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Vector spaces

In this chapter we fix our terminology and notation, mostly related to (real
and complex) linear algebra. We will consider only algebraic properties. Infinite-
dimensional vector spaces will not be equipped with any topology.

Let us stress that using precise terminology and notation concerning linear
algebra is very useful in describing various aspects of quantization and quantum
fields. Even though the material of this chapter is elementary, the terminology
and notation introduced in this chapter will play an important role throughout
our work. In particular we should draw the reader’s attention to the notion of
the complex conjugate space (Subsect. 1.2.3), and of the holomorphic and anti-
holomorphic subspaces (Subsect. 1.3.6).

Throughout the book K will denote either the field R or C, all vector spaces
being either real or complex, unless specified otherwise.

1.1 Elementary linear algebra

The material of this section is well known and elementary. Among other things,
we discuss four basic kinds of structures, which will serve as the starting point
for quantization:

(1) Symplectic spaces – classical phase spaces of neutral bosons,
(2) Euclidean spaces – classical phase spaces of neutral fermions,
(3) Charged symplectic spaces – classical phase spaces of charged bosons,
(4) Unitary spaces – classical phase spaces of charged fermions.

Throughout the section, Y,Y1 ,Y2 ,W are vector spaces over K.

1.1.1 Vector spaces and linear operators

Definition 1.1 If U ⊂ Y, then Span U denotes the space of finite linear combi-
nations of elements of U .

Definition 1.2 Y1 ⊕ Y2 denotes the external direct sum of Y1 and Y2 , that is,
the Cartesian product Y1 × Y2 equipped with its vector space structure. If Y1 , Y2

are subspaces of a vector space Y and Y1 ∩ Y2 = {0}, then the same notation
Y1 ⊕ Y2 stands for the internal direct sum of Y1 and Y2 , that is, Y1 + Y2 (which
is a subspace of Y).
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1.1 Elementary linear algebra 9

Definition 1.3 L(Y,W) denotes the space of linear maps from Y to W. We set
L(Y) := L(Y,Y).

Definition 1.4 Lfd(Y,W), resp. Lfd(Y) denote the space of finite-dimensional
(or finite rank) linear operators in L(Y,W), resp. L(Y).

Definition 1.5 Let ai ∈ L(Yi ,W), i = 1, 2. We say that a1 ⊂ a2 if Y1 ⊂ Y2 and
a1 is the restriction of a2 to Y1 , that is, a2

∣∣
Y1

= a1 .

Definition 1.6 If a ∈ L(Y,W), then Ker a denotes the kernel (or null space)
of a and Ran a denotes its range.

Definition 1.7 1lY stands for the identity on Y.

1.1.2 2× 2 block matrices

If Y = Y+ ⊕ Y−, every r ∈ L(Y) can be written as a 2× 2 block matrix. The
following decomposition, possible if a is invertible, is often useful:

r =
[

a b

c d

]
=
[

1l 0
ca−1 1l

] [
a 0
0 d− ca−1b

] [
1l a−1b

0 1l

]
. (1.1)

Here are some expressions for the inverse of r:

r−1 =
[

1l −a−1b

0 1l

] [
a−1 0
0 (d− ca−1b)−1

] [
1l 0

−ca−1 1l

]
(1.2)

=
[

(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1

]
. (1.3)

If Y is finite-dimensional, then, using the decomposition (1.1), we obtain the
following formulas for the determinant:

det r = det adet(d− ca−1b)
= det cdet b det(ac−1db−1 − 1l).

(1.4)

1.1.3 Duality

Definition 1.8 The dual of Y, denoted by Y# , is the space of linear functionals
on Y. Three kinds of notation for the action of v ∈ Y# on y ∈ Y will be used:

(1) the bra–ket notation 〈v|y〉 = 〈y|v〉,
(2) the simplified notation v · y = y · v,
(3) the functional notation v(y).

There is a canonical injection Y → Y# # . We have Y = Y# # iff dimY <∞.

Definition 1.9 If y ∈ Y, we will sometimes write |y〉 for the operator

K � λ �→ |y〉λ := λy ∈ Y.

If v ∈ Y# , we will sometimes write 〈v| instead of v.
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10 Vector spaces

As an example of this notation, suppose that y ∈ Y and v ∈ Y# satisfy 〈v|y〉 =
1. Then |y〉〈v| is the projection onto the space spanned by y along the kernel of
v.

Definition 1.10 Let (e1 , . . . , en ) be a basis of a finite-dimensional space Y. Then
there exists a unique basis of Y# , (e1 , . . . , en ), called the dual basis, such that
〈ei |ej 〉 = δi

j .

1.1.4 Annihilator

Definition 1.11 The annihilator of X ⊂ Y is defined as

X an :=
{
v ∈ Y# : 〈v|y〉 = 0, y ∈ X}.

The pre-annihilator of V ⊂ Y# is defined as

Van :=
{
y ∈ Y : 〈v|y〉 = 0, v ∈ V}.

Note that

(X an)an = SpanX , (Van)an = SpanV.

1.1.5 Transpose of an operator

Definition 1.12 If a ∈ L(Y1 ,Y2), then a# will denote the transpose of a, that
is, the operator in L(Y#

2 ,Y#
1 ) defined by

〈a# v|y〉 := 〈v|ay〉, v ∈ Y#
2 , y ∈ Y1 . (1.5)

Note that a is bijective iff a# is. We have a# # ∈ L(Y# #
1 ,Y# #

2 ) and a ⊂ a# # .

1.1.6 Dual pairs

Definition 1.13 A dual pair is a pair (V,Y) of vector spaces equipped with a
bilinear form

(V,Y) � (v, y) �→ 〈v|y〉 ∈ K

such that

〈v|y〉 = 0, v ∈ V ⇒ y = 0, (1.6)

〈v|y〉 = 0, y ∈ Y ⇒ v = 0. (1.7)

Clearly, if (V,Y) is a dual pair, then so is (Y,V). If Y is finite-dimensional and
(V,Y) is a dual pair, then V is naturally isomorphic to Y# .

In general, (V,Y) is a dual pair iff V can be identified with a subspace of Y#

(this automatically guarantees (1.7)) satisfying Van = {0} (this implies (1.6)).
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1.1 Elementary linear algebra 11

1.1.7 Bilinear forms

Definition 1.14 Elements of L(Y,Y# ) will be called bilinear forms.

Let ν ∈ L(Y,Y# ). Then ν determines a bilinear map on Y:

Y × Y � (y1 , y2) �→ y1 · νy2 = 〈y1 |νy2〉 ∈ K. (1.8)

Definition 1.15 We say that ν is non-degenerate if Ker ν = 0.

Definition 1.16 We say that r ∈ L(Y) preserves the form ν if

r# νr = ν, i.e. (ry1) · νry2 = y1 · νy2 , y1 , y2 ∈ Y.

We say that a ∈ L(Y) infinitesimally preserves the form ν if

a# ν + νa = 0, i.e. (ay1) · νy2 = −y1 · νay2 , y1 , y2 ∈ Y.

Remark 1.17 We will use three kinds of notation for bilinear forms:

(1) the bra–ket notation 〈y1 |νy2〉, going back to Dirac,
(2) the simplified notation y1 · νy2 ,
(3) the functional notation ν(y1 , y2).

Usually, we prefer the first two kinds of notation (both appear in (1.8)).

1.1.8 Symmetric forms

Definition 1.18 We will say that ν ∈ L(Y,Y# ) is symmetric if

ν ⊂ ν# , i.e. y1 · νy2 = y2 · νy1 , y1 , y2 ∈ Y.

The space of all symmetric elements of L(Y,Y# ) will be denoted by Ls(Y,Y# ).

Let ν ∈ Ls(Y,Y# ).

Definition 1.19 A subspace X ⊂ Y is called isotropic if

y1 · νy2 = 0, y1 , y2 ∈ X .

Definition 1.20 Let Y be a real vector space. ν is called positive semi-definite
if y · νy ≥ 0 for y ∈ Y. It is called positive definite if y · νy > 0 for y �= 0.

A positive definite form is always non-degenerate.
Assume that ν is non-degenerate. Using that ν is symmetric and non-

degenerate we see that 〈v|y〉 = 0 for all v ∈ νY implies y = 0. Thus (νY,Y)
is a dual pair and Y can be treated as a subspace of (νY)# . Hence, ν−1 , a pri-
ori defined as a map from νY to Y, can be understood as a map from νY to
(νY)# . We easily check that ν−1 is symmetric and non-degenerate. If ν is positive
definite, then so is ν−1 .
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12 Vector spaces

Proposition 1.21 Let Y be finite-dimensional. Then,

(1) ν ∈ Ls(Y,Y# ) iff ν# = ν.
(2) If ν is non-degenerate, then νY = Y# , so that ν−1 ∈ Ls(Y# ,Y) is a non-

degenerate symmetric form.

1.1.9 (Pseudo-)Euclidean spaces

Definition 1.22 A couple (Y, ν), where ν ∈ Ls(Y,Y# ) is non-degenerate, is
called a pseudo-Euclidean space. If Y is real and ν is positive definite, then
(Y, ν) is called a Euclidean space. In such a case we can define the norm of
y ∈ Y, denoted by ‖y‖ :=

√
y · νy. If Y is complete for this norm, it is called a

real Hilbert space.

Let (Y, ν) be a pseudo-Euclidean space.

Definition 1.23 If X ⊂ Y, then X ν⊥ denotes the ν-orthogonal complement of
X :

X ν⊥ := {y ∈ Y : y · νx = 0, x ∈ X}.

Definition 1.24 A symmetric form on a real space, especially if it is positive
definite, is often called a scalar product and denoted 〈y1 |y2〉 or y1 · y2 . In such a
case, the orthogonal complement of X is denoted X⊥. For x ∈ Y, 〈x| will denote
the following operator:

Y � y �→ 〈x|y := 〈x|y〉 ∈ K.

If 〈x|x〉 = 1, then |x〉〈x| is the orthogonal projection onto x.
Most Euclidean spaces considered in our work will be real Hilbert spaces. Real

Hilbert spaces will be further discussed in Subsect. 2.2.2.

1.1.10 Inertia of a symmetric form

Let Y be a finite-dimensional space equipped with a symmetric form ν. In the
real case we can find a basis

(e1,+ , . . . , ep,+ , e1,−, . . . , eq,−, e1 , . . . , er )

such that if

(e1,+ , . . . , ep,+ , e1,−, . . . , eq,−, e1 , . . . , er )

is the dual basis in Y# , then

νej,+ = ej,+ , νej,− = −ej,−, νej = 0.

The numbers (p, q) do not depend on the choice of the basis. ν is positive definite
iff q = r = 0.

Definition 1.25 We set inert ν := p− q.
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1.1 Elementary linear algebra 13

In the complex case, we can find a basis

(e1,+ , . . . , ep,+ , e1 , . . . , er )

such that if

(e1,+ , . . . , ep,+ , e1 , . . . , er )

is the dual basis in Y# , then

νej,+ = ej,+ , νej = 0.

The number p does not depend on the choice of the basis.

Definition 1.26 We set inert ν := p.

1.1.11 Group O(Y) and Lie algebra o(Y)

Let (Y, ν) be a Euclidean space and a ∈ L(Y).

Definition 1.27 We say that

a is isometric if a# νa = ν,
a is orthogonal if a is isometric and bijective,

a is anti-self-adjoint if a# ν = −νa,
a is self-adjoint if a# ν = νa.

The set of orthogonal elements in L(Y) is a group for the operator composition,
denoted by O(Y). The set of anti-self-adjoint elements in L(Y), denoted by o(Y),
is a Lie algebra, equipped with the commutator [a, b].

Definition 1.28 If (Y, ν) is pseudo-Euclidean, we keep the same definitions,
except we replace isometric, orthogonal, anti-self-adjoint and self-adjoint with
pseudo-isometric, pseudo-orthogonal, anti-pseudo-self-adjoint and pseudo-self-
adjoint.

1.1.12 Anti-symmetric forms

Definition 1.29 We will say that ω ∈ L(Y,Y# ) is anti-symmetric if

−ω ⊂ ω# , i.e. y1 · ωy2 = −y2 · ωy1 , y1 , y2 ∈ Y.

The space of all anti-symmetric elements of L(Y,Y# ) will be denoted by
La(Y,Y# ).

Let ω ∈ La(Y,Y# ).

Definition 1.30 A subspace X ⊂ Y is called isotropic if

y1 · ωy2 = 0, y1 , y2 ∈ X .

A maximal isotropic subspace is called Lagrangian.
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14 Vector spaces

Definition 1.31 A non-degenerate anti-symmetric bilinear form is called
symplectic.

If ω is symplectic, then (ωY,Y) is a dual pair and we can treat Y as a
subspace of (ωY)# . We can also define a symplectic form ω−1 ∈ La(ωY,Y) ⊂
La(ωY, (ωY)# ).

Proposition 1.32 Let Y be finite-dimensional.

(1) ω is anti-symmetric iff ω# = −ω.
(2) An isotropic subspace X is Lagrangian iff dimX = 1

2 dimY.
(3) If ω is symplectic, then ωY = Y# , so that ω−1 ∈ La(Y# ,Y) is a symplectic

form.

1.1.13 Symplectic spaces

Definition 1.33 The pair (Y, ω), where ω is a symplectic form on Y, is called
a symplectic space.

Let (Y, ω) be a symplectic space.

Definition 1.34 The symplectic complement of X ⊂ Y is defined as

X ω⊥ := {y ∈ Y : y · ωx = 0, x ∈ X}.
Let X be a subspace of Y. Note that X is isotropic iff X ω⊥ ⊃ X and it is

Lagrangian iff X ω⊥ = X .

Definition 1.35 We say that X is co-isotropic if X ω⊥ ⊂ X .

If X is co-isotropic, then X/X ω⊥ is naturally a symplectic space.
Note that X is isotropic in Y iff X an is co-isotropic in Y# .

1.1.14 Group Sp(Y) and Lie algebra sp(Y)

Let (Y, ω) be a symplectic space and a ∈ L(Y).

Definition 1.36 We say that

a is symplectic if a is bijective and a# ωa = ω,

a is anti-symplectic if a is bijective and a# ωa = −ω,

a is infinitesimally symplectic if a# ω = −ωa.

The set of symplectic elements in L(Y) is a group for the operator composition
denoted by Sp(Y). The set of infinitesimally symplectic elements, denoted by
sp(Y), is a Lie algebra equipped with the commutator.

Proposition 1.37 Assume that Y is finite-dimensional and r ∈ L(Y). Then

(1) r ∈ Sp(Y) iff r# ωr = ω.
(2) r ∈ Sp(Y, ω) iff r# ∈ Sp(Y# , ω−1).
(3) r ∈ Sp(Y) implies r−1 = ω−1r# ω.
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1.1 Elementary linear algebra 15

1.1.15 Involutions and super-spaces

Definition 1.38 ε ∈ L(Y) is called an involution if ε2 = 1l.

Definition 1.39 If ε ∈ L(Y) is an involution, we set Y±ε := Ker(1l∓ ε).

Every involution determines a decomposition Y = Yε ⊕ Y−ε , the operators
1
2 (1l± ε) being the projections onto Y±ε along Y∓ε .

Conversely, a decomposition Y = Y0 ⊕ Y1 determines an involution given by

the matrix ε =
[

1l 0
0 −1l

]
.

Operators a ∈ L(Y) commuting with ε are of the form a =
[

a00 0
0 a11

]
.

Definition 1.40 We say that (Y, ε) is a Z2-graded space or a super-space if ε

is an involution on Y. ε is often called the Z2-grading.

Definition 1.41 In the context of super-spaces one often writes Y0 for Yε and its
elements are called even. One writes Y1 for Y−ε and its elements are called odd.
Elements of Y0 ∪ Y1 will be called homogeneous or pure. The operator p = 0⊕ 1l
is called the parity, so that ε = (−1l)p . Sometimes, the parity of a homogeneous
element y ∈ Y is denoted |y|.

Remark 1.42 The name “super-space” came into use under the influence of
super-symmetric quantum field theory. The prefix “super” is often attached to
mean “Z2-graded” in various contexts; see e.g. Subsects. 3.3.9 and 6.1.4.

If Y has an additional structure, we will often assume that it is preserved by
ε. For instance, we have the following terminology (see Subsect. 1.3.8):

Definition 1.43 (Y, ε) is a super-Hilbert space if Y is a Hilbert space and ε is
a unitary involution; it is a super-Kähler space if Y is a Kähler space and ε is a
symplectic and orthogonal (and hence complex linear) involution.

Let (Y, ε), (W, ε) be two super-spaces. The space of linear transformations
from Y toW, that is, L(Y,W), is itself naturally a super-space, with the grading
given by

L(Y,W) � r �→ εrε ∈ L(Y,W).

Written in the matrix notation, the decomposition of an element of L(Y,W) into
its even and odd parts is[

a00 a01

a10 a11

]
=
[

a00 0
0 a11

]
+
[

0 a01

a10 0

]
.

We can form other super-spaces in an obvious way, for example, (Y ⊕W,

ε⊕ ε), (Y ⊗W, ε⊗ ε).
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16 Vector spaces

1.1.16 Conjugations on a symplectic space

Let (Y, ω) be a symplectic space.

Definition 1.44 A map τ ∈ L(Y) is called a conjugation if it is an anti-
symplectic involution.

Let (V,X ) be a dual pair of vector spaces. Define ω ∈ L(V ⊕ X ,V# ⊕X # ) and
τ ∈ L(V ⊕ X ) by

ω =
[

0 1l
−1l 0

]
, τ =

[
1l 0
0 −1l

]
. (1.9)

In other words, for (η1 , q1), (η2 , q2) ∈ V ⊕ X we have

(η1 , q1) · ω(η2 , q2) = η1 ·q2 − η2 ·q1 , τ(η1 , q1) = (η1 ,−q1). (1.10)

Then ω is a symplectic form on V ⊕ X and τ is a conjugation.
We can also define ω−1 and τ# on V# ⊕X # . We obtain a symplectic form and

a conjugation:

ω−1 =
[

0 −1l
1l 0

]
, τ# =

[
1l 0
0 −1l

]
, (1.11)

or equivalently

(x1 , ξ1) · ω−1(x2 , ξ2) = ξ1 ·x2 − ξ2 ·x1 , τ# (x1 , ξ1) = (x1 ,−ξ1). (1.12)

We will see below that the above construction describes a general form of a
symplectic space equipped with a conjugation.

Proposition 1.45 Let τ be a conjugation on a symplectic space Y. Then the
spaces Y±τ are Lagrangian.

Proof The spaces Y±τ are clearly isotropic. Since Y � Yτ ⊕ Y−τ we have Y# �
(Yτ )# ⊕ (Y−τ )# , and we can write ω as the matrix[

0 a

−b 0

]
,

where a : Y−τ → (Yτ )# and b : Yτ → (Y−τ )# are injective and

a#
∣∣
Yτ = b, b#

∣∣
Y−τ = a.

If Yτ � X , where X is isotropic, then there exists e �∈ Yτ such that y · ωe = 0 for
all y ∈ Yτ . Then (1l− τ)e �= 0 and y·ω(1l− τ)e = y·a(1l− τ)e = 0 for all y ∈ Yτ ,
which contradicts the fact that a is injective. Hence Y±τ are Lagrangian. �

Proposition 1.46 Let Y be a symplectic space Y with a conjugation τ . We use
the notation of the proof of Prop. 1.45. Set

X := Y−τ , V := bYτ .
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1.2 Complex vector spaces 17

Then (V,X ) is a dual pair and b⊕ 1l sends bijectively Y = Yτ ⊕ Y−τ onto V ⊕ X .
With this identification, ω and τ are given by (1.10).

If in addition the dimension of Y is finite, then V = X # and we obtain a
bijection of Y onto X # ⊕X and of Y# onto X ⊕ X # .

Proof Clearly, V ⊂ X # . We need to show that Van = {0}. Let x ∈ Van . For any
y ∈ Yτ , we have

0 = 〈by|x〉 = 〈y|b# x〉 = 〈y|ax〉,
since b#

∣∣
Y−τ = a. This implies that ax = 0, and hence x = 0, since a is injective.

Therefore, (V,X ) is a dual pair. �

Theorem 1.47 Let Y be a finite-dimensional symplectic space. There exists a
conjugation in L(Y). Consequently, there exists a vector space X such that Y is
isomorphic to X # ⊕X .

Proof Let f1 be an arbitrary non-zero vector in Y. Since ω is non-degenerate, we
can find a vector e1 such that f1 ·ωe1 = 1. f1 is not proportional to e1 , because
ω is anti-symmetric. Let Y1 = {y ∈ Y : y·ωf1 = y·ωe1 = 0}. Then dimY1 =
dimY − 2. We continue our construction in Y1 , finding vectors f2 , e2 etc.

In the end we set τ = 1l on Span{f1 , . . . , fd} and τ = −1l on Span{e1 , . . . , ed}.
�

1.2 Complex vector spaces

Throughout the section, Z,W are complex vector spaces.

1.2.1 Anti-linear operators

Definition 1.48 Let a be a map from Z to W. We say that it is anti-linear if
it is linear over R and ia = −ai.

Definition 1.49 Let a be anti-linear from Z to W. The transpose of a is the
operator in L(W# ,Z# ) defined by

〈a# v|y〉 := 〈v|ay〉, v ∈ Y#
2 , y ∈ Y1 . (1.13)

Note that the transpose of an anti-linear operator is also anti-linear.

1.2.2 Internal conjugations

Definition 1.50 An anti-linear map χ on Z such that χ2 = 1l is called an (inter-
nal) conjugation. The subspace Zχ := {z ∈ Z : χz = z} is sometimes called a
real form of Z. According to an alternative terminology, Zχ is called the real
subspace and Z−χ := {z ∈ Z : χz = −z} the imaginary subspace (for χ).
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18 Vector spaces

Definition 1.51 Operators a ∈ L(Z,W) satisfying a = χaχ will be sometimes
called real (for χ).

Clearly, the space of real operators can be identified with L(Zχ ,Wχ).
Sometimes, an internal conjugation will be denoted by z instead of χz. In such

a case, if a ∈ L(Z), we will write a for χaχ.

1.2.3 Complex conjugate spaces

In this subsection we discuss the external approach to the complex conjugation.
This is a very simple and elementary subject, which, however, can be a little
confusing.

Definition 1.52 Z will denote a complex space equipped with an anti-linear
isomorphism

Z � z �→ z ∈ Z. (1.14)

We will call Z the space complex conjugate to Z. We will use the convention
that the inverse of (1.14) is denoted by the same symbol, so that z = z, z ∈ Z
and Z = Z.

In practice, one often uses one of the following two concrete realizations of the
complex conjugate space.

The first approach is the most canonical (it does not introduce additional
structure). We set Z to be equal to Z as a real vector space. The map Z � z �→
z ∈ Z is just the identity. One defines the multiplication by λ ∈ C on Z as

λz := λz, z ∈ Z, λ ∈ C.

In the second approach, we choose Z = Z as complex vector spaces and we
fix an internal conjugation χ. Then we set z := χz. Thus we are back in the
framework of Subsect. 1.2.2.

Definition 1.53 If a ∈ L(Z,W), then one defines a ∈ L(Z,W) by

a z := az. (1.15)

The map L(Z,W) � a �→ a ∈ L(Z,W) is an anti-linear isomorphism which
allows us to identify L(Z,W) and L(Z,W) as complex vector spaces.

Sometimes the notation z �→ z is inconvenient for typographical reasons, and
we will denote the complex conjugation by a letter, e.g. χ. Thus χ : Z → Z is a
fixed anti-linear map and we write χz for z.

In particular, if a ∈ L(Z1 ,Z2), and the conjugations Zi → Z i are denoted by
χi , then a = χ2aχ−1

1 .
A typical situation when this alternative notation is more convenient is the

following. Suppose that b is an anti-linear map from Z1 to Z2 . Then, instead of
b, it may be more convenient to use one of the following two linear maps:

bχ−1
1 ∈ L(Z1 ,Z2), or χ2b ∈ L(Z1 ,Z2). (1.16)
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1.2 Complex vector spaces 19

Note that b is a conjugation on Z iff the linear map a := bχ−1 ∈ L(Z,Z)
satisfies

aa = 1l.

1.2.4 Anti-linear functionals

If w ∈ Z# , we let it act on Z as

〈w|z〉 := 〈w|z〉, z ∈ Z.

This identifies Z# with Z#
. (This is a special case of (1.15) for W = C).

Definition 1.54 The anti-dual of Z is defined as

Z∗ := Z#
.

Thus Z∗ is the space L(Z, C) of anti-linear functionals on Z. Several kinds of
notation for the action of w ∈ Z∗ on z ∈ Z will be used:

(1) the bra–ket notation (z|w) = 〈z|w〉 = 〈w|z〉,
(2) the simplified notation z · w = w · z,
(3) the functional notation w(z) .

Since Z# = Z#
, we see that Z∗∗ = Z# # , so that Z ⊂ Z∗∗ and in the finite-

dimensional case Z = Z∗∗.

Remark 1.55 We will consistently use the following convention. The round
brackets in a pairing of two vectors will indicate that the expression depends
anti-linearly on the first argument and linearly on the second argument. In the
case of the angular brackets the dependence on both arguments will always be
linear, in both the real and the complex case.

1.2.5 Adjoint of an operator

Let a ∈ L(Z1 ,Z2).

Definition 1.56 We define the adjoint of a, denoted by a∗ ∈ L(Z∗
2 ,Z∗

1 ), by

(a∗w2 |z1) := (w2 |az1), w2 ∈ Z∗
2 , z1 ∈ Z1 . (1.17)

We see that

a∗ = a# = a# , a ⊂ a∗∗. (1.18)

Definition 1.57 Let a be an anti-linear map from Z1 to Z2 . The adjoint of a,
instead of by (1.17), is defined by

(z1 |a∗w2) = (w2 |az1),

or, equivalently, (a∗w2 |z1) = (w2 |az1), w2 ∈ Z∗
2 , z1 ∈ Z1 . (1.19)

It is an anti-linear operator from Z∗
2 to Z∗

1 satisfying (1.18).
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1.2.6 Anti-dual pairs

Definition 1.58 An anti-dual pair is a pair (W,Z) of complex vector spaces
equipped with a form

(W,Z) � (w, z) �→ (w|z) ∈ C

anti-linear in W and linear in Z such that

(w|z) = 0, w ∈ V ⇒ z = 0,

(w|z) = 0, z ∈ Z ⇒ w = 0.

Properties of anti-dual pairs are obvious analogs of the properties of dual
pairs. For instance, if Z is finite-dimensional and (W,Z) is a dual pair, then W
is naturally isomorphic to Z∗.

1.2.7 Sesquilinear forms

Definition 1.59 Elements of L(Z,Z∗) will be called sesquilinear forms.

Let β ∈ L(Z,Z∗). β determines a map

Z × Z � (z1 , z2) �→ (z1 |βz2) = z1 · βz2 ∈ C (1.20)

anti-linear in the first argument and linear in the second argument.

Definition 1.60 We say that β is non-degenerate if Ker β = {0}.

Definition 1.61 An operator r ∈ L(Z) preserves β if

r∗βr = β, i.e. (rz1 |βrz2) = (z1 |βz2), z1 , z2 ∈ Z.

An operator a ∈ L(Z) infinitesimally preserves β if

a∗β + βa = 0, i.e. (az1 |βz2) = −(z1 |βaz2), z1 , z2 ∈ Z.

Remark 1.62 Note that we adopt the so-called physicist’s convention for
sesquilinear forms. A part of the mathematical community adopts the reverse
convention: they assume sesquilinear forms to be linear in the first and anti-
linear in the second argument.

Remark 1.63 We will use three kinds of notation for sesquilinear forms:

(1) the bra–ket notation (z1 |βz2), going back to Dirac,
(2) the simplified notation z1 · βz2 ,
(3) the functional notation β(z1 , z2).

Note that in all cases the notation indicates that the form is sesquilinear and not
bilinear: by the use of round instead of angular brackets in the first case, and by
the use of the bar in the remaining cases. Usually, we will prefer the first two
notations, both given in (1.20).
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1.2 Complex vector spaces 21

1.2.8 Hermitian forms

Let β ∈ L(Z,Z∗).

Definition 1.64 We will say that

β is Hermitian if β ⊂ β∗, i.e. (z2 |βz1) = (z1 |βz2), z1 , z2 ∈ Z,

or equivalently (z|βz) ∈ R, z ∈ Z;

β is anti-Hermitian if β ⊂ −β∗, i.e. (z2 |βz1) = −(z1 |βz2), z1 , z2 ∈ Z,

or equivalently (z|βz) ∈ iR, z ∈ Z.

Clearly, β is Hermitian iff iβ is anti-Hermitian.

Definition 1.65 The space of all Hermitian elements of L(Z,Z∗) will be denoted
Lh(Z,Z∗). Such operators are also called Hermitian forms.

If Z is finite-dimensional then β ∈ Lh(Z,Z∗) iff β∗ = β.

Definition 1.66 A Hermitian form β is called positive semi-definite if (z|βz) ≥
0 for z ∈ Z. It is called positive definite if (z|βz) > 0 for z �= 0. A positive definite
form is also often called a scalar product.

Positive definite forms are always non-degenerate.
If β ∈ Lh(Z,Z∗) is non-degenerate, then (βZ,Z) is an anti-dual pair. Hence,

we can define β−1 ∈ Lh(βZ,Z) ⊂ Lh(βZ, (βZ)∗). (Note that Z ⊂ (βZ)∗.) The
form β−1 is non-degenerate and is positive definite iff β is positive definite.

1.2.9 (Pseudo-)unitary spaces

Definition 1.67 A couple (Z, β), where β ∈ Lh(Z,Z∗) is non-degenerate, is
called a pseudo-unitary space. If β is positive definite, then (Z, β) is called a
unitary space. In such a case we can define the norm of z ∈ Z denoted by ‖z‖ :=√

(y|βy). If Z is complete for this norm, it is called a Hilbert space.

Note that the notion of a pseudo-unitary space is closely related to that of a
charged symplectic space, which is defined later, in Subsect. 1.2.11.

Let (Z, β) be a pseudo-unitary space.

Definition 1.68 If U ⊂ Z, then Uβ⊥ denotes the β-orthogonal complement of
U :

Uβ⊥ :=
{
z ∈ Z : (u|βz) = 0, u ∈ U}.

Definition 1.69 Let (Z, β) be a unitary, pseudo-unitary, resp. charged symplec-
tic space. Then Z has a natural unitary, pseudo-unitary, resp. charged symplectic
structure:

(z1 |βz2) := (z1 |βz2).
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Definition 1.70 A non-degenerate Hermitian form, especially if it is positive
definite, is often called a scalar product and denoted (z1 |z2) or z1 · z2 . In such a
case, the orthogonal complement of U is denoted U⊥. For w ∈ Z, (w| will denote
the following operator:

Z � z �→ (w|z := (w|z) ∈ C.

For example, if (w|w) = 1, then |w)(w| is the orthogonal projection onto w.
Most unitary spaces considered in our work will be (complex) Hilbert spaces.

Hilbert spaces will be further discussed in Subsect. 2.2.2.

1.2.10 Group U(Z) and Lie algebra u(Z)

Let (Z, β) be an unitary space and a ∈ L(Z).

Definition 1.71 We say that

a is isometric if a∗βa = β,
a is unitary if a is isometric and bijective,

a is self-adjoint if a∗β = βa,
a is anti-self-adjoint if a∗β = −βa.

The set of unitary operators on Z is a group for the operator composition denoted
by U(Z). The space of anti-self-adjoint operators on Z, denoted by u(Z), is a
Lie algebra equipped with the usual commutator.

Let b be an anti-linear operator on Z.

Definition 1.72 We say that

b is anti-unitary if b∗βb = β and a is bijective,
b is a conjugation if it is an anti-unitary involution.

Recall from Subsect. 1.2.3 that we sometimes use two alternative symbols for
the complex conjugation: χ and the “bar”.

Clearly, b is anti-unitary iff χb : Z → Z is unitary.
If Z is a pseudo-unitary space, we can repeat Subsect. 1.2.10, replacing the

terms isometric, unitary, anti-self-adjoint and self-adjoint with pseudo-isometric,
pseudo-unitary, anti-pseudo-self-adjoint and pseudo-self-adjoint.

1.2.11 Charged symplectic spaces

Definition 1.73 If ω is anti-Hermitian and non-degenerate, then (Z, ω) is called
a charged symplectic space.

Note that the difference between a pseudo-unitary and charged symplectic
space is minor (passing from β to ω = iβ changes a pseudo-unitary space into a
charged symplectic space). We will, however, more often use the framework of a
charged symplectic space. The terminology in this case is somewhat different.

Let (Z, ω) be a charged symplectic space and a ∈ L(Z).
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Definition 1.74 We say that

a preserves ω if a∗ωa = ω,

a anti-preserves ω if a∗ωa = −ω,

a is charged symplectic if a preserves ω and is bijective,
a is charged anti-symplectic if a anti-preserves ω and is bijective,

a is infinitesimally charged symplectic if a∗ω = −ωa.

The set of charged symplectic operators on Z is a group for the operator com-
position denoted by ChSp(Z). The space of infinitesimally charged symplectic
operators on Z, denoted by chsp(Z), is a Lie algebra equipped with the usual
commutator.

Let a be an anti-linear operator on Z.

Definition 1.75 We say that

a preserves ω if a∗ωa = ω, or (z1 |ωz2) = (az1 |ωaz2),
a anti-preserves ω if a∗ωa = −ω, or (z1 |ωz2) = −(az1 |ωaz2),

a is anti-charged symplectic if a preserves ω and is bijective,
a is anti-charged anti-symplectic if a anti-preserves ω and is bijective.

Remark 1.76 The terminology “charged symplectic space” is motivated by appli-
cations in quantum field theory: such spaces describe charged bosons.

1.3 Complex structures

When we quantize a classical system, the phase space is often naturally equipped
with more than one complex structure. Therefore, it is useful to develop this
concept in more detail.

Besides complex structures, in this section we discuss the so-called (pseudo-)
Kähler spaces, which can be described as (pseudo-)unitary spaces treated as real
spaces.

1.3.1 Anti-involutions

Let Y be a vector space.

Definition 1.77 We say that j ∈ L(Y) is an anti-involution if j2 = −1l.

If Y is a real vector space with an anti-involution j, then Y can be naturally
endowed with the structure of a complex space:

(λ + iμ)y := λy + μjy, y ∈ Y, λ, μ ∈ R. (1.21)

Therefore, anti-involutions on real spaces are often called complex structures.
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Definition 1.78 Y converted into a vector space over C with the multiplication
(1.21) will be denoted YC, or by (YC, j) if we need to specify the complex structure
that we use. It will be called a complex form of Y.

Definition 1.79 Conversely, any complex space W can be considered as a real
vector space, called the realification of W and denoted WR. It is equipped with
an anti-involution j ∈ L(WR) (the multiplication by the complex number i).

Let Y1 , Y2 be real spaces with anti-involutions j1 , j2 . Then

L(YC

1 ,YC

2 ) =
{
a ∈ L(Y1 ,Y2) : aj1 = j2a

}
.

1.3.2 Conjugations on a space with an anti-involution

Let Y be a vector space equipped with an anti-involution j ∈ L(Y).

Definition 1.80 We say that χ ∈ L(Y) is a conjugation if it is an involution
and jχ = −χj.

Recall that χ determines a decomposition Y = Yχ ⊕ Y−χ (see Def. 1.39). Let
us write X := Y−χ . Then jX = Yχ . The map

Y � y �→
(

j
1l + χ

2
y,

1l− χ

2
y

)
∈ X ⊕ X (1.22)

is bijective. Thus Y can be identified with X ⊕ X , so that

j =
[

0 −1l
1l 0

]
, χ =

[
1l 0
0 −1l

]
.

r ∈ L(X ⊕ X ) commutes with j iff it is of the form

r =
[

a −b

b a

]
, (1.23)

for a, b ∈ L(X ).
r commutes with both j and χ iff

r =
[

a 0
0 a

]
, (1.24)

for a ∈ L(X ).

1.3.3 Complexification

Let X be a real vector space

Definition 1.81 The complexification of X , denoted by CX , is the complex

vector space (X ⊕ X )C, equipped with the anti-involution given by
[

0 −1l
1l 0

]
,
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which will be denoted simply by i. CX is also equipped with the conjugation χ

given by
[

1l 0
0 −1l

]
. According to the convention in Subsect. 1.2.3, we will usually

write z := χz, z ∈ CX .

Note that L(CX ), in the representation X ⊕ X , consists of matrices of the
form (1.23).

Let a ∈ L(X ).

Definition 1.82 We set

aC :=
[

a 0
0 a

]
, a

C
:=
[

a 0
0 −a

]
. (1.25)

aC, resp. a
C
, is the unique (complex) linear, resp. anti-linear extension of a to

an operator on CX . Often, we simply write a instead of aC.

1.3.4 Complexification of a Euclidean space

Let (X , ν) be a Euclidean space. Then the scalar product in X has two natural
extensions to CX : if wi = (xi + iyi) ∈ CX , i = 1, 2, we can define the bilinear
form

w1 · νCw2 := x1 · νx2 − y1 · νy2 + ix1 · νy2 + iy1 · νx2

and the sesquilinear form

(w1 |w2) = w1 · νCw2 := x1 · νx2 + y1 · νy2 + ix1 · νy2 − iy1 · νx2 .

We will more often use the latter. It makes CX into a unitary space. The canon-
ical conjugation χ defined in Subsect. 1.3.3 is anti-unitary. We also see that if
r ∈ O(X ), resp. r ∈ o(X ), then rC ∈ U(CX ), resp. rC ∈ u(CX ).

Assume now that (W, (·|·)) is a unitary space and that χ is a conjugation on X
in the sense of Subsect. 1.2.8. Let X := Wχ as in Subsect. 1.3.2. Then X equipped
with y1 ·νy2 := (y1 |y2) is a Euclidean space. The identification of X ⊕ X � CX
with W as complex spaces defined in Subsect. 1.3.2 is unitary from (CX , (·|·))
to (W, (·|·)).

1.3.5 Complexification of a symplectic space

Let (X , ω) be a symplectic space. Then CX can be equipped with the non-
degenerate anti-symmetric form ω defined for wi = (xi + iyi) ∈ CX , i = 1, 2, by

w1 · ωCw2 := x1 · ωx2 − y1 · ωy2 + ix1 · ωy2 + iy1 · ωx2 ,

as well as a charged symplectic form

w1 · ωCw2 := x1 · ωx2 + y1 · ωy2 + ix1 · ωy2 − iy1 · ωx2 .

where wi = (xi + iyi), i = 1, 2.
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1.3.6 Holomorphic and anti-holomorphic subspaces

Assume that a real space Y is equipped with an anti-involution j ∈ L(Y). Thus
(CY)R has two distinguished anti-involutions: the usual i, and also jC.

Definition 1.83 Set

Z := {y − ijy : y ∈ Y}.
Z will be called the holomorphic subspace of CY.

Z := {y + ijy : y ∈ Y}
will be called the anti-holomorphic subspace of CY.

The corresponding projections are 1lZ := 1
2 (1l− ijC) and 1lZ := 1

2 (1l + ijC).
Clearly, 1l = 1lZ + 1lZ , and CY = Z ⊕ Z. We have Z = Ker(jC − i), Z =
Ker(jC + i), thus on Z the complex structures i and jC coincide, whereas on
Z they are opposite.

The canonical conjugation on CY is bijective from Z to Z, which shows that
we can treat (Z, i) as the conjugate vector space (Z, i).

Using the decomposition

CY = Z ⊕ Z, (1.26)

we can write

i =
[

i 0
0 i

]
, jC =

[
i 0
0 −i

]
.

The converse construction is as follows: Let (Z, i) be a complex vector space.
Set

Re(Z ⊕ Z) :=
{
(z, z) ∈ Z ⊕ Z : z ∈ Z}.

Clearly, Re(Z ⊕ Z) is a real vector space. It can be equipped with the anti-
involution

j(z, z) := (iz, iz) = (iz,−iz).

We identify CRe(Z ⊕ Z) with CY = Z ⊕ Z as follows: if yi = (zi, zi) ∈ Y for
i = 1, 2, then

CY � y1 + iy2 �→ (z1 + iz2 , z1 + iz2) ∈ Z ⊕ Z. (1.27)

With this identification we have

jC �
[

i 0
0 −i

]
,

which shows that this is the converse construction.
Z ⊕ Z is equipped with a conjugation

ε(z1 , z2) := (z2 , z1).
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Note that Re(Z ⊕Z) is the real subspace of Z ⊕ Z for the conjugation ε. Clearly,
under the identification (1.27), ε coincides with the usual complex conjugation
on CY.

Often it is convenient to identify the space Z with Re(Z ⊕ Z) = Y.

Definition 1.84 For any λ �= 0, we introduce an identification between a space
with an anti-involution and the corresponding holomorphic space:

Y � y �→ Tλy = λ
1l− ij

2
y ∈ Z. (1.28)

The inverse map is

Z � z �→ T−1
λ z :=

1
λ

(z + z) ∈ Y. (1.29)

In the literature one can find at least two special cases of these identifications:
for λ = 1 and for λ =

√
2. Each one has its own advantages. Note that in the

bosonic case, we will typically use the identification T√
2 , and in the fermionic

case, the identification T1 . The arguments in favor of T√
2 will be given in Subsect.

1.3.9.
Let us discuss an argument in favor of T1 . Consider the natural projection

from CY onto Y:

CY � w �→ w + w

2
+ j

w − w

2i
∈ Y. (1.30)

Then

Z � z �→ T−1
1 z = z + z ∈ Y (1.31)

is the restriction of (1.30) to Z.
T1 appears naturally in the following context. Suppose that we have a function

Z � z �→ F (z) ∈ C. One often prefers to move its domain onto Y by considering

Y � (z, z) �→ F (T1(z, z)) = F (z). (1.32)

Abusing notation, one can denote (1.32) by F (z, z). This notation is especially
common in the literature if F is not holomorphic.

Let us assume for a moment that Y is a complex space. We can realify Y, and
then complexify it, obtaining CYR. Denote the original imaginary unit of Y by
j. Introducing Z and identifying it with Y with help of T1 we can write

CYR � Y ⊕ Y. (1.33)

1.3.7 Operators on a space with an anti-involution

Let Y be a real space with an anti-involution j. Let Z, Z be the holomorphic
and anti-holomorphic spaces defined in Subsect. 1.3.6. Let us collect the form of
various operators on CY after the identification of CY with Z ⊕ Z.
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We have

ε =
[

0 χ

χ 0

]
, jC =

[
i 0
0 −i

]
, i =

[
i 0
0 i

]
.

where Z � z �→ εz := z ∈ Z.
An operator in L(CY) is of the form[

a b

c d

]
,

where a ∈ L(Z), b ∈ L(Z,Z), c ∈ L(Z,Z), d ∈ L(Z).
An operator in L(CY) equal to rC for some r ∈ L(Y) is of the form[

p q

q p

]
,

where p ∈ L(Z), q ∈ L(Z,Z).
Finally an operator L(CY) equal to rC for r ∈ L(YC) (which means that [r, j] =

0) is of the form [
p 0
0 p

]
,

for p ∈ L(Z).

1.3.8 (Pseudo-)Kähler spaces

Let (Y, (·|·)) be a (pseudo-)unitary space. Then YR is a (pseudo-)Euclidean space
for the scalar product

y2 · νy1 := Re(y2 |y1), (1.34)

a symplectic space for the symplectic form

y2 · ωy1 := Im(y2 |y1), (1.35)

and has an anti-involution

jy := iy. (1.36)

The name “(pseudo-)Kähler space” is used for a unitary space treated as a
real space with the three structures (1.34), (1.35) and (1.36). Below we give a
more precise definition:

Definition 1.85 We say that a quadruple (Y, ν, ω, j) is a pseudo-Kähler space
if

(1) Y is a real vector space,
(2) ν is a non-degenerate symmetric form,
(3) ω is a symplectic form,
(4) j is an anti-involution,
(5) ωj = ν.
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If in addition ν is positive definite, then we say that (Y, ν, ω, j) is a Kähler
space.

Definition 1.86 If (Y, ν, ω, j) is a (pseudo-)Kähler space, we set

(y1 |y2) := y1 · νy2 + iy1 · ωy2 . (1.37)

Then (YC, (·|·)) is a (pseudo-)unitary space.

Definition 1.87 If a Kähler space Y is complete for the norm (y · νy)
1
2 , we say

that Y is a complete Kähler space. In other words YC equipped with (·|·) is a
Hilbert space.

Two structures out of ν, ω, j determine the other. This is used in the following
three definitions. In all of them Y is a real vector space, ω is a symplectic form
and ν is a non-degenerate symmetric form.

Definition 1.88 (1) We say that a pair (ω, j) is pseudo-Kähler if ωj is symmet-
ric. If in addition ωj is positive definite, then we say that (ω, j) is Kähler.

(2) We say that a pair (ν, j) is pseudo-Kähler if −νj is a symplectic form. If in
addition ν is positive definite, then we say that (ν, j) is Kähler.

(3) We say that a pair (ν, ω) is pseudo-Kähler if Ranω = Ran ν and ω−1ν is
an anti-involution. If in addition ν is positive definite, we say that (ν, ω) is
Kähler.

The definitions (1) and (2) have other equivalent versions, as seen from the
following theorem:

Theorem 1.89 (1) Let (Y, ω) be a symplectic space. Consider the following
conditions:

(i) j# ωj = ω (j preserves ω),
(ii) j# ω + ωj = 0 (j ∈ sp(Y), or equivalently ωj is symmetric),
(iii) j2 = −1l (j is an anti-involution).

Then any pair of the conditions (i), (ii), (iii) implies the third condition and
that the pair (ω, j) is pseudo-Kähler.

(2) Let (Y, ν) be a (pseudo-)Euclidean space. Consider the following conditions:

(i) j# νj = ν (j is (pseudo-)isometric),
(ii) j# ν + νj = 0 (j ∈ o(Y), or equivalently νj is anti-symmetric),
(iii) j2 = −1l (j is an anti-involution).

Then any pair of the conditions (i), (ii), (iii) implies the third condition and
that the pair (ν, j) is (pseudo-)Kähler.

1.3.9 Complexification of a (pseudo-)Kähler space

Let (Y, ν, ω, j) be a (pseudo-)Kähler space. We have seen that the space CY is
equipped with
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(1) the symmetric form w1 · νCw2 ,
(2) the Hermitian form (w1 |w2) := w1 · νCw2 ,

(3) the symplectic form w1 · ωCw2 , and
(4) the charged symplectic form w1 · ωCw2 ,

where w1 , w2 ∈ CY.
The spaces Z and Z introduced in Subsect. 1.3.6 are isotropic for both bilinear

forms νC and ωC and are mutually orthogonal for both sesquilinear forms.
Let us concentrate on the (pseudo-)unitary structure on CY given by the form

(·|·). Using the fact that j is anti-self-adjoint for ν on Y we see that jC is anti-
self-adjoint for (·|·) on CY. Therefore, the projections 1lZ and 1lZ are orthogonal
projections and hence the spaces Z and Z are orthogonal for (·|·). The map T√

2 ,
introduced in (1.29) is (pseudo-)unitary, if we interpret Y as a (pseudo-)unitary
space YC equipped with the scalar product (1.37). This is the main reason why
the identification T√

2 is often used, at least for bosonic systems.
The converse construction is as follows. Let Z be a (pseudo-)unitary space.

Set Y := Re(Z ⊕ Z). Recall from Subsect. 1.3.6 that Z is naturally isomorphic
to the holomorphic space for (Y, j), where the anti-involution j is given by

j(z, z) = (iz, iz) = (iz,−iz).

Y is equipped with the symmetric form

(z1 , z1) · ν(z2 , z2) := 2Re(z1 |z2),

and the symplectic form

(z1 , z1) · ω(z2 , z2) = 2Im(z1 |z2).

Then (Y, ν, ω, j) is a (pseudo-)Kähler space.
If we first take a (pseudo-)Kähler space Y, take its holomorphic space Z

equipped with its (pseudo-)unitary structure, and then go to the (pseudo-)Kähler
space Y = Re(Z ⊕ Z) constructed as above, we return to the original structure.

If Z is complete, then the topological dual Y# can be identified with Re(Z ⊕
Z) by setting

〈(z, z)|(w,w)〉 := (z|w) + (z|w) = 2Re(z|w).

With this identification we have

ω(z, z) = (−iz, iz).

1.3.10 Conjugations on a (pseudo-)Kähler space

Proposition 1.90 Let (Y, ν, ω, j) be a Kähler space. Let τ ∈ L(Y) be an invo-
lution. Then the following statements are equivalent:

(1) τ is anti-unitary on
(YC, (·|·)).

(2) τ ∈ O(Y, ν), τ j = −jτ .
(3) τ is anti-symplectic, τ j = −jτ .
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1.3 Complex structures 31

Definition 1.91 If the conditions of Prop. 1.90 are satisfied we say that τ is a
conjugation of the Kähler space Y.

Def. 1.91 is consistent with the definitions of a conjugation on a complex space,
a symplectic space and a (pseudo-)unitary space.

Assume that Y is a complete Kähler space with a conjugation τ . Let X := Y−τ ,
which is a real Hilbert space for ν. We can identify Y with X ⊕ X by (1.22),
as in Subsect. 1.3.2. Having in mind applications to CCR representations (see
Subsect. 8.2.7), we prefer, however, to describe a more general identification. We
fix a bounded, positive and invertible operator c on X . Then the map

Y � y �→
(

(2c)−
1
2 j

1l + τ

2
y, (2c)

1
2
1l− τ

2
y

)
∈ X ⊕ X (1.38)

is bijective. With this identification we have

τ =
[

1l 0
0 −1l

]
, j =

[
0 −(2c)−1

2c 0

]
,

(x+
1 , x−

1 ) · ν(x+
2 , x−

2 ) = x+
1 · ν2cx+

2 + x−
1 · ν(2c)−1x−

1 ,

(x+
1 , x−

1 ) · ω(x+
2 , x−

2 ) = x+
1 · νx−

2 − x−
1 · νx+

2 , (x+
i , x−

i ) ∈ X ⊕ X , i = 1, 2.

1.3.11 Real representations of the group U(1)

Let Y be a real space. Consider the group U(1) � R/2πZ and its representation

U(1) ∈ θ �→ uθ ∈ L(Y). (1.39)

Definition 1.92 Let n ∈ {0, 1, . . . }. A representation (1.39) is called a charge
n representation if there exists an anti-involution jch such that

uθ = cos(nθ)1l + sin(nθ)jch , θ ∈ U(1). (1.40)

Proposition 1.93 (1) If (1.39) is a charge 1 representation, then

uθy �= y, 0 �= y ∈ Y, 0 �= θ ∈ U(1), (1.41)

and the operator jch in (1.40) coincides with uπ/2 .
(2) If the representation (1.39) satisfies (1.41), then uπ/2 is an anti-involution.

Proof (2) Clearly, u2
π = 1l. Therefore, uπ is diagonalizable and 1

2 (1l± uπ ) are
the projections onto its eigenvalues ±1. By (1.41), Ker(1l− uπ ) = {0}. Therefore,
uπ = −1l. Now u2

π/2 = uπ = −1l. �

Proposition 1.94 Assume that Y is either finite-dimensional or a real Hilbert
space and the representation (1.39) is orthogonal. In both cases we suppose that
the representation is strongly continuous. Then

(1) Y =
∞⊕

n=0
Yn , where Yn are invariant and (1.39) restricted to Yn is a charge

n representation.
(2) The set of vectors y ∈ Y satisfying (1.41) equals Y1 .
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Proof We can complexify Y and write that uθ,C = eiθc on CY, for some operator
c. Clearly, spec c ⊂ Z. Then Yn := Ran 1l{n,−n}(c) ∩ Y. �

Charge 1 representations are related to (pseudo-)Kähler structures.

Proposition 1.95 Consider a charge 1 representation

uθ = cos(θ)1l + sin(θ)jch , θ ∈ U(1). (1.42)

(1) If Y is a real Hilbert space and uθ ∈ O(Y), θ ∈ U(1), then jch is a Kähler
anti-involution.

(2) If Y is a symplectic space and uθ ∈ Sp(Y), θ ∈ U(1), then jch is a pseudo-
Kähler anti-involution.

1.4 Groups and Lie algebras

In this section we fix terminology and notation concerning groups and Lie alge-
bras, mostly consisting of linear or affine transformations.

Throughout the section, Y and W denote finite-dimensional spaces.

1.4.1 General linear group and Lie algebra

Definition 1.96 GL(Y,W) denotes the set of invertible elements in L(Y,W).
The general linear group of Y is defined as GL(Y) := GL(Y,Y).

SL(Y) :=
{
r ∈ GL(Y) : det r = 1

}
is its subgroup called the special linear group of Y.

Definition 1.97 The general linear Lie algebra of Y is denoted gl(Y) and equals
L(Y) equipped with the bracket [a, b] := ab− ba.

sl(Y) :=
{
a ∈ gl(Y) : Tr a = 0

}
is its Lie sub-algebra called the special linear Lie algebra of Y.

1.4.2 Homogeneous linear differential equations

Assume that R � t �→ at ∈ gl(Y) is continuous, and t ≥ s.

Definition 1.98 We define the time-ordered exponential by the following con-
vergent series:

Texp
ˆ t

s

audu :=
∞∑

n=0

´
. . .
´

t≥un ≥···≥u1 ≥s

aun
· · · au1 dun . . . du1 .

For y ∈ Y, s ∈ R, there exists a unique solution of

d
dt

yt = atyt , ys = y. (1.43)
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It can be expressed in terms of the time-ordered exponential as

yt = Texp
ˆ t

s

audu y.

Clearly, if at = a ∈ gl(Y) does not depend on t, we can use the usual exponen-
tial instead of the time-ordered exponential:

Texp
ˆ t

s

adu = e(t−s)a .

1.4.3 Affine transformations

Definition 1.99 AL(Y,W) will denote W × L(Y,W) acting on Y as follows:
if (w, a) ∈ AL(Y,W) and y ∈ Y, then (w, a)y := w + ay. Elements of AL(Y,W)
are called affine maps from Y to W. We set AL(Y) := AL(Y,Y).

Definition 1.100 If G ⊂ L(Y,W), we set AG := W ×G as a subset of
AL(Y,W).

In particular, if G ⊂ L(Y) is a group, then so is AG. The multiplication in
AG(Y) is

(y2 , r2)(y1 , r1) = (y2 + r2y1 , r2r1).

Thus AG(Y) is an example of a semi-direct product of Y and G, determined by
the natural action of G on Y, and is often denoted by Y � G.

Definition 1.101 The general affine Lie algebra of Y is agl(Y) := Y × L(Y)
equipped with the bracket

[(y2 , a2), (y1 , a1)] = (a2y1 − a1y2 , a2a1 − a1a2).

Definition 1.102 If g ⊂ gl(Y), then we set ag := Y × g as a subset of agl(Y).

Clearly, if g is a Lie algebra, then so is ag. It is an example of the semi-direct
product of Y and g, determined by the natural action of g on Y, and is often
denoted by Y � g.

1.4.4 Inhomogeneous linear differential equations

Consider a continuous function R � t �→ (wt, at) ∈ agl(Y). Then, for y ∈ Y, s ∈
R, there exists a unique solution of

d
dt

yt = wt + atyt , ys = y. (1.44)

It can be written as

yt =
ˆ t

s

(
Texp

ˆ t

v

audu

)
wvdv +

(
Texp

ˆ t

s

audu

)
y. (1.45)
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If (wt, at) = (a,w) ∈ agl(Y) does not depend on t, then (1.45) reduces to

yt = a−1(e(t−s)a − 1l)w + e(t−s)ay.

This motivates setting

e(w,a) := (a−1(ea − 1l)w, ea) ∈ AGL(Y).

Note in particular that

e(0,a) = (0, ea), e(w,0) = (w, 1l).

1.4.5 Exact sequences

Let π : F → G, ρ : G → H be homomorphisms between groups.

Definition 1.103 By saying that

F
π→ G

ρ→ H (1.46)

is an exact sequence, we mean that Ran π = Ker ρ.

Often, if they are obvious from the context, π, ρ are omitted from (1.46).
The one-element group is often denoted by 1. Therefore,

1 → F → G→ H → 1 (1.47)

means that F is a normal subgroup of G and we have a natural isomorphism
H � G/F .

1.4.6 Cayley transform

Let Y be a vector space. Let r ∈ L(Y) and r + 1l be invertible.

Definition 1.104 We define the Cayley transform of r as

γ := (1l− r)(1l + r)−1 .

Note that γ + 1l is again invertible and

r = (1l− γ)(1l + γ)−1 .

Hence the Cayley transform is an involution of{
a ∈ L(Y) : r + 1l is invertible

}
. (1.48)

Let r1 , r2 , r belong to (1.48) with r = r1r2 . Let γ1 , γ2 , γ be their Cayley trans-
forms. Then we have the identity

1l + γ = (1l + γ2)(1l + γ1γ2)−1(1l + γ1). (1.49)

Suppose that Y is a finite-dimensional symplectic space. Then the Cayley
transform is a bijection of{

r ∈ Sp(Y) : r + 1l is invertible
}
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onto {
γ ∈ sp(Y) : γ + 1l is invertible

}
.

If Y is a Euclidean space, then the same is true with Sp(Y), sp(Y) replaced
with O(Y), o(Y).

If Y is a unitary space, then the same is true with Sp(Y), sp(Y) replaced with
U(Y), u(Y).

1.5 Notes

Most of the material in this section is a collection of concepts and facts from
any basic linear algebra course, after a minor “cleaning up”. The need for a
particularly precise terminology in this area is especially important in differential
geometry. Therefore, in the literature such concepts as Kähler, symplectic and
complex structures typically appear in the context of differentiable manifolds;
see e.g. Guillemin–Sternberg (1977). They are rarely considered in the (much
simpler) context of linear algebra.
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