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1. Introduction. In classical dynamics one has usually supposed that when
one has solved the equations of motion one has done everything worth doing.
However, with the further insight into general dynamical theory which has
been provided by the discovery of quantum mechanics, one is lead to believe
that this is not the case. It seems that there is some further work to be done,
namely to group the Solutions into families (each family corresponding to one
principal function satisfying the Hamilton-Jacobi equation). The family
does not have any importance from the point of view of Newtonian mechanics;
but it is a family which corresponds to one State of motion in the quantum
theory, so presumably the family has some deep significance in nature, not
yet properly understood.

The importance of the family is brought out by the Schrödinger form of
quantum mechanics and not by the Heisenberg form. The latter is in direct
analogy with the classical Hamiltonian equations of motion and does not re-
quire any grouping of the Solutions. The Schrödinger form goes beyond this
in ascribing importance to the concept of a quantum State, subject to the
principle of superposition and described by a solution of Schrödinger's wave
equation, and this concept requires the introduction of families of Solutions
for its analogue in classical mechanics, the Schrödinger equation itself being
the analogue of the Hamilton-Jacobi equation.

One can build up a relativistic dynamical theory by starting with a Lorentz
invariant action function involving field quantities. The requirement that
the total action shall be stationary under arbitrary small variations of those
field variables that play the role of dynamical coordinates at all points of space-
time leads to a relativistic set of field equations as the equations of motion.
These equations may be put in the Hamiltonian form, and one can then pass
from them to Heisenberg^ form of quantum mechanics. This has already
been done by Weiss [1]. The present paper is concerned with the further
mathematical development, connected with the grouping of the Solutions into
families, which is needed before one can pass to Schrödinger's form of quantum
mechanics.

The dynamical variables of the Hamiltonian equations of motion must be a
set of variables that can serve as initial conditions—they must be independent
of one another and sufficient to fix the State of motion. In non-relativistic
theory one takes them to be physical quantities referring to an instant of time.
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The concept of an instant of time is rather artificial from the relativistic point
of view. It is to be pictured as a flat three-dimensional "surface" in four-
dimensional space-time, with the direction of its normal lying within the light-
cone. It would be more natural in a relativistic theory to replace the flat
surface by an arbitrary curved one, subject to the restriction that it is every-
where space-like, i.e. the normal at every point of it lies within the light-cone.
One would then work with dynamical variables referring to physical conditions
on such a curved surface, as was done by Weiss.

The use of a curved surface instead of a flat one of course increases the com-
plexity of the mathematical equations. In working out practical examples
one would always revert to the flat surface to simplify the calculations as much
as possible, the flat surface being adequate for describing all experimental
results. The curved surface is desirable in a general theory because of the
flexibility and mathematical power that it gives. It shows up the transfor-
mation properties of the Hamiltonian theory applied to field dynamics. In
any problem which involves seeking for a new dynamical System, rather than
working out the properties of a given dynamical System, it would be advan-
tageous to use the curved surface, because it brings more conditions into the
mathematics and so restricts the region of search.

The curved surface will be described by certain mathematical variables,
which we shall call the surface variables. (Actually, they will consist of func-
tions, as will be discussed in the next section.) The equations of motion will
give the change in the dynamical variables when the surface is moved in space-
time. The surface can be subjected to arbitrary changes of direction and
deformations during the motion, provided it remains always space-like. Thus
the equations of motion give the change in the dynamical variables for any
change in the surface variables. One can get these equations in the Hamiltonian
form by working from the Lagrangian, as was shown by Weiss, and one then
has Poisson bracket relations between the dynamical variables.

Let us now consider what development is needed to make possible the
grouping of the Solutions of the equations of motion into families. One can infer
from analogy with non-relativistic dynamics that the Hamilton-Jacobi equation,
whose Solutions define the families, is a partial differential equation of the first
order in the dynamical coordinates, and also in the surface variables. It thus
involves the surface variables in the same way as the dynamical coordinates.
This provides the key to the problem. We must put the dynamical theory into
a form in which the surface variables are treated on the same footing as dynamical
coordinates. They must have conjugate momenta and there must be P. b.
relations connecting them with other dynamical variables. When we have
done this, the setting up of the Hamilton-Jacobi equation is straightforward,
and the ground is prepared for Schrödinger's form of quantization.

The equations of motion must now be considered in the first place as making
all the dynamical variables, including the surface variables, vary together, and
giving them all as functions of some independent variable, r say, when suitablehttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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initial conditions are prescribed. Actually, the surface variables can vary
arbitrarily with r. This is to be taken into account by supposing the general
solution of the equations of motion to involve some arbitrary functions (or func-
tionals). The arbitrariness in the motion of the surface variables is then to be
ascribed to the "accidental" appearance of these arbitrary functions in the
solution of equations which, in a general way, one would normally expect to
fix the motion completely.

The generalization of Hamiltonian dynamics which is needed in Order that
arbitrary functions may appear in the solution of the equations of motion
has been given in a previous paper by the author [2]. The present paper is a
direct application of the method given there.

2. The general space-like surface. We describe space-time by the four co-
ordinates xM(ju = 0, 1, 2, 3) of a rectilinear orthogonal System of coordinates.
For simplicity we shall write all vectors referred to this coordinate System in
the contravariant form, such as aß and will make the Convention

applying whenever one of these contravariant Suffixes is repeated in a term.
We can describe a general three-dimensional surface in space-time by giving

the four coordinates xß of any point on it as functions of three parameters
ur(r = 1, 2,3), say

(1) x» = yp(u).

This involves setting up a parametrization u on the surface. The parametri-
zation is not necessary physically and brings some extra complication into the
mathematics. It could be avoided by using a different method of description
of the surface, specifying XQ as a function of xi, X2, x$. However, this would
spoil the relativistic treatment of the four x's. For the sake of relativistic
form it seems preferable to use the method (1), the extra complication arising
from the parametrization being not very troublesome if properly handled.

The condition that the surface shall be space-like is that there shall exist at
every point on it a unit normal vector ZM> satisfying

(2) ky/ = 1, yM = 1, h > 0,

where y/ is short for the derivative dyjdur. The lß are to be understood as
functions of the parameters u.

The parameters u form a System of coordinate;S in the three-dimensional
surface. The metric of the surface referred to these coordinates is

ds2 = dyßdyß = yß
rduryß

8du8 = yr8durdus

with

(3)https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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For a space-like surface this ds2 is negative and thus the determinant of the
yrs is negative. Put it equal to — r2, T being positive. Then an element of
three-dimensional "area" of the surface is

TduidutfLuz = Td3u

say.
Let yrs be the cofactor of yrs in the determinant, divided by the determinant,

so that

7rs7SP = V-.

The 7rs,Yrs can be used for raising and lowering t!he Suffixes of vectör and
tensor quantities in the three-dimensional space of the surface. We shall use
generally the notation of adding an upper suffix r to a quantity to denote its
derivative with respect to ur (ordinary, not covariant derivative). Thus with
f any function of the «'s, fr = d£/dur, and then fr = yrs£

s. We have frs = fsr,
but in general f r s ^ f «r.

We have

dT2/dup = T2yrsdyrs/dup

and hence

(4) F> - iTyrsy
rs*>.

Let aß be any 4-vector located at a point on the surface. It has a normal
component

say, and a contravariant component in the direction ur in the surface

say. The covariant components in the surface directions may be introduced
by ar = yrsa

s- It is now easily seen that

(aß — ailß — ary/) lß = 0

(aß — ailß - ary/) yli
8= 0,

so that the 4-vector aß — ailß — aryß
r has its normal component and its com-

ponents in the directions ur all vanishing. This means the vector itself
vanishes, i.e.

(5) aß = ailß + aryß
r.

This equation expresses the resolution of the vector aß into its normal and
tangential parts. It is convenient to write the tangential part aryß as a^ß

for brevity.

The scalar product of two 4-vectors aß and bß ishttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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+ a_M&_M = aibi + dry/bsy/
= aibi + yrsarbs

(6) = aibi + ar&
r.

This result may be written as

Since this holds for arbitrary aß and bVi we can infer

(7) gßV = y , + 3V3>/,

a fundamental formula which is frequently useful.
If V(u) is any function defined on the surface, we can obtain by differentia-

tion the 3-vector d V/dur = Vr. We may then form VTylir = F_M and consider
it as a 4-vector in space-time. If F is a field function, so that it is defined off
the surface as well as on the surface, we can form d V/dxß and, by changing the
sign of its spatial components, obtain the contravariant 4-vector F^. Then
the above F__M is just the tangential part of FM.

Differentiating equations (2) with respect to us, we get

(8) IJy/ + hy/8 = 0,

(9) y / = 0.

Equation (8) shows that
^ 8y T __ ^ Ty 8^

Define

(10) W8 = Osr = Z/V-

It is the curvature tensor. It may be expressed in thejfour dimensional form
C*\ —— /%f / i i C*\V8 «—. /»• /\f J T/\t S

Ü£—H—y — j ixrjvs*" — yiirjvsvG y<r

= y^rU (gvo — hl*).

with the help of (7). Using (9) we now get

(11) 0-M-, = y^lS = 1,-r

We can inf er that

(12) /,-, = /,-,.

3. Poisson bracket relations. The yß(u) of (1), considered as a set of num-
bers with /x and the u's taking all permissible values, are the surface variables.
They are to be treated as dynamical coordinates. Since the u's take on a
continuous ränge of values, these variables will give us a continuous ränge of
degrees of freedom, instead of the usual discrete set. The formalism of paper
[2] was set up for a dynamical system with a discrete set of degrees of freedom,https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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but can be made to apply to a continuous ränge by replacing sums by Integrals
and the Kronecker 5-symbol by a 5-function. The 5-function we now need is
8(u — uf), which vanishes for u y£ ur and has its integral

(13) jö(u - uf)d?u = 1.

Note that there is no factor V occurring with the dzu, so this ö-function refers
to the parametrization of the surface and not to the metric. If one did introduce
the factor V into (13) one would get a ö-function with a more directly physical
meaning, but it would not be so suitable for dynamical theory because it would
not have zero P.b. with the w variables introduced below.

The dynamical variables yß(u) have conjugate momenta, w^u) say, satis-
fying the Standard P.b. relations. If for brevity we write yßt y'ß for yß(u),
yß(u') and similarly wß, w'ß for wß{u)^ wß(u'), these relations are

(14) b w ' J = 0, [wßtv/w] = 0, \yß,v/,} = gßVb{u - uf).

The momenta may be pictured as associated with displacements and deforma-
tions of the parametrized surface, the linear combination eJaMwMrf3w, where aß

is a function of u and e is small, being associated with the displacement in
which yß is changed to yß + ea^ for all u values. Thus the normal component
wßlß = wi is associated with a motion of the surface normal to itself, and the
tangential components wßyß

r = wr with merely changes in the parametriza-
tion.

From the fundamental P.b. relations (14) one can deduce a number of
useful P.b. relations connecting the w variables with functions of the surface
variables and with each other. Some of these relations have been obtained
previously by the author [3], working from the association of the w variables
with deformations, and by Chang [4], using a more direct method similar to
the one used below. Note that the IF,IIn of these two papers are minus the
present wr, w\ and the 7rs, yrs of [3] are minus the present yr8, yrs.

In working out P.b.'s one should note in the first place that all quantities
depending only on the surface and its parametrization are functions of the
dynamical coordinates yß(u) only, and so have zero P.b.'s with one another.
Thus yßt lß, 3//, Ors for all u values, and all their derivatives with respect to w's,
have zero P.b.'s with one another.

We have from the first of equations (2)

0 = [hy/, w\] = [/„, v/,]yS + IJly/, v/,].

Now [y/Mv] = [y^w'vY

(15) = gflv8
r(u - u').

Hence [lß, w'v]yß
r = - lv5

r(u - u').

Again, from the second of equations (2),

0 = \[IJ,„ w'v] = [/„, wr
v] lß.https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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Thus, using (7),

(16) = - lvyxrdr(u - u') = - W_x(w - uf).

We have, using (15),

(17) [yrs,w'v] = V b / . w ' J + y/b/ .wM = y/«*(tt - ur) + ;y„sS

Following the method by which (4) was obtained, we get

[T\w'v] = r27, s[7 rWJ = 2T*yrsy/8s(u - u')

or
(18) [r,«/,] = r5_,(^ - «').

From (17) again

[7pr,^'jTr8 = - rPr[yra,W,] = - 3fv«
Ä(« - «') - y,-8p(« - u'),

so

(19) [TPr,w'J = - yvp8r(u - uf) - yvr8P(u - u').

We shall use the notation of adding a dashed suffix rf or — \J! to any function
X of w' with the following meanings:

(20) Xr' = aX/a^'r, X / = yra(u')X9',

We get from (16)

{u - uf)

(21)

Again, from

(22)

(16)

[/

Similarly, we get

(23)

[I

from

Wz]

= - S_X(M

= - y'/hl

= y,rl,-\5(i

= y/k-A*.

= /X'«(« -

(18)

= l\rd-v(u

U(« - u

i - «')

( - «')

- « ' ) = r{/%5(«

https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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and again from (18)

[r,w"] = y'/Yb-v{u - uf) = v{y'/d(u - u')

= Y(yv
r)„vb(u - ur) + Tyv

rd-V(u - «')

Now (;y/)_„ = yS8yfyP9 = yv
sryv

pyPs

— 2\jv jv ) 7ps — 2/ Ips

(24) = r r / r

from (4). Hence

[r,w/r] = Tr8(u - u') + T8r(u - uf)

(25) = {Vö(u - u')}\

To get the P.b.'s of wh w
r, we have

[whw'i] = [ w ^ ^ V J

= W„y9[lr,Wr,] + lßw',[wß,l'v]

= wM[ZM,w;z] + wf
v[whl

f
v].

From (21) this equals
(26) [whw'i] = - Wjfi-^u ~ ur) + w'vb-v>{u - ur).

Again [wz,^
/r] = N ^ , ^ ^ ' / ]

= wll[lixiw
fr] + lnw'^w^y'/]

= wJ/Öiu - u') + ZMw/5r(« - «0.

with the help of (22). This gives

[wZ|W
/r] = wj/diu - uf) + l^w^diu - u')}r

(27) = {wid(u - u')}r.

Again [wr,^/s] = [w„yß
r
9v/9y

r/]

/b'iu - u') - wf
ßy/dsf(u - tO

(28) = ^85r(w - *O - wrrb8\u - ur).

Further useful relations are

(29) = y,ös(^ - u') - 3̂ ,s5_M(w - uf)https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-001-2


HAMILTONIAN FORM OF FIELD DYNAMICS 9

with the hejp of (7), and

bßS,w
fr] = y'/{lßlvös(u - u') - yvsywbv(u - u')}

= y'/lß{lf
vds(u-u')-lvs5(u-u')} -yßPyV8{yvrp8(u-u')

+ y/öp(u-u')}

(30) = y^Ku-u^-b/b-^u-u')

with the help of (7) again.

4. Changes of parametrization. Using the homogeneous velocity formu-
lation of the dynamical equations, we have a Hamiltonian of the general form
given by the equation (20) of paper [2]. The $'s here are functions of the
dynamical coordinates and momenta and the v's involve the r derivatives
of quantities that can vary arbitrarily with r. With our present dynamical
System we have the surface variables yß(u) that can vary arbitrarily with r
and may take their T derivatives to be v's. (Alternatively, we could
take any complete set of independent functions of the y^s to be v's and get
an equivalent but less convenient formulation). If these are the only quan-
tities that can vary arbitrarily with r, their r derivatives are the only ^'s
and the Hamiltonian is

(31) H =

with <i>n(u) some function of the dynamical coordinates and momenta, weakly
equal to zero, for each value of u If there are other quantities that can vary
arbitrarily with r, there will be further terms in H. These will be left under-
stood for the present, as they will not affect the arguments now being used.

From (6) we may write (31) alternatively in terms of the normal and tangen-
tial components of yß and $M,

(32) H = jyi<t>id*u + jyr<l>rd*u.

We now have <£z and <j>r functions of the dynamical coordinates and momenta
weakly equal to zero.

According to equation (21) of paper [2], the equation of motion for a general
dynamical variable g is

(33) g = fh\g,<i>ß]<Pu,

or alternatively

(34) | = Syi[g,Uä*u + jyr[g,<l>rWu.

The second term here gives the change in g when yi = 0, which means that the
surface itself does not move but only its parametrization changes. Thus for
a small change in parametrizationhttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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(35) dg = !(dy)r[g^r]dzu.

A small change in the parametrization is given by

(36) ur —» ur + e&r,

meaning that the point on the surface with parameters ur becomes the point
with parameters ur + ean where ar is a function of the w's and e is a small
number. This makes yß(u) change by

dyß = yß(u + ea) - yß(u) = ey/ar

and gives (dy)r = yßrdyß = ear.

The change in g for this change in the parametrization is thus

(37) dg = ^ar[g^Wu

(370 = e[g, fa

since $r = 0. The result (37) or (37') holds even if ar is a function of any of the
dynamical variables. We see now the importance of the #r's as the quantities
with which one must form the P.b. of any dynamical variable to get its change
under a change in the parametrization.

If a quantity refers to a point uf on the surface and is invariant under any
change of the parametrization that leaves the point uf invariant, I call it a
u-scalar at the point u'\ A quantity that is invariant under any change of the
parametrization whatever I call a u-invariant. The concepts of w-scalar and
w-invariant refer only to the dependence on transformations of the u's and
not on how the quantity behaves under a Lorentz transformation. A w-scalar
or w-invariant may very well be a component of a vector or tensor so far as
Lorentz transformations are concerned.

Now yß(u') for a particular value of ß is evidently a w-scalar at uf. So is
lp(ur). Any function of w-scalars at ur is a w-scalar at ur. If S{ur) is any
w-scalar at u\ then JS{ur)Yl'dzuf is a w-invariant.

Let S(u) be a w-scalar at the point u. Under the change of parametrization
(36) it will change to the same u-scslax at u + ea, namely S(u + ea), so that

dS = S(u + ea) ~ S(u) = earS\

Thus from (37)

arS
r = J V r [ S , <t>fr]dzuf.

Since the functions ar{u) are arbitrary, we can infer

(38) [5 , <$>fr] = Sr d(u - uf).

This is an equation expressing the condition for S to be a w-scalar at u.
Let Q be a ^-invariant. From (37) we see that we must have

(39) to, <n = ohttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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for all u'. Putting Q = J SFdsu, we get

fS[T,<t>'r]d*u = - Jr[Sf0
/r]d»i* = - Jr5 r5(^ - *')#!*

= JS{T8(U- u')\rd?u.

Since this must hold for any w-scalar 5, we see that

(40) [r,*"] = {Tb(u-u')}\

Suppose we have a field quantity V(x) having a definite value at every point
x of space-time after the equations of motion have beert integrated. The
values of V(x) on the surface will provide an oo3 of numbers, which may be
labelled by the parameters u so as to give the function V(u). The quantities
V(u) for all values of the u's will be dynamical variables having zero P.b. with
all the y and w variables, thus

(41) bv .n = o, [w„,H = o.
They may be dynamical coordinates, in which case they would have zero P.b.
with one another,

(42) [V, V] = 0.

There will then be dynamical variables U(u) say, forming the conjugate mo-
menta to the F(«)'s, satisfying the P.b. relations

(43 ) b»,u'] = o [wßtir] = o

[U,U']=0 [V,Uf] = 8(u -u').

From its physical meaning V(u) must be independent of changes of para-
metrization that do not change the point u, so it must be a w-scalar at u. The
conjugate momentum U(u) is not also a w-scalar, on account of the dependence
of 8(u — ur) in (43) on the parametrization. In order that Fmay satisfy the
condition (38) for a ̂ -scalar, we must have

(44) V s UVr + ^+ f

where <£r+ has zero P.b. with all the V's. We may assume that <t>r+ also has
zero P.b. with all the J7fs, this being the simplest assumption leading to a
self-consistent scheme, and then

[U,4>"\ = U'[U,V/rt] = U'dr(u - uf)

(45) = {U8(u -u')Y.

From (40) we now get

[UY~\4>fr] = { U8(u - O J T - 1 - UT-2{T8(u-u')}r

which shows, according to (38), that C/P"1 is a w-scalar at u. We may call Uhttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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itself a w-scalar density. The result that a field quantity that is w-scalar has
for its dynamical conjugate a w-scalar density has been obtained previously
by Chang [4].

The dynamical coordinätes yß(u), being w-scalars, may be treated in the
same way as the V(u) above. Corresponding to (44) we can infer that

f A f*\ , m ff 1 l Tife V I l VSfc

where $r* has zero P.b. with all the / s . We may assume #r* also has zero
P.b. with all the w's. The consistency of this assumption is easily checked.
Thus with <j>r given by (46), one sees that the P.b. relation (22) leads to the
condition, equation (38) with h for 5, for h to be a w-scalar; the P.b. relation
(25) leads to (40); and

[wVj(j>
fr] = w'ßgfiv8

r(u — u1) = \wv8{u — u')\T,

which checks that wv is a ^-scalar density.
For a dynamical System in which the only dynamical coordinätes are the

y's and a number of field quantities Fa(w), (a = 1, 2, . . . ), there will be the
momentum variables w and the conjugates Ua(u) to the Va(u), and <t>r will be

(47) (j>r E== Wr + ZLaUaVJ,

neglecting an unimportant term which has zero P.b. with all the dynamical
variables.

If S(u) is a ^-scalar at u, we should expect 5_M = y^S1" to be also a ^-scalar
at u, as its formation from S(u) does not depend on the parametrization.
A formal proof of this result is as follows. We start from the condition (38)
for S(u). Differentiating both sides of this equation with respect to us, we
get

[S8,4>'r] = Sr88(u - u1) + Sr8s(u - uf).

Thus y^slS8,^] = {(Sy^Y - Ssyß8
r}8(u - ur) + S'y^iu - ur)}

= {(S-pY - SsyfXS
r}8(u - u') + Sr5-p(u - u')

from (30). Hence

which is the condition for 5_M to be a w-scalar.

5. Passage from the Lagrangian to the Hamiltonian. Consider a dynamical
System for which the action density 8 in space-time is a function of certain
field quantities V and their first derivatives d V/dx1* = Vß,

https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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Only one V will be written in the equations of this section for brevity. The
action is then

I s f%d*x.

An element of four-dimensional "volume" of space-time d*x can be expressed
as an element of three-dimensional "area" of the surface, Tdzu, multiplied by
an element of distance normal to the surface, l^ßr = y\dr. Thus

I = JJ2yiTdsudrf

and so the Lagrangian is

(48) L s dl/dr s

This Lagrangian will now be treated according to the general method of
paper [2] and the Hamiltonian obtained from it. The equations of sections 2
and 3 can all be used as strong equations in this work.

We must first express L in terms of the dynamical coordinates and velocities,
the q's and q's of paper [2]. The variables yn(u), V(u) are the q's. Tangential
derivatives of yß and F, such as yß

r, Fr, F_M, are functions of the q's. Deriva-
tives which are not tangential, such as FM, are not functions of the q's only,
but can be expressed as functions of the q's and q's. We have

from (5). Thus

(49) F z ^ ( F - V-Vyv

so that FM = F_„ + h

(50) s 7 . , + W

Here we have FM expressed in terms of V and y», which are ^'s, and F_M,/M,
which are functions of the q's. L now becomes a function of the q's and ^'s.
Note that F„ is homogeneous of degree zero in the velocities, so that L is homo-
geneous of the first degree in the velocities, as is needed for the homogeneous
velocity formulation of the dynamical equations.

If we vary the <f s keeping the q's constant, we get from (50)

8V, = U8V - V-v8yv)/yi -

= U8V- Vv8yv)/yi

using (50) again. The Variation in L given by (48) is then

8L = ${d2/dVß . 8Vßyi }

(51) = f{di/dVß . U8V - Vv8yv)

From the definition of the momenta wß(u), U(u) conjugate to yß(u),-V(u)
respectively, equation (2) of paper [2] applied to a continuous ränge of degrees
of freedom, we havehttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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(52) 8L = j{wvdyv + UbV}dzu,

Comparing (51) and (52), we find

(53) U = dg/dFM.ZMI\

(54) wv = - d2/dVß . ZM.FJ + 21VT = - UVV

These are the weak equations giving the momenta in terms of the q's and q's.
Following the method of paper [2], we eliminate the q's from equations (53)

and (54) so as to get weak equations involving only the p's (i.e. the w's and
U's) and the q's. These are the 4> equations. Equation (54) is best treated
by Splitting it into a normal part, obtained by multiplying it by lVi

(55) wi + UVi - 2T = 0,

and a tangential part, obtained by multiplying it by yv
r,

(56) wr + UVr = 0.

There are no ^'s in (56), so (56) as it Stands is a ^ equation. Its left-hand side is
just the 4>r of (47) associated with changes of parametrization, the summation
sign being understood in (56).

Equations (53) and (55) involve the derivatives FM of F, which derivatives
can be expressed in terms of F_M and V\. The ^'s then occur in (53) and (55)
only through Vi, that is, from (49), only through the combination (F— V~vyv)/yi.

For many dynamical Systems (see example 1 below) one can solve equations
(53)—there is one of these equations for each field quantity F—to get all the
Fz's expressed as functions of the f/'s and g's. This case will be referred to as the
Standard case in field dynamics; it corresponds to the case in ordinary dynamics
with homogeneous velocities when the ratios of the velocities can all be ex-
pressed as functiön of the p's and g's.

In the Standard case one can get no <j> equations from equations (53) alone,
but in other cases one can get $ equations from (53) alone. In the Standard
case one can get a 0 equation from (55) with the help of (53), namely the
equation
(57) wi + § = 0,

where § is the result of substituting for Vi in UVi — 2T its value in terms of
the U's and q's given by (53). Equations (57) and (56), taken for all w-values,
are then the only 0 equations. In other cases one can still get a <$> equation
like (57) from (55) with the help of (53), as will be shown later. This equation,
together with (56) and the 4> equations which follow from (53) alone, are then
the only <j> equations.

The field equations are obtained in the usual way from the Variation of the
action integral and are

(58) A_J1=3.
d dV dv

https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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These equations must be examined to see whether they lead to any equations
between p's and g's only. Such equations would be x equations. With the
help of (7) and (53), (58) may be written as

(59)
;M dVv dxß ) dur dxv dV

and thus involves the normal derivative of U. In the Standard case the U's
are all independent functions of the velocities and one cannot eliminate their
normal derivatives from (59), so there can be no x equations. In other cases,
however, there may well be x equations (see examples 2 and 3 below).

When we have obtained all the $'s and x's we must see which of them are
first class, that is, have zero P.b. with all the 4>'s and x's. This can always
be decided by working out the P.b's using the results of section 3, but we can
infer that some $'s are first class more easily by observing that they occur in
the Hamiltonian, giving rise to arbitrary functions in the general solution of
the equations of motion.

The Hamiltonian is, from the definition (5) of paper [2],

(60) H = j(w,% + UV - 2yiT)d*u.

It may be written

H - J{wryr + wm + U(Vilv + V-V)yv - 2yiV}d*u

= f{yi(u>i + UVi — .8r) + yr(w
r + UVr)}d3u

(61)

with 4>r given by (47), the summation sign being now understood. According
to the general theory of paper [2], H must strongly equal a linear function of
first class <j>'s of the form (31) or (32), with extra terms if there are other
quantities besides the surface variables yp.{u) that can vary arbitrarily with r.
The <j>r of (61) is the same as the <j>r of (32), so we can infer that it must be first
class. The presence of this first class 0 in H gives rise to arbitrary changes of
parametrization during the motion.

In the Standard case the only </> equation, apart from the 4>r equation (56),
is equation (57), Hence (57) must be the same equation as <j>i = 0. We can
infer that the left-hand side of (57) must be first class, and also that the
equation

(62) § = UVi - 8I\

which is needed to make the first termof (61) go over into the first term of the
right-hand side of (32), holds strongly, and not merely weakly, as we knew
previously. Further, we can infer that in the Standard case there are no extra
terms in H besides the ones appearing in (32), so there are no other quantities
that can vary arbitrarily with r besides the surface variables.https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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In other cases there must still be a <t> equation (57), deducible from (55)
with the help of (53), in order that its left-hand side may be the first class <j>i,
whose presence in H gives rise to the arbitrary motion of the surf ace normal to
itself. Equation (62) still holds strongly if there are no extra terms in H (see
example 2 below). However if there are extra terms in ü , as is the case when
there are first class <j> equations deducible from (53) alone, the first term of
(61) no longer strongly equals the first term of the right-hand side of (32) and
so (62) no longer holds strongly. § is then not a uniquely defined quantity,
as one can add to it any linear function of the first class <j>$ that follow from
(53) alone. (See example 3 below).

To prepare the theory for quantization we must divide all the <j> and x equa-
tions into first and second class and then change the second class ones into
strong equations by a redefinition of P.b.'s, in the way discussed in section 8
of paper [2]. Further, we must change the first class x's into first class $'s,
adding them, with arbitrary coefficients, to the Hamiltonian. This change
merely involves an increase in the number of Solutions of the equations of
motion and does not invalidate the existing Solutions. (See example 3 below
for a discussion of the physical significance of such a change).

We are left with a set of weak first class <j> equations, from which we can get
the Hamilton-Jacobi equations by putting each momentum variable p equal
to dS/dq, so that they become first order partial differential equations in S.
Their mutual consistency follows from the first class condition. Each of
their Solutions gives a family of Solutions of the equations of motion.

The passage to the quantum theory can now be made according to the rules
of section 11 of paper [2]. Each of the weak first class $ equations provides
one SchrÖdinger wave equation.

Example 1. The scalar meson field. Some simple examples will now be treated
according to the method of the present paper to illustrate various features of
the theory. Let us take first the scalar meson field. For this example there
is one field quantitiy F, a Lorentz scalar, and the action density is

(63) 2^iV,V, - WV\

m being a constant.
Equation (53) gives for the momentum U

(64) u = jy„r = vlv.

This can be solved to give V\ in terms of U and the g's, so we have the Standard
case. Thus there can be no x equations, and the only <f> besides <j>r will be (57).
To get the § here, we note that (62) and (63) give

From the weak equation (64) we can infer the strong equation
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Adding this to the preceding equation, we obtain

(65) § » W2?-1 - UV-,V-ß.- m2F2)r.

The normal derivative Vi has disappeared from this expression for ^j, so this
expression is the correct one, involving only ITs and g's, to occur in the <j>
equation (57).

The above derivation of § shows that one can eliminate Vi from the right-
hand side of (62) using only strong equations. This checks that the equation
(62) for § is a strong equation, as is necessary in the Standard case.

Example 2. The vector meson field. Let us suppose there are four field
quantities V forming a Lorentz vector Aß and let us take the action density

(66) 8 s - 1 FßVFßV + \m?AßAß,

where FßV = AVß — ÄßV, AVß = dAv/dx11.

There are considerable differences in the treatment of this problem according
to whether the constant m is zero or not. In the present example we restrict
it to be not zero.

Let Bß be the momentum conjugate to Aß, its sign being defined so that

(67)

Then (53) gives

(68)

We can deduce

(69)

[A,,B\] -

B,= - FJJ.

1VBV = 0 .

This equation involves only the p's and g's, so it is a <j> equation. It follows
that we do not have the Standard case. One can easily see that there are no
other <j) equations deducible from (68) alone, so the only other <j> equations are
(56), which now reads

(70) <£r = wr + BßAß
r = 0,

and (57), which will be discussed later.
The field equations (58) give

(71) (Fv)ß = m*A,.

We can infer by differentiating with respect to x„ using the condition m 9* 0,

(72) A„ = 0.

Also ( ^ ) -n = - V»(FW), + m*Ap,

so that (Ww)-# = l*-*F*ß + h{Ffü-p

https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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with the help of (12). Now from (68)

hFVfl = - ^ r - 1 = - B^r~\
so we get

(73) (B-JT1)^ + m*Ai = 0.

This equation involves only the p's and g's, so it is a % equation.
It is easily seen that Bi has zero P.b. with the first term of (73) and not

with the second, provided m 3̂  0. Thus Bi must be a second class <t> and (73)
a second class %• There are thus no first class 0's besides $ r and <f>u so there
are no extra terms in H besides the ones appearing in (32). Hence equation
(62) holds strongly, i.e.

(74) § s BßAßi + i Fp,Fß,T - im'A.A.T.

We can now obtain § as a function of the p's and q's by elirninating the
normal derivative of Aß from (74). We must take care to use only strong
equations in this work, otherwise we may get extra terms containing 5/ as a
factor in the expression for §. With such extra terms in §, (57) would still
he a correct <j> equation, but its left-hand side would not be first class and would
not be the $1 occurring in H.

Let F-ß-p be the tangential part of FßV1 given, according to a natural ex-
tension of (5), by

(75) F-p-v = Fy,v — lvFßi — ipFiv

where Fßi = — Fiß = laFß<r.

Substituting FßV = Av-ß — A^-p + l^Avi — irA^u

Fßi = hAff—ß + ifflpAffi — Aßi

in (75), we get after some reduction

(76) F-p-v = Av-n—Ap-v+hilpAv-v — lAc-v)*

Since the normal derivative of Aß does not occur here, F-ß-v is a function of
p's and q's only.

We have

(77) F—ß—vF—n—y ^ FßvF—n—v = F^F^ — 2FßiFßi

from (75). Thus (74) becomes

(78) §

From (68) we get the strong equation

0 ss - 1 (BM - F,iT)(Bß -

Adding this to (78), we get

(79) § shttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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Equation (72) may be written

(80) lvAvi + Av-V = 0.

From it we can infer the strong equation

Bt(lvAvi + A„) s 0

and hence

BfilyAvfx = BulvAv—fl -\- B{lvAvi

Thus (79) becomes

(81) § s B-J,A*-ß -

The normal derivative of 4̂M has now disappeared and we have the correct
expression for & to use in (57).

To adapt the theory for quantization we must redefine P.b.'s by the method
of section 8 of paper [2] so as to make the second class cj> and % equations (69)
and (73) hold strongly. We take as the 0's of paper [2] the left-hand sides of
(69) and (73). There are thus two 0's for each value of the u's, say

(82) 0 s= (B-jJ-1)-/, + m2Ah 6+ = Bh

Their P.b.'s are

[0,0'] = 0, [e+fi+f] = 0, [d,d+/] = tn2ö(u - u').

The coefficients c must be determined from equation (35) of paper [2], with
the sum over 5 interpreted as a sum over 6 and 6+ together with an integral
over all u values. The solution is that the c associated with 6(u) and Q+(up)
is m~2d(u — ur) and the other c's vanish. Formula (36) of paper [2] then gives,
with the sums over 5 and s' interpreted as above,

(83) [£,rj\* s [£,ri\ + m^J[£,(B_Mr-*)-M + m*Ai] [BhV]d*u

- tn-tj&Bt] [(B^r-i)-,, + m*Ahri\<Pu.

The new definition of P.b.'s makes B\ and (B^v^~v)-Vl-\-m
2Ai have zero P.b.

with everything, so that one can put them strongly equal to zero without
inconsistency. In working out the new P.b. of two given quantities £ and ^,
it would be convenient first to make them independent of A\ and Bi by substi-
tuting

(84) Ax = -rn-^B^T-1)-,, B,'s 0

in them. If they are then independent of the w variables, we have [%,Bi] = [rjyBi]
= 0, and so the new P.b. equals the old one. The formula (83) is thus needed
only for evaluating the new P.b.'s of quantities involving the w variables.https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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When one passes to the quantum theory, the strong equations (84) become
equations between Operators. The weak <j> equations (70) and (57) with §
given by (81) provide the Schrödinger wave equations, the dynamical variables
in these equations having the new P.b. relationships.

Example 3. The electromagnetic field. We get the electromagnetic field by
putting m = 0 in the vector meson field. This case has some Special features
which necessitate a separate investigation.

We now have

(85) 8 s - £ Fß9FßW.

Equations (67) . . . (70) still hold and (69) is still a <f> equation. Equation
(71) becomes

(86) (U = 0.

Equation (72) cannot now be deduced. In the usual theory of electrodynamics,
which was first given in a Hamiltonian form comparable with the present
paper by Fermi [5], equation (72) is assumed as a supplementary condition.
It will not be assumed in the present treatment.

Corresponding to (73), we now have the % equation

(87) X - (B-^r-1)-, = 0.

It is easily seen that

(88) [B^B'i] = 0, [x,x'] = 0, [BllX'] = 0.

Since Bi and % have zero P.b. with the other <£'s, namely <j>r and <j>u as can be
Inferred from $r and cj>i being first class, we see that B\ and x must be first
class. Thus all the 4>'s and %'s are now first class. This is the essential differ-
ence between the present example and the preceding one.

Let us see how to express H linearly in terms of the first class </>s. By
using the analysis which led to (79), we can write (61) as

(89)

with $1 defined by

(90) 4>i =

This expresöion for <j>i does not involve the normal derivative of Aß, so it is a
function of the p's and q's only, and it vanishes weakly, as it differs from the
left-hand side of (55) only by a multiple of Bh so it is a 0. It must be first
class, as all the <£'s are now first class. Thus (89) expresses H as a linear
function of first class #'s.

The <j>i introduced above may be considered as the <£ which gives rise to the
motion of the surface normal to itself. However, we could take an alternativehttps://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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<ßi, differing from (90) by any function of the p's and q's which vanishes weakly
through being a linear function of Bx, and could consider it equally well as the
$ which gives rise to the motion of the surface normal to itself. An example
of Special interest will here be given.

Putting Ai for Fin (49) and writing Af for dAi/dr to have an unambiguous
notation, we get

(91) Af - yrAf S5 yxAu = yi{lvAvi + lvlAv).

Putting yf for V in the same formula, we get

yiy/i = y/ - ysyv
rs.

Multiplying this by Z„, we get

- yty/lvl ~ yv% + ysyvH/ EE yf.

Multiplying again by Ar and subtracting (91), we get

- Af + yrAf s y{Ar - yxlvAvi.

With the help of this result the second term of (89) becomes

H = j(Af - yrAf + yfAr)B^u

So we may write (89) as

(92) H ss

with

(93) <t>+i ^<t>i- (AJBiY

and

(94) <£+' s= & - AfBh

We now have H expressed in terms of the iirst class $Js <j)+i, Bu <i>+r- We
may look upon 4>+i as an alternative 4>i giving rise to the motion of the surface
normal to itself and <j>+r as an alternative 4>r giving rise to a change of para-
metrization. It should be noted that <£+z and <£+r have zero P.b. with Ai.
We have from (67)

[AW/B'i] = AfÖ(u - uf),

and since A i is a ^-scalar it satisfies the condition (38), which gives

[Ai,4>"\ = Af8(u - uf),

and hence

(95) [Ax^+'r] = 0 .https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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Again, with the help of (21)

(96) Hi,0+/i] = Ax[h,v/i] - h[A^(A'rB'iY]

(u - u') ~ h{A'rl\d(u - u')Y = 0.

The Hamiltonian contains an extra term besides those that give rise to
arbitrary changes in the surface and its parametrization, namely the second
term in (89) or (92). This extra term gives a further freedom in the motion.
It allows Ai to vary arbitrarily with r, the equation Af = [Ai,H] being iden-
tically fulfilled, as follows from the expression (92) for iJ, with the help of (95)
and (96).

The further freedom corresponds physically to the possibility of changes of
gauge taking place while the motion develops. The initial conditions, fixing
an initial surface and the potentials and their normal derivatives on it, do not
restrict the gauge at points in space-time away from this surface. One can
make a gauge transformation

(97) A» -> Aß + dS/dx»

with S an arbitrary function of the four xß's. Thus one can choose S so that
there is no change in the conditions on the initial surface while there is an
arbitrary change of gauge in other regions of space-time. This change will
affect the dynamical variables at later r values and give rise to arbitrary
functions in the solution of the equations of motion, even when the motion
of the surface is prescribed.

In the usual theory of electrodynamics one has the supplementary condition
(72), which results in the 51 of (97) being restricted to satisfy

(98) Sßfl = 0 ,

One can then no longer make a change of gauge without affecting the potentials
or their normal derivatives on the initial surface, so the extra arbtrariness in
the motion no longer occurs. The present theory of electrodynamics differs
from the usual one through allowing more general gauge transformations, but
the two theories are equivalent for all gauge invariant effects, and thus for all
effects of physical importance.

The question arises with the present theory whether one can have a motion
for which the gauge changes while the surface and its parametrization do not
change. Using the form (92) for iJ, it is immediately evident that one can
have such a motion, since one can put yi = yr = 0 in this expression for H
and the second term survives, leaving the rate of change of Ai arbitrary. A
general change of gauge involves independent changes in the normal component
of Ap, namely Au and the three-dimensional divergence of its tangential com-
ponent, namely 4̂_M_M, on the surface. Thus the change of gauge allowed by
our equations of motion when there is no change in the surface is not a general
one.https://doi.org/10.4153/CJM-1951-001-2 Published online by Cambridge University Press
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If we require the trajectories of the motion in phase space to form integrable
subspaces, in the way discussed on page 142 of paper [2], we must be able
to have a general change of gauge with no change in the surface, since such a
change could be attained by first moving the surface and making some change
in the gauge, and then moving the surface back again and making a further
change of gauge, not cancelling the previous one in any way. In order to get
equations of motion allowing general changes of gauge with no change in the
surface, we must add a further term to H, namely

(99) JvXd3u

with % given by (87) and the coefficient v arbitrary. This means treating %
as a first class <f>. The Hamiltonian modified in this way is not derivable from
an action density, but is still a permissible Hamiltonian for a dynamical System,
leading to consistent equations of motion, on account of % being first class.
The modification in H merely adds to the Solutions of the equations of motion
without altering the previously existing Solutions, the latter being just the
Special case v — 0 of the new Solutions. Thus one can consider the modifica-
tion as not a change to a new dynamical System, but merely an extension of
the treatment of the original dynamical System.

We can now pass to the quantum theory by making each first class <£, in-
cluding the first class %'s that get changed into first class $'s to satisfy the
integrability condition, into a Schrödinger wave equation. Thus we get the
wave equations

(100) 0+rfr = 0, 0+^ = 0, BvP = 0, ( B ^ r - 1 ) - ^ = 0.

The last two of these equations show that the wave f unction \f/, if expressed in
terms of the longitudinal and transverse components of the A 's on the surface,
is independent of the longitudinal components. It thus involves the longi-
tudinal field variables in a different way from the usual quantum electro-
dynamics.
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