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Convergent Sequences in Discrete Groups
Andreas Thom

Abstract. We prove that a finitely generated group contains a sequence of non-trivial elements that
converge to the identity in every compact homomorphic image if and only if the group is not virtually
abelian. As a consequence of the methods used, we show that a finitely generated group satisfies Chu
duality if and only if it is virtually abelian.

1 Introduction

Let G be a finitely generated discrete group. We call a sequence (gn)n∈N of elements
of G Bohr convergent to the neutral element if π(gn) → 1 for every homomorphism
π : G → K to a compact group. We say that such a sequence is strongly Bohr conver-
gent if it is Bohr convergent and moreover π(gn) converges uniformly to the identity
in unitary representations of a fixed finite dimension.

The aim of this note is to prove the following theorem.

Theorem 1.1 Let G be a finitely generated discrete group. Then the following condi-
tions are equivalent:

(i) There exists a sequence of non-trivial elements that is strongly Bohr convergent to
the neutral element.

(ii) The group is not virtually abelian.

The assertion of the theorem is trivial if G does not have enough homomorphisms
into compact groups to separate elements of G; i.e., we are implicitly assuming that G
is maximally almost periodic. Being maximally almost periodic is equivalent to hav-
ing a family of separating finite-dimensional unitary representations or the existence
of an injection into a compact group. Since G is assumed to be finitely generated,
this condition is also equivalent to being residually finite by a well-known result of
Mal’cev; see [1] for an elementary account. Note that there is always a net that is
Bohr convergent to the neutral element. There is a natural way of phrasing the re-
sult in terms of the Bohr compactification bG of G. There is an extensive literature
about the Bohr topology on various classes of topological groups, and the existence
or non-existence of Bohr convergent sequences has been an important question over
the years (see [3, 8, 9] and the references therein). Our result answers several open
questions from [3]. In particular, we provide an example of a non-trivial convergent
sequence in the Bohr compactification of F2, a question that was asked by several au-
thors. As a consequence of the main theorem, we can also show that the free group on
two generators (and in fact any finitely generated group that is not virtually abelian)
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does not satisfy Chu duality (see Section 4). This problem was posed by Hsin Chu in
his foundational work on Chu duality; see [2, 9].

The following corollary is a consequence of our result, and shows that images of
word-maps can be surprisingly small.

Corollary 1.2 Let n ∈ N and ε > 0. There exists w ∈ F2 \ {e} such that

‖1n − w(u, v)‖ ≤ ε, ∀u, v ∈ U (n).

Here, w : U (n) ×U (n) → U (n) denotes the natural map, which is given by eval-
uating w on the unitaries u, v ∈ U (n). A quantitative version of this corollary is
obtained in Remark 3.6.

The proof of the main theorem falls into a case study of the following three cases:
(1) G has a free subgroup, (2) G has no free subgroup and is not virtually abelian, and
(3) G is virtually abelian. We will provide rather different arguments that deal with
these various cases. The first case is dealt with in Section 3, providing an explicit con-
vergent sequence in the free group on two generators. The second case was studied
by S. Hernández in [8] using the Tits alternative and the structure theory of compact
Lie groups. Hernández showed the existence of a non-trivial sequence which is Bohr
convergent to the neutral element. In Section 2 we want to provide an elementary
argument for the existence of a strongly Bohr convergent sequence. The proof is in-
spired by the ideas in [8] but relies crucially on an extension of Jordan’s theorem (see
Proposition 2.3).

It is well known [6, 14] that in the third case there cannot be any Bohr convergent
sequences. Indeed, let G be a virtually abelian group and assume that there exists a
sequence (gk)k∈N such that π(gk) → 1 in every finite dimensional unitary represen-
tation. Since G is virtually abelian, there exists an extension

1→ A→ G→ F → 1

with A abelian and F finite. Since F has a faithful finite-dimensional unitary repre-
sentation, we may assume that gk ∈ A for every k ∈ N. Denote by Â the Pontrjagin
dual of A, equipped with the normalized Haar measure µ.

Lemma 1.3 Let A be a discrete abelian group. Let (gk)k∈N be a sequence of non-trivial
elements of A. Then there exists χ ∈ Â such that χ(gk) 6→ 1.

Proof Assume that χ(gk) → 1 for all χ ∈ Â. We conclude from the Dominated
Convergence Theorem that

0 = lim
k→∞

∫
Â
χ(gk) dµ(χ) =

∫
Â

1 dµ(χ) = 1.

This proves the claim.

The character χ : A → S1 provides a one-dimensional unitary representation.
Since A has finite index in G, we may induce χ to a finite-dimensional unitary repre-
sentation π = IndG

A(χ) of G. Since χ ⊂ ResG
Aπ, the unitary representation π satisfies

π(gk) 6→ 1 as k→∞.
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2 Groups Without Free Subgroups

In this section we deal with case (2), i.e., groups that are not virtually abelian and do
not contain free subgroups. The proof is inspired by ideas appearing in [8]. Let us
first recall basic facts about the unitary groups. Let n ∈ N be an integer and U (n)
be the group of unitary matrices. We endow U (n) with the metric coming from the
operator norm. More specifically, we set

`(g) := ‖1− g‖ and d(g, h) := `(gh−1) = ‖g − h‖.

We use the notation [g, h] = ghg−1h−1 and ḡ = g−1.

Lemma 2.1 Let g, h ∈ U (n). The following relations hold:

`(gh) ≤ `(g) + `(h), `(ghḡ) = `(h), and `([g, h]) ≤ 2 · `(g)`(h).

Proof The last inequality is the only non-trivial assertion. Let us compute:

`([g, h]) = ‖1−ghḡh̄‖ = ‖hg−gh‖ = ‖(1−h)(1−g)−(1−g)(1−h)‖ ≤ 2·`(g)`(h).

This finishes the proof.

We will use the following structure result about subgroups of unitary groups.

Proposition 2.2 Let G be a group without free subgroups, n ∈ N, and let π : G →
U (n) be a finite-dimensional unitary representation. Then, π(G) is virtually abelian.

Proof Since π(G) is linear and does not contain a free subgroup, it follows from the
Tits alternative [15], that π(G) is virtually solvable. Let H ⊂ π(G) be a solvable
subgroup of finite index. The closure H ⊂ U (n) is a solvable compact Lie group. By
[10, Theorem 29.44], the connected component of 1 in H is abelian. Since H ⊂ U (n)
is a Lie group, it has only finitely many connected components, and it follows that H
is virtually abelian. This implies that H and hence π(G) are virtually abelian.

A classical theorem of Camille Jordan [12] says that for fixed n ∈ N there exists an
integer m(n) ∈ N such that every finite subgroup of GL(n,C) has an abelian subgroup
of index at most m(n). Note that any finite subgroup is conjugate to a subgroup of
U (n). We will need the following generalization of Jordan’s theorem.

Proposition 2.3 Let n ∈ N. There exists m(n) ∈ N such that every G ⊂ U (n)
without free subgroups has an abelian normal subgroup of index at most m(n).

Proof Proposition 2.2 says that G has to be virtually abelian. We prove the statement
by induction over n. If n = 1, there is nothing to prove, since U (1) is abelian.

Let K ⊂ G be the subgroup that is generated by elements g ∈ G for which `(g) <
n−1/2/2. The group K is a normal subgroup, and there exists a universal constant
c(n) such that [G : K] ≤ c(n). Let A ⊂ K be a maximal abelian normal subgroup.
If A does not consist of multiples of identity, then the normalizer of A is a finite
extension of U (n1)×· · ·×U (nk) for some n1, . . . , nk such that n1 + · · ·+ nk ≤ n and
k ≥ 2. This is seen by noting that A can be simultaneously diagonalized. Then the
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normalizer is generated by the centralizer (i.e., a product of unitary groups) and those
permutations which permute blocks of equal size consisting of identical eigenvalues.
In fact, the normalizer is a product of groups of the form U (k)×l o Sl, and the index
of U (n1)× · · · ×U (nk) in the normalizer is bounded by e(n) := n!.

Hence, upon passing to a subgroup of index at most e(n) in K, we may assume
that K ⊂ U (n1) × · · · × U (nk), and we can finish the proof using the induction
hypothesis. Indeed, let πi(K) be the image of K under the projection to U (ni). By
induction, there exists a normal abelian subgroup Ai ⊂ πi(K) of index at most m(ni).
Since K ⊂

∏n
i=1 πi(K), we conclude that K admits an abelian subgroup of index at

most m(n1) · · ·m(nk). Let d(n) be the maximum of all values of m(n1) · · ·m(nk) over
all partitions of natural numbers less or equal to n. We conclude that G has a normal
abelian subgroup of index m(n) := c(n)d(n)e(n).

Hence, we may assume in the continuation of the proof that A acts with multi-
ples of identity. If A = K, we are done, so that we may also assume that A ( K.
Since A ⊂ K is a normal subgroup of finite index, there exists an element g ∈ K
that is not a multiple of identity such that minλ∈S1 d(λ, g) is smallest possible. Since
K is not abelian, not all generators of K can be multiples of identity, and we have
minλ∈S1 d(λ, g) < n−1/2/2. Let h be a generator of K and compute

`([g, h]) = ‖gh− hg‖

= min
λ∈S1
‖(λ− g)(1− h)− (1− h)(λ− g)‖

≤ n−1/2 ·min
λ∈S1

d(λ, g) < n−1/2.

In particular, minλ∈S1 d(λ, [g, h]) < minλ∈S1 d(λ, g) and hence [g, h] is a multiple of
identity. The determinant of [g, h] equals one and hence [g, h] = λ for some λ ∈ S1

with λn = 1. Now, for an n-th root of unity either `([g, h]) = |λ − 1| ≥ n−1/2 or
λ = 1. We conclude that [g, h] = e and thus g commutes with all generators of K.
We finally get that g ∈ A by maximality of A. However, this contradicts our choice of
g ∈ K and finishes the proof.

The following result is of independent interest, but will not be used in the sequel.

Corollary 2.4 Let n ≥ 2. The set

{(u, v) ∈ U (n)×U (n) | 〈u, v〉 does not contain a free subgroup}

is not dense in U (n)×U (n).

Proof We first claim that there exists an integer m such that [um, vm] = e if 〈u, v〉
has no free subgroups. We set G := 〈u, v〉. By the preceding theorem, there exists
a normal abelian subgroup A ⊂ G of index at most m(n). Hence, G/A has order at
most m(n). Putting m := m(n)!, we obtain that um and vm are trivial in G/A and
hence um, vm ∈ A. We conclude [um, vm] = e.

By continuity of the multiplication, [um, vm] = e holds for all pairs (u, v) in the
closure of the set {(u, v) ∈ U (n) ×U (n) | 〈u, v〉 does not contain a free subgroup}.
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However, it is well known that a generic pair of unitaries in U (2) generates a free
group. Indeed, the existence of free subgroups of SO(3) (and hence its double cover
SU (2)) was already known to F. Hausdorff [7]. It follows that for each of the count-
ably many non-trivial words, the set of pairs in U (2)×U (2) that satisfy the word is a
proper real-algebraic subvariety. In particular, its Haar measure is zero. We conclude
that the measure of the set of pairs that satisfy a non-trivial word is zero.

Proposition 2.5 Let n ∈ N and G be a finitely generated group without free subgroups
that is not virtually abelian. There exists g ∈ G \ {e} such that φ(g) = 1 for every
homomorphism φ : G→ U (n).

Proof From Proposition 2.3 we conclude that every homomorphic image of G in
U (n) admits a finite index subgroup of index at most m(n) that is abelian. Let K ⊂ G
be the intersection of all normal subgroups of G that are of index at most m(n). Since
G is finitely generated, K is again of finite index. Since G is not virtually abelian, K is
not abelian and we may set g := [u, v] for some pair u, v of non-commuting elements
in K. This finishes the proof.

Corollary 2.6 Let G be a finitely generated group without free subgroups that is not
virtually abelian. Then, there exists a sequence (gk)k∈N of non-trivial elements such that
π(gk) → 1 for every homomorphism π : G → K into a compact group. Moreover, if
π : G→ U (n) for some n ∈ N, then π(gk) = 1 for k large enough.

Proof By Proposition 2.5, there exists gk ∈ G such that π(gk) = 1 for every homo-
morphism π : G→ U (k). Let π : G→ K be a homomorphism into a compact group.
We claim that π(gk) → 1 as k → ∞. By the analysis leading to the Peter–Weyl theo-
rem [10], every compact group has a separating family of finite-dimensional unitary
representations σα : K → U (nα). In particular, there exists a continuous injection

σ : K −→
∏
α

U (nα).

Since K is compact, π is a homeomorphism onto its image. This reduces the argu-
ment to the case K = U (n) for some fixed n ∈ N. However, in this case π(gk) = 1 for
k ≥ n. This proves the claim.

3 Groups With Free Subgroups

In this section, we deal with the case that G has a free subgroup. We will provide
an explicit sequence of elements in the free group on two generators that is strongly
Bohr convergent to the neutral element.

Proposition 3.1 There exists a sequence (zk)k∈N of non-trivial elements of the free
group F2 such that for every r ∈ N there exists a constant C(n) such that for every
unitary representation π : F2 → U (n),

`(π(zk)) ≤ C(n) · 2−k, ∀k ≥ 1.

Before we prove the proposition, we need to prove a lemma.

https://doi.org/10.4153/CMB-2011-155-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-155-3


Convergent Sequences in Discrete Groups 429

Lemma 3.2 Let n ∈ N be an integer and ε > 0. There exists q(n, ε) ∈ N such that
for all g ∈ U (n), there exists m ∈ {1, 2, . . . , q(n, ε)} with `(gm) ≤ ε.

Proof Suppose that there exists a natural number q ∈ N such that `(gm) > ε for
all m ∈ {1, 2, . . . , q}. We conclude that d(gm, gm ′) = `(g|m−m ′|) > ε for all 1 ≤
m,m ′ ≤ q. Hence, the balls of radius ε/2 around gm are pairwise disjoint for 1 ≤
m ≤ q. Denote the Haar measure on U (n) by µ. We conclude that µ(U (n)) ≥
q · µ({u ∈ U (n) | `(u) ≤ ε/2}) and hence

q ≤ µ(U (n))

µ({u ∈ U (n) | `(u) ≤ ε/2})
.

Hence, we may set q(n, ε) := q for some q > µ(U (n))
µ({u∈U (n)|`(u)≤ε/2}) . This finishes the

proof.

Proof of Proposition 3.1 Let F2 be generated by the letters a and b. It is well known,
that the set {anba−n | n ∈ Z} ⊂ F2 is free; i.e., there are no non-trivial relations
among the elements anba−n. Assume now that w ∈ F2 together with the set {wk,n |
(k, n) ∈ Z×N} ⊂ F2 are free by choosing a bijection φ : {?}∪Z×N

∼→ Z and setting
wk,n = alba−l for l = φ(k, n) and w = alba−l for l = φ(?). We set

vk,1 =

{
wk,1wkw̄k,1, ∀k ≥ 1,

wk,1wk−1w̄k,1, ∀k ≤ 0
,

and define, by induction,

vk,n+1 := wk,n+1

[
[vk−1,n, vk,n], vk+1,n

]
w̄k,n+1.

It is easy to see by induction that vk,n 6= e for all (k, n) ∈ Z×N. Indeed, we claim that
the set {vk,n | k ∈ Z} is free for each n ∈ N. The claim follows from the obvervation
that [[a, b], c] 6= e for a basis of a free group of rank 3 and the fact that conjugating
with wk,n in the definition of the n-th stage of the double-sequence produces again a
sequence forming a free subset.

Let φ : F2 → U (r) be a homomorphism and consider the induced length function
on F2, i.e., `(g) = ‖1 − φ(g)‖ for all g ∈ F2. Note that `(g) ≤ 2 for all g ∈ F2. We
compute from Lemma 2.1

(3.1) `(vk,n+1) ≤ 22 · `(vk−1,n) · `(vk,n) · `(vk+1,n).

Hence, using equation (3.1) at the spots k− 1, k, and k, we get

(3.2) `(vk,n+2) ≤ 28 · `(vk−2,n) · `(vk−1,n)2 · `(vk,n)3 · `(vk+1,n)2 · `(vk+2,n).

Using `(g) ≤ 2, we get `(vk,n+2) ≤ 214 · `(vk,n)3. In particular, if `(vk,n) ≤ 2−15 for
some k ∈ Z, then

(3.3) `(vk,n+2) ≤ 2−16 · `(vk,n).
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Moreover, if `(vk,n) ≤ 2−15, then equation (3.2) and the trivial bound `(g) ≤ 2 give

`(vk±1,n+2) ≤ 215 · `(vk,n)2 ≤ 2−15.

We see that the property `(vk,n) ≤ 2−15 spreads with speed 1 in the k-direction
as we increase the index n by 2. Moreover, by equation (3.3), once `(vk,n) ≤ 2−15

holds, the quantity `(vk,n) decays exponentially in n. By Lemma 3.2, there exists
q := q(r, 2−15) such that there exists m ∈ {1, 2, . . . , q} with `(wm) ≤ 2−15.

We set zn := v0,2n+1 for n ∈ N and claim that the sequence (zn)n∈N solves the
problem. Indeed, we can conclude from our observations above that

`(vk,2n) ≤ 2−15, ∀(k, n) ∈ N× Z with q− n ≤ k ≤ n.

Hence `(zq) ≤ 2−15, and equation (3.3) implies that `(zn) converges to zero, and we
have the estimate

`(zn) ≤ 2−15−16(n−q(r,2−15)), ∀k ∈ N : k ≥ 2q.

This proves the claim.

One can also put the statement of Proposition 3.1 in terms of so-called word-
maps. Note that every w ∈ F2 gives rise to a continuous evaluation map w : U (n) ×
U (n) → U (n) which is called the word-map associated with w. We can state the
following two immediate corollaries.

Corollary 3.3 Let n ∈ N and ε > 0. There exists a non-trivial element w ∈ F2

such that the natural map w : U (n) × U (n) → U (n) satisfies `(w(g, h)) ≤ ε, for all
g, h ∈ U (n).

Corollary 3.4 Let n ∈ N and ε > 0. There exist k ∈ N, unitaries u1, . . . , uk and
signs ε1, . . . , εk ∈ {±1} such that the continuous map φ : U (n)→ U (n) defined as

φ(v) := u1vε1 · · · ukvεk ∈ U (n),

is non-trivial and satisfies `(φ(v)) ≤ ε for all v ∈ U (n).

Remark 3.5 Murray Gerstenhaber and Oscar Rothaus [5] showed in their work
on solvability of equations over groups that continuous maps φ(v) = u1vε1 · · · ukvεk

as in Corollary 3.4 are surjective if
∑k

i=1 εi 6= 0. The preceding corollary shows
how drastically this conclusion can fail without any assumption on the sum of the
exponents.

Remark 3.6 Consider the free group F2 with generators a, b. We denote the word-
length of a word w ∈ F2 with respect to the set {a, ā, b, b̄} by L(w) ∈ N.

There is a quantitative version of Corollary 3.3, which says that there exists a se-
quence (wk)k∈N of non-trivial elements in F2, constants α > 0 and c1(n) > 0, such
that L(wk)→∞ as k→∞ and

`(wk(u, v)) ≤ exp (−c1(n) · L(wk)α) , ∀u, v ∈ U (n).
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The construction above yields α = log10 3 − ε for every ε > 0. A more refined
procedure yields α = log14 4−ε, for every ε > 0. Note that log14 4 = 0, 5252 > 1/2.

This has to be contrasted with a result of V. Kaloshin and I. Rodnianski in [13].
They prove that for almost all pairs u, v ∈ SO(3), there exists a constant c2(u, v) > 0
such that one has

`
(

w(u, v)
)
≥ exp

(
−c2(u, v) · L(w)2

)
.

A. Gamburd, D. Jakobson, and P. Sarnak conjectured in [4] that a similar inequality
holds for almost all u, v ∈ SO(3), with an exponent that is linear in L(w).

Let us now come back to the proof of Theorem 1.1.

Proposition 3.7 There exists a sequence (zk)k∈N of non-trivial elements of the free
group F2 such that for every homomorphism π : F2 → K to a compact group K, we have
π(zk)→ 1 as k→∞. Moreover, the convergence is uniform when restricted to unitary
representations of a fixed dimension.

Proof First of all, we may perform a reduction to finite-dimensional unitary rep-
resentations as in the proof of Proposition 2.6. Now, Proposition 3.1 implies the
claim.

The proof of Theorem 1.1 follows by combining Corollary 2.6, Proposition 3.7,
and the remarks about virtually abelian groups at the end of the introduction.

4 Chu Duality

In [2], Hsin Chu studied a concept of duality for maximally almost periodic groups
which ought to generalize both Pontrjagin duality for (locally compact) abelian
groups and Tannaka–Krein duality for compact groups. Let G be a locally compact
group and set

Gx
n := {φ : G→ U (n) | φ a continuous homomorphism}.

We endow Gx
n with the compact-open topology. Note that if G is discrete, Gx

n is com-
pact. The set Gx :=

∐
n≥1 Gx

n comes equipped with natural continuous operations

⊕ : Gx
n × Gx

m → Gx
n+m and ⊗ : Gx

n × Gx
m → Gx

nm,

which are inherited from the corresponding operations on U :=
∐

n≥1 U (n). More-
over, for φ ∈ Gx

n and u ∈ U (n), we may consider uφu∗ ∈ Gn
x .

Chu proceeds by defining Gxx to be the set of continuous degree-preserving maps
µ : Gx → U such that µ(φ⊕ φ ′) = µ(φ)⊕ µ(φ ′), µ(φ⊗ φ ′) = µ(φ)⊗ µ(φ ′) for all
φ, φ ′ ∈ Gx and µ(uφu∗) = uµ(φ)u∗ for all φ ∈ Gx and u ∈ U of the same degree.
Moreover, he endows the set Gxx with the compact-open topology and shows that
the multiplication in U induces a natural group structure on Gxx that is compatible
with this topology. The topological group Gxx is nowadays called the Chu dual of
G. The evaluation map ev : G → Gxx, which is given by g 7→ {φ 7→ φ(g)}, defines a
natural continuous homomorphism. A group is said to satisfy Chu duality if and only
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if ev : G→ Gxx is a homeomorphism. Note that the Pontrjagin duality theorem says
that locally compact abelian groups satisfy Chu duality; the Tannaka–Krein duality
theorem is the corresponding assertion for compact groups. Chu ended his paper [2]
with the question of whether the free group on two generators satisfies his notion of
duality.

We can show the following as a corollary of Theorem 1.1.

Corollary 4.1 If a finitely generated group satisfies Chu duality, then it is virtually
abelian. In particular, the free group on two generators does not satisfy Chu duality.

Proof Let us prove that any finitely generated group that is not virtually abelian
does not satisfy Chu duality by explicitly showing that ev : G → Gxx cannot be a
homeomorphism.

Since G is finitely generated and not virtually abelian, there exists a non-trivial
sequence (gk)k∈N that is strongly Bohr convergent to the neutral element in G. This
implies that ev(gn) converges to 1 ∈ Gxx in the compact-open topology. Indeed,
any compact subset of Gx is contained in a finite union

∐
1≤n≤l Gx

n and convergence
is uniform on unitary representations of a fixed dimension. We conclude that the
topology on Gxx is not discrete. Hence, ev : G → Gxx cannot be a homeomorphism.

Remark 4.2 The converse to Corollary 4.1 is well known. Indeed, if G is virtually
abelian, then there is a universal bound on the dimension of an irreducible represen-
tation and this simplifies the study of Gxx considerably.

Remark 4.3 If one bases the unitary duality theory on representations on Hilbert
spaces of finite and infinite dimensions, one obtains a well-working duality theory;
i.e., the canonical homomorphism into the analogously defined bi-dual is an isomor-
phism of topological groups if the group is locally compact.

Remark 4.4 Let G be a finitely generated group that is not virtually abelian. Since G
is countable and discrete, Gx

n is separable and compact for all n ∈ N. This implies that
Gxx carries the structure of a second countable complete metric space. We conclude
that the homomorphism ev : G → Gxx cannot be onto, since that would imply that
ev : G → Gxx is a homeomorphism; see [11] for details. Hence, G is not Chu semi-
reflexive. We also note that ev(G) cannot be complete.
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discussion about Jordan’s theorem.
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