In other words, under the assumption that the dimension of the image of Z
in A is at least two, applying Theorem 5.11 we conclude that π1(Z ′) has a fixed point in T under
the action ρ.

By Lemma 5.10, the commutator subgroup the commutator subgroup Υ ⊂ π1(Z) is con-
tained in π1(Z ′). Thus, the assumption that the dimension of the image of Z in A is at least
two would imply that the commutator subgroup Υ acts with a fixed point on T . By Lemma 4.18 this
would mean that Υ maps to the center of SL(2,K). However, that would imply that the represen-
tation into PSL(2,K) factors through the abelianization π1(X,x)ab and, hence, to a commutative
subgroup scheme, contradicting Zariski-denseness of ρ.

We conclude that the dimension of the image ZA cannot be two or more. Since α is non-trivial,
we have dim(ZA) = 1.

Putting all of the above discussion together we obtain the following theorem, see [Bea92, Cam94,
CS83, Del07, Eys04, Gro89, GS92, JZ00, Kat94, Kat97, Kli03, Kol93, NR08, Siu80, Zuo94].

Theorem 5.13. Suppose that X is a quasiprojective variety, that K is a complete local field with
finite residue field, that ρ : π1(X,x) → SL(2,K) is a representation whose monodromy transforma-
tions at infinity are quasiunipotent, that the image of ρ is Zariski-dense, and that the image is not
contained in any compact subgroup. Then ρ factors through a DM-curve.

Proof. Considering the projected representation ρ̃ into PSL(2,K), we are in the situation of
Hypothesis 4.1. Apply all of the above sequence of results. We obtain a covering Z → X and
a pluriharmonic map on X which pulls back to one on Z. Let

Z → Y → A

be the Zariski–Stein factorization of the partial Albanese map Z → A discussed above. By
Lemma 5.12, Y is a curve. It is normal because Z is, so it is a smooth curve. The fibers of Z → Y
are contained in the leaves of the foliation defined by �α, and the pluriharmonic map is constant
on these leaves, by Corollary 5.8. Thus, the pluriharmonic map is constant on the fibers of Z → Y .

The image of the fundamental group of the fiber is a normal subgroup Υ ⊂ π1(Z, z). This acts
on T with a non-empty set of fixed points, indeed any image of a fiber by the pluriharmonic map
is a point fixed by Υ. So applying Lemma 4.18, we have that Υ maps to the identity element of
PSL(2,K). Therefore, ρZ projectively factors through the map Z → Y . By Lemma 3.1, ρZ factors
through a DM-curve. Then by Lemma 3.6 we obtain a factorization over X.

In the remainder of the paper, we consider a representation ρ : π1(X,x) → SL(2,C) which does
not factor through a DM-curve. The above theorem (applied to various fields K) will allow us to
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prove that ρ is rigid and integral, and this will eventually give rise to a variation of Hodge structure
corresponding to a factorization through a Shimura modular stack.

6. Rigidity

Suppose that X is a smooth quasiprojective variety. Fix a smooth compactification X ⊂ X such that
the complementary divisor D has smooth irreducible components Di meeting at normal crossing
points. For each component Di of the divisor at infinity, let γi denote a loop going out to a point
near Di then once around Di and back to x along the same path.

We start with some general notation. Suppose that G is a reductive group. Suppose that we
have chosen closed ad(G)-invariant subsets Ci ⊂ G indexed by the components Di of the divisor at
infinity. The representation space

R(X,x,G, {Ci})
is defined as the closed subset of Hom(π1(X,x), G) of representations ρ such that ρ(γi) ∈ Ci. The
condition that Ci be conjugation-invariant means that this condition is well-defined independently
of the choices of γi.

We can then define the moduli stack and coarse moduli space denoted, respectively, by

M(X,G, {Ci}) and M(X,G, {Ci}).
These are the quotients of R(X,x,G, {Ci}) by the conjugation action of G, first in the sense of
algebraic stacks and then in the sense of a universal categorical quotient of affine schemes. These are
the ‘Betti’ moduli spaces [LM85], there should also be ‘de Rham’ and ‘Dolbeault’ versions [BBN01,
Bis97, Biq96, BY96, IIS06, Kon93, Nak96, Nit93, Sim95, SW01, Tha02, Yok93].

The main case we consider is when Ci are the closures of conjuacy classes in G. Suppose that
ρ : π1(X,x) → G is a representation. Let Ci(ρ) be the closure of the conjugacy class of the image
ρ(γi). We say that a Zariski-dense representation ρ is rigid if it represents an isolated point in the
moduli space M(X,G, {Ci(ρ)}), and non-rigid otherwise.

6.1 Conjugacy classes in SL(2)
Specialize now to the case G = SL(2). In this case there are basically two types of conjugacy
classes: the unipotent matrices and the semisimple matrices with distinct eigenvalues. One has to
add in the semisimple matrices with only one eigenvalue, which in this case means just ±1. The
notion of ‘unipotent’ should also be extended to include −1 times a unipotent matrix which we
sometimes call ‘projectively unipotent’.

Lemma 6.1. Suppose that Ci is the closure of a conjugacy class in SL(2,K) with K an algebraically
closed field of characteristic different from two. Then there are five cases:

(i) Ci = {1};
(ii) Ci = {−1};
(iii) Ci is the closure of the set of matrices conjugate to ( 1 1

0 1);

(iv) Ci is the closure of the set of matrices conjugate to (−1 1
0 −1); or

(v) there is a �= ±1 in K such that Ci is the set of matrices conjugate to ( a 0
0 a−1).

Note that the conjugacy classes (i) and (ii) are contained in the closures of the conjugacy classes
(iii) and (iv), whereas the conjugacy class in (v) is closed. The equations for cases (iii), (iv) and (v)
are, respectively,

Tr(A) = 2, Tr(A) = −2, Tr(A) = a+ a−1.
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The equations for cases (i) and (ii) are not obtained by traces but rather directly by the equations
A = 1 or A = −1. In any case one sees explicitly the equations to be imposed on R(X,x,SL(2)) to
cut out R(X,x,SL(2), {Ci}).

A closed subset Ci is said to be quasiunipotent if there is n such that An is unipotent for any
A ∈ Ci. The closure of a conjugacy class is quasiunipotent if and only if the conjugacy class is
that of a quasiunipotent matrix. A conjugacy-class closure which is quasiunipotent is contained in
one of the cases (i), (ii), (iii), (iv), or (v) with a a root of unity. Thus, if the Ci are quasiunipotent,
then the equations defining R(X,x,SL(2), {Ci}) are defined over any ring extension of Z which
contains the roots of unity in question.

Special to the case of SL(2) is the fact that a quasiunipotent conjugacy class consists either
of matrices which are either of finite order (case (v)) or projectively unipotent, that is, a central
multiple of a unipotent matrix (cases (iii) and (iv)).

6.2 Zariski density
We need to keep track of the Zariski-density hypothesis as we reduce and localize. First recall the
connected subgroups of SL(2, k).

Lemma 6.2. Suppose that k is an algebraically closed field. The connected algebraic subgroups of
SL(2, k) are the following:

• the trivial subgroup;

• a torus, conjugate to the subgroup of diagonal matrices;

• a unipotent subgroup conjugate to the group of strictly upper-triangular matrices;

• a solvable subgroup conjugate to the group of upper-triangular matrices; or

• the whole group.

Furthermore, if H ⊂ SL(2, k) is a strict algebraic subgroup which is not finite, then either
H/Ho is of order at most two or Ho is conjugate to the unipotent subgroup, H is contained in the
associated solvable subgroup, and H/Ho is a finite cyclic subgroup of the torus.

Proof. The first part comes from the Levi decomposition and the fact that the only reductive groups
smaller than SL(2) are tori. For the last statement, note that H normalizes its connected component
Ho. If Ho is the diagonal torus, its normalizer is the semidirect product of Ho with the group of
transpositions which has order two. If Ho is the solvable (but not unipotent or toric) subgroup,
then it is equal to its own normalizer. The remaining case is where Ho is the unipotent subgroup;
its normalizer is the solvable subgroup and H/Ho is contained in the torus (quotient of the solvable
subgroup by the unipotent subgroup).

Corollary 6.3. Still assuming k = k, suppose that H ⊂ SL(2, k) is a strict algebraic subgroup
containing an element whose eigenvalues are elements of infinite order in k∗. Then H is either a
torus, the solvable subgroup, or the normalizer of a torus.

Proof. The condition on eigenvalues means that H must contain a torus. Thus, Ho is either a torus
or the solvable subgroup. In the first case, H is either the torus or its normalizer (which contains the
torus with index two). In the second case, H = Ho since the solvable group is its own normalizer.

We consider a subgroup H containing an element whose eigenvalues are of infinite order. We
would like a good algebraic way of distinguishing between the casesH = SL(2, k), and the other three
possibilities mentioned in the corollary. For this, note that for the connected subgroups mentioned in
Lemma 6.2, the traces of elements detect only the diagonal part and this is commutative. Thus, for
example, Tr(ABAB) = Tr(A2B2) for these subgroups whereas this is not generically true. The other
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possible subgroup, the normalizer of a torus, is an extension of order two, which we can get around
by looking at the squares of matrices. This leads to the following Katz-style criterion [Kat90], also
somewhat similar to [CS83, Corollary 1.2.2]. We thank M. Larsen for comments about it.

Lemma 6.4. Suppose that k is a field and Γ ⊂ SL(2, k) is a subgroup. Suppose that Γ contains an
element whose eigenvalues are of infinite order in k∗. Then Γ is Zariski-dense if and only if there
exist elements α, β ∈ Γ such that

Tr(α2β2α2β2) − Tr(α4β4) �= 0.

Proof. We reduce to the case k = k so that there is no problem with twisted forms of tori. If
Γ ⊂ SL(2, k) is not Zariski-dense in SL(2, k) then the Zariski closure of Γ over k is a subgroup
G ⊂ SL(2, k) preserved by Gal(k/k), in particular it comes from a subgroup over k. Thus, Γ is not
Zariski-dense over k. The other direction is easy, so Zariski-density is preserved by going from k
to k. The criterion given in the statement of the lemma does not depend on k so it is preserved too.
Thus, we may assume k = k.

Now we get to the proof. If H ⊂ SL(2, k) is a torus, the normalizer of a torus, or a solvable
subgroup, and if α, β ∈ H then

Tr(α2β2α2β2) − Tr(α4β4) = 0.

In view of Lemma 6.2, this shows that if α, β ∈ Γ exist as in the statement, then Γ is Zariski-dense.
Suppose now that Γ is Zariski-dense. It is easy to see that Γ × Γ is Zariski-dense in SL(2, k) ×

SL(2, k). On the other hand, the set of pairs of matrices (A,B) ∈ SL(2, k) × SL(2, k) where the
identity Tr(A2B2A2B2) = Tr(A4B4) holds is a Zariski-closed subset. In order to prove that Γ × Γ
goes outside of this subset it suffices to exhibit any pair of matrices (A,B) ∈ SL(2) × SL(2) which
is not in the subset. Furthermore, we can do this after going to the algebraic closure.

The subset of matrices in SL(2, k) which are squares is Zariski-dense, so again its product is
Zariski-dense in the product. Thus, it suffices to exhibit a pair of matrices (A,B) ∈ SL(2, k)×SL(2, k)
such that Tr(ABAB) �= Tr(A2B2). For this, set

A :=
(

1 1
0 1

)

B :=
(

1 0
1 1

)
with Tr(ABAB) = 7 �= 6 = Tr(A2B2) in any characteristic.

Lemma 6.5. Suppose that ρ is a Zariski-dense representation. Then ρ is rigid in the above sense,
that is, it represents an isolated point in the moduli space M(X,SL(2), {C i(ρ)}), if and only if there
is no non-isotrivial family of representations all having the same conjugacy classes at infinity, going
through ρ.

Proof. We have a map

R(X,SL(2), {C i(ρ)}) →M(X,SL(2), {C i(ρ)}).
As is well known, the points of the moduli space M represent S-equivalence classes of representations
in R. In particular, if ρ is an irreducible representation as is the case here, any representation S-
equivalent to ρ is actually isomorphic to ρ. Thus, the fiber of the map R → M over the point [ρ]
consists only of conjugates of ρ, in other words the fiber is set-theoretically an orbit of SL(2). The
point [ρ] ∈M is an isolated point if and only if the fiber SL(2) · ρ is a connected component of R.

If this is the case, and if {ρt} is a continuous family of representations with ρ0 = ρ and all
having the same conjugacy classes at infinity, then we obtain a path in R(X,SL(2), {C i(ρ)}) going
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through ρ. Since the orbit SL(2) · ρ is a connected component, this means that all of the ρt are
contained in the orbit so the family is isotrivial. This shows one direction of the lemma.

In the other direction, suppose that [ρ] is not an isolated point of M . Then the orbit SL(2) · ρ
is not a connected component of R. However, it is a closed subset. Therefore, there is a path {ρt}
in R which starts at ρ0 in the orbit, and goes out of the orbit. Up to changing the basis of the
underlying space we may assume ρ0 = ρ. The family is non-isotrivial. We just have to see that
the conjugacy classes at infinity stay the same. The monodromy transformations at infinity ρt(γi)
are families in Ci(ρ). However, by definition Ci(ρ) is the closure of the conjugacy class Ci(ρ) of ρ(γi),
in particular Ci(ρ) (which is a locally closed subset of the group) is an open subset of Ci(ρ). On
the other hand, ρ0(γi) = ρ(γi) is in this open subset. So, for t close to 0, we still have ρt(γi) ∈ Ci(ρ)
which is the condition we needed.

Lemma 6.6. If V is a rigid local system and σ : C → C is an automorphism of C, then V σ is also
rigid.

The proof is standard.

6.3 Nonfactorization implies rigidity
To motivate the proof of the next main theorem, we note a corollary of Lemma 2.8.

Corollary 6.7. The subset of points in the space of SL(2,C) representations of π1(X,x) corre-
sponding to representations which do not factor through a hyperbolic DM curve is open.

Proof. By Lemma 2.8 there are only a finite number of maps from X to hyperbolic DM-curves. For
each of these maps, the set of representations which factor is given by a closed subset.

Theorem 6.8. Suppose that ρ : π1(X,x) → SL(2,C) is a Zariski-dense representation with quasi-
unipotent monodromy at infinity. If ρ does not factor through a map from X to a DM-curve, then
it is rigid in the above sense.

Proof. Suppose that we have a representation ρ which does not factor through a DM-curve, and
which is not rigid. We derive a contradiction. Note that ρ does not projectively factor through an
orbicurve (Lemma 3.1).

We first give the short if somewhat heuristic version of the argument. From Corollary 6.7 there
is an open subscheme of the moduli scheme corresponding to representations which do not factor
through DM-curves. We can take an open subset to obtain an irreducible positive-dimensional open
subscheme whose representations do not factor. This open set may be considered as having finite
type over Z. Then there is a curve defined over a finite field mapping into here. The trace functions
of the monodromy elements are not all constant, in particular there is a point on the curve where at
least one trace function has a pole. Taking the completion at this point we obtain a representation

ρ̂ : π1(X,x) → SL(2,Fq((t)))

whose image is not contained in a compact subgroup. Using the criterion of Lemma 6.4 we can
assume that ρ̂ is Zariski-dense. This is an elementary example of the more general problem of
independence of � for monodromy groups such as considered in [LP92]. By Theorem 5.13 the rep-
resentation ρ̂ would have to factor through a DM curve, contradicting our choice of open set.

To get a more accurate version of this proof, we fill in explicitly some of the equations for the
properties preserved when going to the completion at a finite point. The argument uses what is
known as a ‘spread’ [GG03].

Start by enumerating the possible factorization maps through hyperbolic orbicurves. Denote
these by fi : X → Yi for a finite set of indices i ∈ I. Let ϕi : π1(X,x) → Γi be the corresponding
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maps on fundamental groups, and let Ki be the kernel of ϕi. The fact that ρ does not projectively
factor through fi translates by saying that ρ(Ki) is not contained in the center of SL(2,C).

Note that Ki is a normal subgroup of π1(X,x) so the Zariski closure of ρ(Ki) is a normal
subgroup of the full image of ρ which is, by assumption, SL(2,C). The only normal subgroups
are the identity, the center, and the group itself. Therefore, ρ|Ki is Zariski-dense in SL(2,C). In
particular there exists an element ki ∈ Ki such that

Tr(ρ(ki)) �= ±2.

The non-factorization hypothesis translates into the existence of such a ki for each i ∈ I.
The hypothesis that ρ is non-rigid means that there is a curve of representations passing through

ρ and projecting to a non-trivial curve in the moduli space of representations. Explicitly write down
this curve as follows. We may assume it is affine, and even (applying Noether normalization after
going to an open set if necessary) that it is finite over A1 with a coordinate ring of the form

A =
C[y]

(ym + am−1ym−1 + · · · + a0)
.

Our path of representations is a representation

ρA : π1(X,x) → SL(2, A)

and there is a point p : A→ C such that ρA ⊗A,p C = ρ.
Recall that Procesi’s theorem [Pro76] says that the traces of the images of group elements give

an embedding of the moduli space, see also [CS83]. Therefore, the hypothesis that our curve is non-
trivial in the moduli space means that there is an element γ ∈ π1(X,x) such that Tr(ρA(γ)) is not
contained in the ground field C. Concretely, the elements ofA are written as sums um−1y

m−1+· · ·+u0

so the non-constancy of this element means that one of its coordinates uj is non-zero for 0 < j �
m− 1. Write this condition as uj(Tr(ρA(γ))) �= 0.

Similarly, the non-factorization hypothesis states that Tr(ρA(ki)) �= ±2 for all i ∈ I.
We can specialize our curve of representations so that it is defined over a finite extension field L

of Q (in other words we specialize the coefficients ai of the equations for A as well as the coefficients
of the matrix coefficients of ρA). We can do this and still keep the non-factorization conditions that
Tr(ρA(ki)) �= ±2 and the non-rigidity condition that uj(Tr(ρA(γ))) �= 0.

Now our curve of representations can also be defined over a finite extension ring R of Z (in
general R will be the localization of the ring of integers OL at a finite number of primes). Then
we can find a prime ideal p ⊂ R such that the non-factorization and non-rigidity conditions hold
modulo p. We obtain a curve of representations ρB : π1(X,x) → SL(2, B) such that

B =
Fq[y]

(ym + bm−1ym−1 + · · · + b0)
,

such that Tr(ρB(ki)) �= ±2 and uj(Tr(ρB(γ))) �= 0. We may assume that the characteristic of the
finite field Fq is different from two.

Note that Spec(B) is a curve over the finite field Fq and we may view the element Tr(ρB(γ))
as a non-constant function on this curve. Complete at a point at infinity on this curve, choosing a
point with the property that the function Tr(ρB(γ)) has a pole. The completed field, which may be
seen as the completion of B with respect to the non-archimedean norm given by the order of pole at
the point, will be denoted by B̂. It is a complete local field of the type envisioned in Hypothesis 4.1.
The ring of integers OB̂ is a discrete valuation ring with finite residue field Fq, so

O
B̂
∼= Fq[[t]], B̂ ∼= Fq((t)).
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We have a representation

ρ
B̂

: π1(X,x) → SL(2, B̂) ∼= SL(2,Fq((t))).

The fact that Tr(ρ
B̂

(ki)) �= ±2 means that ρ
B̂

does not projectively factor through the orbicurve
fi : X → Yi. This holds for all i ∈ I, so ρ

B̂
does not factor through an orbicurve. On the other

hand, the fact that Tr(ρB(γ)) has a pole at the point where we took the completion means that
Tr(ρ

B̂
(γ)) is not in O

B̂
.

We have ρ
B̂

(γ) ∈ SL(2, B̂) a matrix with eigenvalues β±1 for β ∈ B̂, therefore ρ
B̂

(γn) has
eigenvalues β±n. In particular, if Tr(ρ

B̂
(γ)) has a pole of order at least one, then Tr(ρ

B̂
(γn)) has a

pole of order at least n. This shows that ρ
B̂

does not have image in any compact subgroup of
SL(2, B̂).

This situation leads to a contradiction with Theorem 5.13. Before getting there, we still have
to verify the hypothesis that ρB̂ have Zariski-dense image. This is done much as above, using the
explicit criterion of Lemma 6.4. Note that the image of ρ was not finite, so it contained an element
of infinite order. By Lemma 6.4, there exist α, β ∈ π1(X,x) such that

Tr(ρ(α2β2α2β2)) − Tr(ρ(α4β4)) �= 0.

In our process of reducing modulo a prime, we may choose a prime which does not divide this
non-zero quantity. Then generalizing along a curve and completing we still obtain a representation
ρ

B̂
with the property that

Tr(ρB̂(α2β2α2β2)) − Tr(ρB̂(α4β4)) �= 0.

On the other hand, our construction of ρ
B̂

was such that its image contains an element of infinite
order. Thus, Lemma 6.4 again applies (choose our prime to have characteristic different from two).
We conclude that the image of ρB̂ is Zariski-dense.

We can now apply Theorem 5.13 to obtain a contradiction, completing the proof of the theorem.

Remark 3. The above proof constitutes a new proof of the factorization result of [Sim91] in the
projective case. Delzant seems to have found a similar proof, as he has indicated to us in correspon-
dence. Many of the details—fundamentally elementary—going into the proof, stem from wanting to
refer only to trees of finite type. The theory of Gromov and Schoen should in principle allow us
to prove the result more directly for a complex curve of representations going to infinity, but this
would involve considerations of non-locally compact trees which we have preferred to avoid.

Alternatively, one could adapt to the quasiprojective (and quasiunipotent monodromy) case the
archimedean argument of [Sim91]. This type of thing is currently being done by Mochizuki in a much
wider context [Moc02, Moc07]. For example, he obtains the theorem that any representation can be
deformed to a complex variation of Hodge structure. We felt that in the context of the present paper,
it would be more interesting to deduce Theorem 6.8 from the Gromov–Schoen theory of harmonic
maps to trees, since this provides a unified approach to the two basic results (rigidity as above, and
integrality in the next section). We cannot entirely avoid referring to the archimedean case: in § 8
we state the theorem that rigid representations are complex variations of Hodge structure, which
requires the theory of harmonic maps to symmetric spaces.

7. Integrality

Suppose that ρ : π1(X,x) → SL(2,C) is a representation. Following Bass [Bas80] we say that ρ is
integral if for every γ ∈ π1(X,x) the trace Tr(ρ(γ)) is an algebraic integer. Bass proved the following
fundamental characterization.
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Lemma 7.1. A Zariski-dense representation ρ has integral traces if and only if there exists a number
field L (that is, a finite extension of Q) with its ring of algebraic integers OL ⊂ L, an embedding
η : L→ C, a rank-two projective OL-module VOL

, and a representation

ρOL
: π1(X,x) → SL(VOL

)

such that

ρOL
⊗OL,η C ∼= ρ.

See [Bas80], for the proof.

Lemma 7.2. Suppose that V is a local system, and suppose that Y → X is a finite étale covering
such that V |Y is integral. Then V is integral.

Proof. A local system is integral if and only if for any element γ ∈ π1(X,x), all of the eigenvalues of
ρV (γ) are algebraic integers. Under the hypotheses of the lemma, if γ ∈ π1(X,x), then there is an n
such that γn comes from π1(Y, y) (where y is a lift of the basepoint to Y ). Then the eigenvalues of
ρV (γn) (which are the nth powers of the eigenvalues of ρV (γ)) are algebraic integers. This implies
that the eigenvalues of ρV (γ) are algebraic integers (indeed an equation of the form zn = α is an
integral equation for z, if α is an algebraic integer).

The main result about integrality is the following. It is pretty well known, see the work of
Jost and Zuo [JZ00], Eyssidieux [Eys04], Katzarkov [Kat94, Kat97], Klingler [Kli03], Napier and
Ramachandran [NR08] and others which are based on the theory of Gromov–Schoen [GS92].

Theorem 7.3. If ρ : π1(X,x) → SL(2,C) is a Zariski-dense representation with quasiunipotent
monodromy at infinity, and ρ does not factor through a DM-curve, then ρ is integral.

Proof. Suppose that ρ does not factor. By Theorem 6.8, ρ is rigid. This implies that it can be defined
over an algebraic number field L (which we may assume is finite over Q). Assume that it is not
integral. Then the trace of some monodromy element is not an algebraic integer, and in particular
it is not integral at some prime of L. Taking the completion at this prime, we get a Zariski-dense
representation into SL(2,K) where K is a complete local field, and the representation does not go
into a compact subgroup because the trace of some element is not an integer of K. The residue field
of K is finite because the integers of L are of finite type over Z. The monodromy transformations
at infinity are the same as for the original ρ, so they are quasiunipotent. Therefore, Theorem 5.13
applies: the representation into SL(2,K) factors through a DM-curve. By invariance of factorization
under change of base field, Corollary 3.8, the original representation factors through a DM-curve
contradicting our hypothesis. Therefore, ρ is integral.

7.1 Hypergeometric cases
There is not a perfect dichotomy between the properties of factorization through DM-curves and
rigidity. There are some cases where these overlap, corresponding to rigid local systems on DM-
curves. For Zariski-dense representations on orbicurves, rigidity can be determined by a dimension
count which depends only on the local monodromy data. Katz’s algorithm [Kat96], in principle,
gives a way to determine which rigid monodromy data can come from representations. Furthermore,
when the data do come from representations, his algorithm provides an explicit construction of the
representation as motivic. As a corollary, rigid representations on DM-curves are automatically
integral.

In the case of local systems of rank two, the only rigid cases correspond to hypergeo-
metric equations; their motivic expression is basically the classical integral expression of hyper-
geometric functions [Del86, Kat90, Kat96]. In particular, the result that rigidity implies integrality
can be understood explicitly in this case.
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Suppose that Y is a smooth compact curve with points y1, . . . , yk and basepoint y distinct from
the marked points. Suppose that ρ : π1(Y − {yi}, y) → SL(r,C) is a Zariksi-dense representation,
which is rigid among those with fixed conjugacy classes at the punctures.

Lemma 7.4. In the above situation, Y ∼= P1.

Proof. A dimension count shows that the only potentially problematic case which needs to be
discussed is that of representations on an elliptic curve, with prescribed monodromy around a
single puncture. This yields the equation

aba−1b−1 ∈ C
for a fixed conjugacy class C. The space of solutions is divided by the conjugation action of SL(2).
The dimension of the space of solutions, divided by the conjugation action, is therefore at least
equal to

2 dim(SL(2)) − dim(SL(2)) − (codimSL(2)C) = dim(C).
In particular, as soon as C is positive-dimensional, the representation cannot be rigid. The only
zero-dimensional conjugacy classes are {1} and {−1}. In the first case the image is abelian; and in
the second case it is an extension of an abelian group by {±1}. Neither of these can be Zariski-dense
subgroups of SL(2). Therefore, this case cannot arise, so Y has to be rational.

Now we proceed with a dimension count. Note that the naive dimension count actually gives the
dimension of the moduli space at a Zariski-dense point, in this case [Kat96]. Let C1, . . . , Ck denote
the conjugacy classes of the representation at the points yi. Here we are including orbifold points
because the space of representations on the orbifold is the same as the space of representations
on the Zariski-open subset with prescribed conjugacy classes (in the case of orbifold points, the
conjugacy classes will be of finite order).

Recall that the space of representations is the space of solutions of a1 · · · ak = 1 with ai ∈ Ci, the
whole up to a global conjugation (and on Zariski-dense points the conjugation action is faithful).
The virtual dimension of the moduli space is therefore

v := dim(C1) + · · · + dim(Ck) − 2 dim(SL(2)).

Rigidity happens for Zariski-dense representations exactly when v = 0.
Recall that the dimensions of the conjugacy classes for the cases given by Lemma 6.1 are as

follows: for (i) and (ii), dim(C) = 0; whereas for (iii), (iv) and (v), dim(C) = 2. Together with the
above we conclude the following statement.

Lemma 7.5. If ρ is a rigid rank-two representation on a DM-curve, then there are exactly three
orbifold or singular points with conjugacy classes different from {1} or {−1}.

The points with conjugacy classes {−1} can be chosen freely; they can also combine with the
three main points (resulting in an interchange between (iii) and (iv), or taking the negative of the
eigenvalue in case (v)). These operations correspond to tensoring with rank-one local systems on Y
(in fact, the Prym local systems of hypergeometric curves over Y ). From now on we ignore these
shifts, and use the term ‘unipotent’ for cases (iii) and (iv).

If all three conjugacy classes are of type (v), then we are in the case of the classical hypergeometric
equation. It is well known that for eigenvalues which are roots of unity, these hypergeometric local
systems exist, and are motivic (hence, integral).

We give explicit calculations for the cases where one or more of the conjugacy classes is unipotent,
showing that the monodromy representations are integral. Note by [Kat96] that if a rigid represen-
tation exists, it is uniquely determined by the monodromy data; thus it suffices to write down a
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single integral representation for each given collection of monodromy data. In a similar way, if there
exists a reducible representation with given conjugacy classes, then no irreducible representations
will exist. In this case we must multiply one of the matrices by −1. Also for these calculations, note
that a matrix with trace ±2 which is not ± the identity, must be in conjugacy classes (iii) or (iv)
(that is, non-trivially unipotent).

For three unipotent matrices, one or three must have eigenvalues −1 otherwise an irreducible
solution will not exist. In this case we have the solution(

1 1
0 1

)(
1 0
−4 1

)
=

(
−3 1
−4 1

)
.

For two unipotent matrices and one matrix of type (v) with eigenvalue α, note that(
1 1
0 1

)(
1 0
b 1

)
=

(
1 + b 1
b 1

)
.

If b = α+α−1 − 2, then the trace on the right will be α+α−1 so we obtain a solution. For any root
of unity α �= ±1 the coefficient b is an algebraic integer so this gives an integral solution. Note also
that there is a solution for −α, so by tensoring with a rank-one system we can also treat unipotent
conjugacy classes of type (iv).

Finally, for the case of one unipotent matrix and two matrices of type (v) with eigenvalues α
and β, look at (

α 1
0 α−1

)(
β 0
x β−1

)
=

(
αβ + x β−1

xα−1 (αβ)−1

)
.

Up to tensoring by a rank-one Prym system (corresponding to changing the sign of one of α or β) we
can assume that we want the trace on the right to be equal to two. Note that in any case the matrix
on the right is not the identity so if its trace is two it will be of type (iii). This gives the equation

x = 2 − (αβ + (αβ)−1).

If α and β are roots of unity and αβ �= 1 then this has an integral solution. If αβ = 1, then there
is a non-irreducible representation so there can be no irreducible solution (however, if one of the
matrices is multiplied by −1 then there is a solution).

We have concluded the proof of the following result.

Lemma 7.6. If ρ is a Zariski-dense rank-two rigid representation on a DM-curve, then it is integral.

Remark 4. Our main result, Theorem 11.2 below, implies that in all of the above cases, the represen-
tation is motivic. Thus, we are spared the trouble of writing down an explicit motivic presentation
for the cases of one or more unipotent conjugacy classes. Such presentations certainly exist in the
literature, see [DR00, Kat90, Kat96]. Darmon discusses motivic properties of rigid local systems on
P1 in an arithmetic setting [Dar00].

8. Variations of Hodge structure

We recall here the classical definitions concerning complex, real, and integral variations of Hodge
structure (VHSs). In this section, let V be a complex local system over X. We think of it as a
C∞ vector bundle with flat connexion ∇. A structure of CVHS of weight w on V is the data of
a decomposition of C∞ vector bundles V =

⊕
p+q=w V

p,q satisfying the Griffiths identities

∇(V p,q) ⊂ A1,0(X;V p,q) ⊕A1,0(X;V p−1,q+1) ⊕A0,1(X;V p,q) ⊕A0,1(X;V p+1,q−1).

A real VHS arises when V has a real structure VR (that is, a real local system whose tensor product
with C is V ), such that V p,q = V q,p. Finally an integral VHS is a real VHS together with an integral
local system VZ ⊂ VR whose extension by scalars to R is VR.
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If V is a CVHS of weight w, a hermitian polarization of V is a sesquilinear ∇-invariant form
Φ(·, ·) on V , such that Φ is (−1)1-sesquisymmetric

Φ(u, v) = (−1)wΦ(v, u);

the different Hodge subspaces are orthogonal

Φ(u, v) = 0 for u ∈ V p,q, v ∈ V r,s, (p, q) �= (r, s);

and such that the positivity condition

(
√
−1)p−qΦ(u, u) > 0, u ∈ V p,q

holds.
A real polarization on a real variation (V, VR) is a hermitian polarization Φ such that Φ(u, v) ∈

R whenever u, v ∈ VR. An integral polarization on a integral variation (V, VZ) is an hermitian
polarization Φ such that Φ(u, v) ∈ Z whenever u, v ∈ VZ.

In the weight-one case which interests us here, our conventions for the polarization say that Φ
should be a hermitian antisymmetric form, in particular

√
−1Φ is an indefinite unitary form with√

−1Φ(u, u) positive for u ∈ V 1,0 and negative for u ∈ V 0,1. If Φ is a real or integral polarization,
then it induces an alternating form on VR or VZ, in particular Φ(u, u) = 0 for u ∈ VR. The hermitian
antisymmetric form Φ on the complexification is uniquely determined by Φ|VR⊗VR and the positivity
condition holds on the Hodge subspaces which do not intersect VR.

Recall [Del71, Del79] that, if we make the convention that V p,q is to be non-zero only when
p, q � 0, then an integral polarizable weight-one VHS is the same thing as an algebraic smooth
family of abelian varieties over X.

Theorem 8.1. Suppose that V is an irreducible rank-two local system with quasiunipotent mono-
dromy at infinity. If V is rigid as defined in § 6, then it underlies a complex VHS of weight one.

Proof. This is [Car92, Corollary 1], see also Jost and Zuo [JZ96], then Mochizuki [Moc07, §§ 21–25].
Recall that the proof goes as follows, starting with the analogue of the discussion in §§ 4–5. There is
a finite energy harmonic metric h on V with the property that flat sections on sectors going towards
points at infinity, have sub-polynomial growth (and the same for the dual bundle). This metric is
unique up to multiplication by a positive scalar. The flat connection ∇ decomposes as

∇ = ∂ + ∂ + θ + θ

and the metric is pluriharmonic, that is, the Bochner formulae [Cor88] still hold [Car92, JZ96,
Moc07]. For example, θ is a holomorphic endomorphism for the Higgs complex structure ∂.

This fits into a more general picture as follows. Recall from [Moc02, Moc07, § 22.1] that a flat
bundle with pluriharmonic metric h is tame if the eigenvalues of θ extend as bounded multivalued
holomorphic sections of the bundle Ω1

X
(logD) of logarithmic differential forms. In this case the

residues of the eigenvalues are a well-defined collection of numbers called the KMS-spectrum, and h
is purely imaginary if the residues are purely imaginary. A tame harmonic bundle is purely imaginary
if and only if flat sections on sectors going towards points at infinity have sub-polynomial growth.
Any irreducible local system admits a unique (up to positive scalar) tame pluriharmonic metric
such that the residues of θ along D are purely imaginary [Moc07, § 25.28]. The imaginary parts of
the eigenvalues of the residue correspond to the logarithms of the norms of the eigenvalues of the
monodromy.

In our case, the quasiunipotence condition on the monodromy of ∇ means that the eigenvalues
of the residue of θ are zero, in other words the eigenvalues of θ have poles of order strictly less
than one. An equivalent formulation is that the harmonic map has finite energy with respect to our
Poincaré-type metric on the base [JZ96].
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For a tame pluriharmonic metric satisfying the conditions of the previous paragraph, we obtain
norm estimates analogous to those for variations of Hodge structure. In particular, when measured
with respect to a metric restricted from X ,

|θ|h � C
∑

i

|log|zi||k

on a neighborhood of a point of D where the components Di are defined by coordinates zi. The
norm estimates in the higher-dimensional case are one of the main conclusions of [Moc07], although
for our purposes it would suffice to restrict to a curve transverse to D and refer to [Sim90].

Consider a sequence of small loops γε with diameter ε→ 0 based at points xε approaching some
smooth point of the divisor D (these loops can be in a transverse curve). Compare the holonomy
transformations of the unitary part

hol(∂ + ∂; γε) ∈ U(Vxε) ⊂ GL(Vxε)

with the monodromy transformations which are the (not necessarily unitary) holonomy transfor-
mations of ∇. The norm estimates plugged into an integral estimate for the holonomy imply that

|hol(∇; γε) − hol(∂ + ∂; γε)| � Cε|log ε|k.
It follows that the characteristic polynomials of hol(∂ + ∂; γε) have a limit as ε → 0 and this limit
is the characteristic polynomial of the monodromy transformation hol(∇; γε) around the smooth
point of D in question.

We have now put in place all of the ingredients necessary for the same proof as in the compact
case. Bochner pluriharmonicity implies that for t ∈ U(1) ⊂ C∗ the connection

∇t := ∂ + ∂ + tθ + tθ

is again flat. This is a continuous family of connections, and the unitary pieces of ∇t with respect
to h are all the same ∂ + ∂. So the paragraph on holonomy above yields that the characteristic
polynomials of the monodromy transformations of ∇t are the same as for ∇ (in particular, the
monodromy is still quasiunipotent).

Therefore, we can apply the rigidity hypothesis (cf. Lemma 6.5), and conclude that the local
systems corresponding to (V,∇t) are all isomorphic. This means that there are automorphisms
αt : V → V with ∇t = αt ◦ ∇ ◦ α−1

t . The fixed metric h is pluriharmonic for all of the connections
∇t. It is also tame, and indeed the ∇t-flat sections again have subpolynomial growth, as can be seen
using the above norm estimates for the difference |∇t −∇| = |(t − 1)θ + (t− 1)θ| plus an integral
estimate for the solutions of ∇t(v) = 0.

The eigenvalues of tθ have poles of order strictly less than one, and the harmonic map given by
h with the flat connection ∇t has finite energy in the Poincaré-type metric, as its differential is tθ
which will have the same L2 norm as θ.

Unicity of the pluriharmonic metric on the flat bundle (V,∇t)—with respect to any one of the
properties of subpolynomial growth, zero residual eigenvalues for θ, or finite energy—means that αt

preserves h up to a scalar constant, and modifying αt we can assume it preserves h. Thus,

αt ◦ θ ◦ α−1
t = tθ,

and decomposing V into generalized eigenspaces for αt yields the required decomposition to give a
structure of VHS just as in the compact case [Hit95, Sim92]. The above intertwining formula says
that θ goes from the u-generalized eigenspace of αt, to the tu-generalized eigenspace.

In our rank-two case, there are at most two generalized eigenvalues of αt; if there are exactly
two which differ by multiple of t we obtain a Hodge decomposition with two adjacent Hodge types,
otherwise the term θ linking them is zero so the connection is unitary. If there is only one generalized
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eigenvalue then the connection is unitary too. In the case of two adjacent Hodge types we can assume
that the Hodge numbers are h1,0 = h0,1 = 1, whereas in the unitary case we can choose h1,0 = 2 or
h1,0 = 2. The harmonic metric h yields an hermitian polarization Φ by the formula

Φ(v, v) =
√
−1

q−p
h(v, v), v ∈ V p,q.

Corollary 8.2. Suppose that V is a rank-two local system with quasiunipotent monodromy at
infinity, whose monodromy representation is Zariski-dense. If V does not factor through a DM-
curve, then for any automorphism σ of C, the conjugate local system V σ underlies a complex VHS
of weight one.

Proof. By Theorem 6.8, V is rigid. Therefore, any conjugate is also rigid, and by Theorem 8.1 the
conjugates all underly complex VHSs.

When a representation is integral and all of the Galois conjugates come from complex VHSs,
then adding them together we obtain a Z-VHS.

Lemma 8.3. If VOL
is a local system of projective OL-modules for an algebraic number field L, such

that for every embedding η : L → C the resulting complex local system V η underlies a complex
VHS, then V ⊕2

OL
considered as a local system of Z-modules underlies a Z-VHS. If each factor can be

associated to a variation of weight one, then the Z-VHS can be assumed to have weight one and,
in particular, it comes from a family of abelian varieties.

See [Sim92] for a proof.
As a corollary we get a first statement which approaches our classification statement.

Corollary 8.4. Suppose that ρ : π1(X,x) → SL(2,C) is a representation with quasiunipotent
monodromy at infinity, which does not factor through a map to a DM-curve. Then there is a family
of abelian varieties over X such that ρ is a direct factor of the underlying complex monodromy
representation.

Proof. By Corollary 8.2 we are in the situation of Lemma 8.3, so ρ is a complex direct factor in
the monodromy of a weight-one Z-VHS; this is the monodromy representation of the corresponding
family of abelian varieties.

The task in the remainder of the paper is to analyse more carefully the kind of variation of
Hodge structure which can be made to occur here, and show that it corresponds to a factorization
of the representation through a Shimura modular stack.

9. Polydisk Shimura modular stacks

Moduli for families of abelian varieties is obtained through the theory of Shimura varieties. In
general, a Shimura variety will have a tautological representation of π1 into some algebraic group.
Since we are interested in rank-two representations, we consider the special case where this algebraic
group is some form of SL(2). The classical case which has been the most extensively studied is that
of Hilbert modular varieties, corresponding to SL(2, F ) where F is a totally real field [Dar00, Fre90,
Gor02, HU74, Mcm03, Rap78, Van88].

It turns out that the Hilbert modular case is very slightly overly restrictive for our purposes. For
a rigid and integral representation thanks to a lemma explained to us by M. Larsen, we can assume
that the representation goes into SL(2, L) where L is a totally imaginary quadratic extension of
a totally real field F , see § 10. However, the universal example which we consider in this section
shows that, in general, the traces will not necessarily lie in F , so it is not always possible to reduce
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to SL(2, F ). We thus fall into the more general realm of the theory of Shimura varieties, more
specifically unitary Shimura varieties [Lar92, Pap00, RZ96] which have recently come to be known
as ‘Shimura varieties of PEL type’ [Wed99]. Our case is midway between the Hilbert modular case
and the general unitary case, because the fact that the group is SL(2) means that the universal
covering will be a product of disks. For this reason, and because of the apparent lack of any standard
terminology, we propose to call these ‘polydisk Shimura varieties’. As with the case of DM-curves,
it is more convenient, when trying to obtain good factorization statements, to ignore level structure
and consider moduli stacks.

Thus, we review a version of Shimura’s construction which we call polydisk Shimura modular
DM-stacks. Aside from the restriction to the group SL(2), this is standard material [Del71, Del79,
Kot92, LP92, Pap00, RZ96, Wed99], but it seems like a good idea to have a discussion which
corresponds to our specific situation.

Let L be a totally imaginary extension of a totally real field F . Let OL be the ring of algebraic
integers in L. Let P be a projective OL-module of rank two, and put PL := P ⊗OL

L.
Suppose that σ : L→ C is an embedding. Let P σ := PL ⊗L C be the tensor product using σ as

structural map.
Let ι : L → L be the complex conjugation map. It is independent of the embedding (indeed it

is the generator for the order-two group Gal(L/F )), so for any embedding σ we have

σ(ιx) = σx.

Let σ = σ ◦ ι denote the embedding composed with complex conjugation.
Now we assume that we are given an ι-hermitian antisymmetric form Φ on PL. This means

Φ : PL × PL → L,

such that Φ(u, v) = −ιΦ(v, u), with Φ separately additive in each variable and such that Φ(au, v) =
aΦ(u, v) thus also Φ(u, av) = (ιa)Φ(u, v). The collection (L,P,Φ) is basically what is known as a
PEL datum [Wed99].

Let U(PL,Φ) denote the group of L-linear transformations of PL which preserve Φ, and let
U(P,Φ) denote the subgroup of those transformations which also preserve P ⊂ PL. Let SU(PL,Φ)
and SU(P,Φ) denote the subgroups of transformations of determinant one.

If σ : L → C is an embedding then we obtain a complex hermitian antisymmetric form on
P σ := PL ⊗L C defined by the condition that

Φσ(uσ , vσ) = σΦ(u, v)

where uσ and vσ denote the images of u and v in P σ.
A Hodge structure on (PL,Φ) is the data H for each embedding σ of a Hodge decomposition

P σ = H1,0
σ ⊕H0,1

σ ,

such that this decomposition is polarized by the form Φσ (recall that this means that Φσ is positive
imaginary on H1,0

σ and negative imaginary on H0,1
σ , and that these two spaces are orthogonal), and

such that the decompositions on P σ and P σ are complex conjugate. Use the following notation for
this complex conjugation condition. We have an antilinear isomorphism

(·) : P σ ↔ P σ, uσ := uσ

(recall that σ := σι), and using this operation we require that

Hp,q
σ = Hq,p

σ .

To see why such structures exist, we need the following lemma.
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Lemma 9.1. Suppose that

P σ =
⊕

Hp,q
σ

is a Hodge decomposition polarized by Φσ. Then setting

Hp,q
σ := Hq,p

σ

we obtain a Hodge decomposition

P σ =
⊕

Hp,q
σ

for P σ polarized by Φσ.

Proof. Suppose that u, v ∈ P so that uσ, vσ ∈ P σ. Then

Φσ(uσ, vσ) = σΦ(u, v) = σΦ(u, v) = Φσ(uσ , vσ).

This shows that, in general, for x, y ∈ P σ we have

Φσ(x, y) = Φσ(x, y).

Now if x ∈ Hp,q
σ , then x ∈ Hq,p

σ and to obtain the polarization condition for Hq,p
σ we would like to

show that

(
√
−1)q−pΦσ(x, x) > 0.

By the previous formula, the quantity on the left is equal to

(
√
−1)q−pΦσ(x, x) = (

√
−1)p−qΦσ(x, x).

The polarization condition for Hp,q
σ says that

(
√
−1)p−qΦσ(x, x) > 0

which yields the desired polarization condition for Hq,p
σ . The condition about orthogonality is proved

similarly.

Our forms Φσ are hermitian antisymmetric, giving hermitian symmetric forms denoted by√
−1Φσ.
Say that σ is positive, mixed, or negative, respectively, if

√
−1Φσ is a positive-definite, indefinite,

or negative-definite unitary form. Note that σ is, respectively, negative, mixed, or positive when σ
is positive, mixed, or negative (a special case of the above lemma).

If σ is positive (respectively negative) then we are forced to set H1,0
σ := P σ (respectively,

H0,1
σ := P σ) so in these cases the Hodge decompositions are uniquely determined. In the mixed

case, each Hodge subspace has dimension one and the space of such decompositions for a given σ
is the unit disk. The complex conjugacy condition determines the Hodge structure on P σι = P σ

once it is given for P σ, and the complex conjugate Hodge structure on P σι is polarized by Φσι if
and only if the original one was polarized by Φσ, by Lemma 9.1. Therefore, the space of Hodge
decompositions of (PL,Φ) is isomorphic to a product of disks, with the number of factors equal to
half the number of mixed embeddings for Φ.

If X is a smooth analytic variety, then a VHS of type (P,Φ) over X is a local system V of OL

modules whose stalks are isomorphic to P , together with an antihermitian form ΦV on V such that
for any x ∈ X the stalk (Vx,ΦV,x) is isomorphic to (P,Φ) (and, in particular, V is a local system of
projective rank-two OL-modules), together with a family of Hodge decompositions of the (Vx,ΦV,x)
in the above sense which for each V σ forms a complex variation of Hodge structure polarized by Φσ

V .
This notion can be extended in an obvious way to the case where the base X is a smooth analytic
DM-stack.
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Let D(P,Φ) denote the period domain parametrizing Hodge decompositions on (P,Φ) as above.
The group U(P,Φ) acts on D(VL,Φ). Put

Han(P,Φ) := D(P,Φ)/U(P,Φ).

Theorem 9.2. The analytic stack Han(P,Φ) is a smooth analytic DM-stack (that is, an orbifold).
This means, in particular, that the stabilizers are finite. It admits a tautological VHS of type (P,Φ)
denoted by V. This represents the functor of VHSs of type (P,Φ) in the following sense: if X is any
smooth analytic variety (or analytic DM-stack) and (V,ΦV ) is a VHS of type (P,Φ) over X, then
there is a map f : X → Han(P,Φ) and an isomorphism

α : (V,ΦV ) ∼= f∗(V,ΦV).

Furthermore, given two maps f, g : X → Han(P,Φ), the set of isomorphisms between f and g maps
isomorphically to the set of isomorphisms between f∗(V,ΦV) and g∗(V,ΦV).

Theorem 9.3. There exists an algebraic DM-stack H(P,Φ) and an isomorphism between its
associated analytic space and the complex DM-stack Han(P,Φ) defined above. The algebraic stack
represents the functor of VHSs of type (P,Φ) over algebraic varieties (with the same statement as
before, so we do not repeat it here). In particular, if X is any smooth algebraic DM-stack, then
any analytic map Xan → Han(P,Φ) comes from an algebraic map (and the analytic and algebraic
isomorphisms between algebraic maps are the same).

This is a classical result of Baily–Borel type. In the Hilbert modular case see Rapoport [Rap78,
Theorem 1.20]. Rapoport attributes the materiel of his § 1 to Deligne. For Shimura varieties of PEL
type, Wedhorn [Wed99] refers to Kottwitz [Kot92] who states a moduli problem in terms of abelian
varieties with appropriate structure, in our case that would mean purely imaginary multiplication
by L.

The consequence about unicity of the algebraic structure seems even now a bit surprising. It
basically comes from the distance-decreasing property for variations of Hodge structure, which
implies that any analytic map is distance decreasing for the Poincaré metric.

The stacks H(P,Φ) appearing in Theorem 9.3 are called polydisk Shimura modular DM-stacks.
Note that there is a tautological representation

π1(H(P,Φ)) → U(P,Φ) ↪→ SL(2, L)

which gives one tautological representation π1(H(P,Φ)) →→ SL(2,C) for each embedding
σ : L ↪→ C.

A necessary remark is that our terminology is meant to suggest that these are the standard
examples of Shimura varieties whose universal covering is a polydisk. However, we do not claim
that every Shimura variety of PEL type whose universal covering is a polydisk is of the above form
(or otherwise Hilbert modular). It would be good to clarify this.

Ideally one should also discuss the notion of level structure here, of a type generically denoted by
N for the purposes of the present paragraph. This allows one to get rid of the stack structure
by looking at finite étale coverings H(P,Φ, N) → H(P,Φ) by covering stacks which are actually
quasiprojective varieties. One would then need to define the notion of VHS of type (P,Φ) with
level structure to correspond to morphisms into the polydisk Shimura modular varieties with level
structure H(P,Φ, N). For a given map X → H(P,Φ) one could try to describe the explicit finite
étale covering of X which would lift to a map into H(P,Φ, N). Such a discussion would have the
benefit of giving a factorization result in the world of varieties rather than in the world of stacks.
However, choices would have to be made and the factorization would only take place over a covering
of X. Just as we have amply seen in the case of curves, the formulation in terms of stacks gives a
much more natural and cleaner factorization statement.
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10. Improvements for a rigid integral local system

Let Υ := π1(X,x). Suppose ρ : Υ → SL(2,C) is a rigid, integral Zariski-dense representation. As was
pointed out by M. Larsen (see [Sim92, Lemma 4.8]), we can assume after simultaneous conjugation
that ρ is defined over a totally imaginary quadratic extension L of a totally real field F . In other
words ρ comes from ρL : Υ → SL(2, L) by extension of scalars via an embedding η :→ C.

Furthermore, by Bass–Serre theory [Bas80] the fact that ρ is integral means that there is a
rank-two projective OL-module P with P ⊗OL

L ∼= L2 such that ρL comes from a representation
ρP : Υ → SL(P ).

We adopt the same notation as in the previous section, for example ι denotes the complex
conjugation on L. If σ : L → C is any embedding then we obtain a complex vector space P σ :=
P ⊗OL

C and a representation ρσ : Υ → SL(P σ) as in the previous section. For the given embedding
σ = η this gives back the original representation. If ρ was rigid then all of the ρσ are rigid too.
Thus, they all correspond to complex variations of Hodge structure.

This is almost the data we need in order to define a Shimura modular VHS and obtain a map
from X into a polydisk Shimura modular stack H(P,Φ). However, we have to discuss the question
of the polarization.

10.1 Uniqueness of the polarization
Let V be a vector space of dimension two over L, with an action of Υ. Define the conjugate rep-
resentation V ι as follows. The underlying additive group is the same as that of V , but the scalar
multiplication operation µ is defined by

µV ι(u, x) := µV (ιu, x).

The action of Υ is the same as on V , and it is again by L-linear endomorphisms.
A sesquilinear form Φ on V is a map Φ : V ×V → L which is separately additive in each variable

and which satisfies

Φ(ax , y) = aΦ(x, y),

and

Φ(x, ay) = (ιa)Φ(x, y).

It is symmetric (respectively antisymmetric) if

Φ(y, x) = ιΦ(x, y) (respectively Φ(y, x) = −ιΦ(x, y)).

We say that Φ is Υ-invariant if Φ(γx, γy) = Φ(x, y) for any γ ∈ Υ and x, y ∈ V .
Define the tensor corresponding to Φ denoted by

tΦ ∈ V ∗ ⊗L (V ι)∗,

to be the unique element such that

tΦ · x⊗ y = Φ(x, y)

for any x ∈ V and y ∈ ιV (the latter being the same as saying y ∈ V ); and where the product is
the natural contraction

(V ∗ ⊗L (V ι)∗) × (V ⊗L (V ι)) → L.

There is an action of Υ on V ∗⊗L (V ι)∗ and Φ is Υ-invariant if and only if tΦ is fixed by this action.
Define the ι-antilinear involution C : V ∗ ⊗L (V ι)∗ → V ∗ ⊗L (V ι)∗ with C2 = 1 by

C(e⊗ f) = −f ⊗ e.

1320

https://doi.org/10.1112/S0010437X08003618 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003618


Rank-two representations

If tΦ = e⊗ f this means that Φ(x, y) = e(x)f(y). Define ΦC by t(ΦC) = C(tΦ). Then

tΦC = −f ⊗ e

so ΦC(x, y) = −f(x)e(y) = −Φ(y, x). By linearity this extends to all Φ so

ΦC(x, y) = −Φ(y, x).

In particular, ΦC = Φ or, equivalently, tΦ is fixed by C, if and only if Φ is antisymmetric.
The involution C defines an F -structure on the L-vector space V ∗ ⊗L (V ι)∗ such that the F -

valued points (that is, those fixed by C) are exactly the tensors corresponding to antisymmetric
sesquilinear forms.

Lemma 10.1. If V is an irreducible representation of Υ, then the dimension of the F -vector space
of points of V ∗ ⊗L (V ι)∗ fixed by Υ and C is at most one.

Proof. The F -vector space is a reduction to F of the L-vector space of points fixed only by Υ. Thus,
it suffices to prove that the space of points fixed by Υ has dimension at most one over L. However,
this space is the same as the space of Υ-equivariant L-linear maps from V ι to V ∗, and since both
are irreducible representations of Υ, the dimension of the space of maps is at most 1.

Fix an embedding σ : L ↪→ C inducing F ↪→ R. Everything in the above discussion can be
tensored over F with R. The field L becomes C and V ⊗F R = V ⊗L C is a two-dimensional
C-vector space. We have

(V ι) ⊗F R = (V ⊗F R),

and

(V ∗ ⊗L (V ι)∗) ⊗F R = (V ⊗F R)∗ ⊗C (V ⊗F R)
∗
.

The involution C becomes the involution with a similar formula on this space, whose fixed points
are again the tensors corresponding to antisymmetric sesquilinear forms.

The R-dimension of the space of points in (V ∗ ⊗L (ιV )∗)⊗F R fixed by Υ and C is equal to the
F -dimension of the space of fixed points before tensoring. By the above lemma, it is zero or one.

We conclude the following facts from this discussion.

Proposition 10.2. If for some σ the representation V ⊗L,σ C admits a Υ-invariant antisymmetric
sesquilinear form Φ0, then the space of such forms is a one-dimensional real vector space. If Φ0 exists,
then V admits a Υ-invariant antisymmetric ι-sesquilinear form Φ and the space of such forms is
again a one-dimensional F -vector space. For any Φ there is a real constant λ such that Φ0 = λΦσ.

10.2 Creating a polarized VHS
We go back to the situation considered at the start of this section. We have a rank-two projective
OL-module P with a representation

ρP : π1(X,x) → SL(P )

yielding

ρσ : π1(X,x) → SL(P σ) ∼= SL(2,C)

for any embedding σ : L→ C. Our original representation ρ is equal to ρη.
Let V := P ⊗OL

L be the two-dimensional L-vector space on which ρL acts. In the notation
of the previous subsection V ⊗L,σ C = P σ. Let AL be the local system of L-vector spaces of rank
two corresponding to ρL and for any σ let Aσ = AL ⊗L,σ C be the local system of complex vector
spaces corresponding to the representation ρσ.
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Lemma 10.3. We can choose for each σ a structure of CVHS of weight one on the local system Aσ

such that

A1,0
σ = A0,1

σ , A0,1
σ = A1,0

σ .

Furthermore, these complex variations have hermitian polarizations.

Proof. By hypothesis ρ is rigid, which implies that each ρσ is rigid. Thus, each ρσ underlies an
hermitian polarized CVHS (Theorem 8.1). The fact that we are in rank two means that we can
choose these variations to have weight one. If σ is mixed, then the structure has to have weights
(1, 0) and (0, 1) so it is unique. In this case σ is also mixed, and since the complex conjugate variation
is one possible choice for Aσ it is the only choice and we obtain the desired formula.

On the other hand, if σ is positive or negative, then we may choose the structure as we like. In
this case σ = σ ◦ ι has the opposite sign. Thus, we may assume that the complex conjugate choice
is made for σ, which again gives the formula.

Fix a choice of variations Aσ as in the lemma. The fact that Aσ has an hermitian polarization
implies that there exists a π1(X,x)-invariant antisymmetric sesquilinear form on V ⊗L,σ C. By
Proposition 10.2, there also exists a π1(X,x)-invariant antisymmetric ι-sesquilinear form Φ on V ,
and it is unique up to multiplication by scalars in F .

The remaining problem is to get the right signs for the polarizations on the various pieces. For
any embedding σ : L→ C, the image Φσ is a real multiple of the polarization form of the variation
of Hodge structure Aσ chosen in Lemma 10.3. Thus, there is a sign function depending on Φ and
denoted

g(Φ, σ) ∈ {±1}
such that g(Φ, σ)Φσ polarizes the complex variation of Hodge structure Aσ.

Lemma 10.4. There is a π1(X,x)-invariant antisymmetric sesquilinear form Φ on V such that
g(Φ, σ) = 1 for all embeddings σ : L ↪→ C, in other words Φσ polarizes the CVHS V σ for each
mixed embedding σ.

Proof. Fix one choice of Φ which might not have the right signs. We claim that for each σ, g(Φ, σ ◦
ι) = g(Φ, σ). Recall that we have chosen the variations of Hodge structure Aσ in Lemma 10.3 so
that Aσ = Aσ. By Lemma 9.1 the form Φσ polarizes Aσ if and only if Φσ polarizes Aσ. The same
is true if we replace Φ by −Φ. Thus, g(σ) = g(σ) as claimed.

For each embedding ζ : F → R there are exactly two embeddings σ, σ : L → C which induce ζ
on F . The claim in the previous paragraph says g(Φ, σ) only depends on ζ = σ|F . Abusing notation
we write g(Φ, ζ).

Next let sgn(r) ∈ {±1} denote the sign of a non-zero real number. If λ ∈ F ∗, then

g(λΦ, ζ) = sgn(ζλ)g(Φ, ζ).

Therefore, if we can find λ ∈ F ∗ such that sgn(ζλ) = g(Φ, ζ) for all ζ : F → C, then the form λΦ
will be a polarization form with the right signs for the lemma.

Now recall that

F ⊗Q R =
∏

ζ:F→R
R.

Since F is dense in F ⊗Q R, there is a point λ ∈ F which lies in the open quadrant of
∏

ζ:F→RR

determined by the specification sgn(ζλ) = g(Φ, ζ). Thus, λΦ answers the question.

Fix a form Φ as in the lemma. If σ is a non-mixed embedding then the CVHS V σ is unitary, so
it can be chosen as equal to a single Hodge subspace of Hodge type either (1, 0) or (0, 1). We can
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choose which one so that V σ with this Hodge structure is polarized by
√
−1Φσ. With this condition

the choice is unique, and the complex conjugate embedding corresponds to the opposite choice of
Hodge type (Lemma 9.1). Thus, if Φ is fixed as in the lemma, there is a unique choice of collection
of complex variations of Hodge structure for the V σ such that they are polarized by the

√
−1Φσ

respectively.
We can clear denominators in Φ by multiplying it by an appropriate integer. Thus, we may

assume that Φ : P × P → OL is an integral polarization form. We have now obtained the following
proposition.

Proposition 10.5. Suppose that ρ : π1(X,x) → SL(2,C) is a rigid, integral Zariski-dense repre-
sentation. Then there exists: a totally imaginary extension L of a totally real field F ; a projective
rank-two OL-module P together with an ι-sesquilinear antisymmetric form Φ : P ×P → OL; a rep-
resentation ρP : π1(X,x) → SU(P,Φ); and a variation of Hodge structure A = {Aσ} of type (P,Φ)
polarized by Φ and whose underlying representation is ρP ; such that for one of the embeddings
η : L→ C we have ρ = ρη.

By Theorem 9.3 the VHS of type (P,Φ) comes from a map X → H(P,Φ) to the Shimura modular
stack corresponding to (L,P,Φ).

11. Classification

We sum up our main classification results. Suppose that X is a quasiprojective variety with normal
crossings compactification X and X−X = D. Fix a representation ρ : π1(X,x) → SL(2,C). Suppose
that ρ is quasiunipotent at infinity, that is, the monodromy elements ρ(γi) are quasiunipotent for
loops γi going around the components Di of the divisor at infinity. We also suppose that the image
of ρ is Zariski-dense in SL(2,C).

Recall that we say ρ is rigid if there are no non-trivial global deformations which fix the conjugacy
classes of the ρ(γi), see Lemma 6.5, and ρ is non-rigid otherwise.

Theorem 11.1. Suppose that, with the above hypotheses, ρ is non-rigid. Then there exists a DM-
curve Y , a rank-two representation ρY of π1(Y ), and a map

f : X → Y

such that ρ ∼= f∗ρY .

Proof. This is the contrapositive of Theorem 6.8.

Theorem 11.2. Suppose that, with the above hypotheses, ρ is rigid. Then ρ is also integral; and
there exists a totally imaginary field L with an embedding η : L → C, a rank-two projective OL-
module P with an antihermitian polarization form Φ, and a map to the polydisk Shimura modular
stack

f : X → H(P,Φ)
such that if Vη is the complex local system on H(P,Φ) corresponding to the tautological local system
tensored with C over the embedding η, then ρ is conjugate to the monodromy representation of f∗Vη.

Proof. By Lemma 7.6, ρ is integral. Proposition 10.5 gives data (L,P,Φ) and a variation of Hodge
structure V of type (P,Φ) over X. If ρP : π1(X,x) → SU(P,Φ) is the representation underlying
this variation of Hodge structure then from Proposition 10.5, for one of the embeddings η : L→ C

we have ρ = ρη
P .

Now Theorems 9.2 and 9.3 say that the variation V on X comes from a map f : X → H(P,Φ)
in the sense that the pullback of the tautological variation f∗(V) is the variation V on X. The
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tautological rank-two complex local systems over H(P,Φ) all come from the tautological local system
of OL-modules of type P underlying V, via the embeddings L ↪→ C. Thus, the representation ρ ∼= ρη

P

is the pullback of the tautological rank-two complex local system Vη on H(P,Φ).

Proof of Theorem 2. Suppose that ρ is a Zariski-dense representation which is quasiunipotent at
infinity. It is either rigid, in which case Theorem 11.2 says that it comes from a polydisk Shimura
modular stack, or non-rigid, in which case Theorem 11.1 says that it comes from a DM-curve.

There are some cases where a representation on a DM-curve Y can be rigid, in particular it
comes from a map from Y to a Shimura modular stack. These cases were discussed in § 7.1. In these
cases, Theorem 11.2 applies.

Corollary 11.3. Any rigid local system of rank two, quasiunipotent at infinity, with Zariski-dense
monodromy, is motivic.

Proof. The tautological local systems on Shimura modular stacks are motivic.

12. Questions

12.1 Further development
The most obvious question is: can we give a similar classification, or at least a start, for rank-three
representations?

Aside from this, several questions are left open concerning the case of local systems of rank two.
For example, what happens in the non-quasiunipotent case? What about local systems with smaller
monodromy groups, notably a solvable monodromy group? This question is addressed by Delzant
in [Del06, Del07].

For a given DM-curve we would like to have a good understanding of the irreducible components
of the moduli spaces of rank-two local systems.

In the present treatment we have restricted to the case where the original X was a smooth
quasiprojective variety. What about the case where X is a general DM-stack, possibly with singu-
larities?

12.2 Calculating the factorization
The transcendental nature of our methods leads naturally to the question of whether one can
effectively (and, preferably, easily) calculate the map to a Shimura modular variety corresponding
to a given rank-two local system. Concretely, V might be given in any number of ways:

(A) by representation matrices corresponding to the generators of the fundamental group (in a
Zariski-type calculation of the fundamental group of X);

(B) as a vector bundle (probably the trivial bundle, at least if we allow going to a neighborhood
in X) plus an explicitly given regular–singular connection;

(C) as a stable parabolic Higgs bundle with vanishing parabolic Chern classes, which might in
many cases take on one of several special forms:
(C1) a stable vector bundle with θ = 0 over a projective variety;
(C1′) a stable parabolic vector bundle with θ = 0;
(C2) a stable system of Hodge bundles, which in the rank-two case and excepting (C1) above

means a pair of line bundles and a map

θ : L→M ⊗ Ω1
X

(C2′) a stable system of Hodge bundles with parabolic structure and/or logarithmic θ.
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For each kind of concrete example of V there could arise the question of how to explicitly
construct the map from X (or a finite covering space X ′ of X) to a Shimura modular variety plus
an isomorphism between our given object and the pullback of the universal object.

While it might be possible to prove using some general principles that there exists an algorithm
which solves this problem in principle, we would actually like to have a good method which works
on specific examples and which is related to geometry [ACT02, AB00, Dim06, DN01, FM97, KM98,
RT97, Zuo94].

There are now known some specific examples. For example Panov constructs rank-two unitary
representations corresponding to polyhedral Kähler structures on some surfaces in his thesis [Pan04].

Any algebraic solution of the Painlevé VI equation will correspond to a rank-two local system on a
surface. Such solutions have been constructed by Hitchin [Hit95], Dubrovin [Dub96], Boalch [Boa05],
Ben Hamed-Gavrilov [BG05]. In many cases the solutions were shown to have geometric origin
already.

More generally there are various potential sources of other examples [BK92, Cam04, Del86,
DN01, Moi77, Nor83, SU86, Tol90], in particular line or hyperplane arrangements as was the case
in Panov’s construction [ACT02, CO00, Fy07, MT88, PS02]. These might in the future lead to
constructions of rank-two local systems for which the classification results would apply.

To what extent is the factorization map uniquely determined by the representation? This is
easy for factorization through an orbicurve, but might be an interesting question for factorization
through a Shimura modular stack. What kind of Shimura modular stack is associated to a given
local system? For example, what is its dimension? Are there details specific to the theory of Hilbert
modular varieties that could be extended to the polydisk Shimura case? On the other side, how do
we tell, given (P,Φ), how many mixed embeddings there are?

The problem of calculating explicitly the factorization is also interesting when X is a curve. In
§ 5.3 we have started to look at the real geometry of the pluriharmonic map this case. This was very
preliminary but it looks interesting and should be further pursued. How does the representation
ρ : π1 → SL(2,K) determine the geometry of the map from X̃ to the tree?

The analytic proof that non-rigid representations factor, which we have sidestepped here, also
leads to an effectivity question. The space of representations whose Higgs fields are nilpotent is
compact—can we give an explicit bound for the size of these representations?
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